halo ini project fruitszone

This commit is contained in:
intancious 2024-05-21 19:01:42 +07:00
commit 072b8da3bf
56 changed files with 887 additions and 0 deletions

BIN
Background/1.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

BIN
Background/2.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

BIN
Background/3.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

BIN
Background/4.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

1
FruitClassifier.ipynb Normal file

File diff suppressed because one or more lines are too long

240
app.ipynb Normal file
View File

@ -0,0 +1,240 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Buah Alpukat',\n",
" 'Buah Apel',\n",
" 'Buah Belimbing',\n",
" 'Buah Naga',\n",
" 'Buah Lemon',\n",
" 'Buah Nanas',\n",
" 'Buah Pir',\n",
" 'Buah Pisang',\n",
" 'Buah Salak',\n",
" 'Buah Stroberi']"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastai.vision.all import *\n",
"\n",
"learn = load_learner('model.pkl')\n",
"\n",
"\n",
"def format_name(name):\n",
" if name != 'buah naga':\n",
" return f'Buah {name.title()}'\n",
" \n",
" return name.title()\n",
"\n",
"\n",
"names = list(map(format_name, learn.dls.vocab))\n",
"names\n",
"\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import firebase_admin\n",
"from firebase_admin import credentials\n",
"from firebase_admin import firestore\n",
"\n",
"cred = credentials.Certificate('firebase_key.json')\n",
"app = firebase_admin.initialize_app(cred)\n",
"db = firestore.client()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"doc_ref = db.collection(u'preds').add({\n",
" u'image': u'Lovelace',\n",
" u'prediction': 1815,\n",
" u'time_added': firestore.SERVER_TIMESTAMP\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"preds_ref = db.collection(u'preds')\n",
"docs = preds_ref.stream()\n",
"\n",
"for doc in docs:\n",
" data = base64.b64decode(doc.to_dict()['image'])\n",
" buff = BytesIO(data)\n",
" img = Image.open(buff)\n",
" img.show()"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"900\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(<gradio.routes.App at 0x7f3279fb6af0>, 'http://127.0.0.1:7860/', None)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
" background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import gradio as gr\n",
"from fastai.vision.all import *\n",
"import firebase_admin\n",
"from firebase_admin import credentials\n",
"from firebase_admin import firestore\n",
"import base64\n",
"from io import BytesIO\n",
"\n",
"cred = credentials.Certificate('firebase_key.json')\n",
"app = firebase_admin.initialize_app(cred)\n",
"db = firestore.client()\n",
"\n",
"learn = load_learner('model.pkl')\n",
"names = list(map(lambda name: name.title(), learn.dls.vocab))\n",
"\n",
"\n",
"def classify(image):\n",
" buffered = BytesIO()\n",
" image.save(buffered, format=\"JPEG\")\n",
" img_str = base64.b64encode(buffered.getvalue())\n",
"\n",
" pred, idx, probs = learn.predict(np.asarray(image))\n",
"\n",
" db.collection(u'preds').add({\n",
" u'image': img_str,\n",
" u'prediction': pred.title(),\n",
" u'time_added': firestore.SERVER_TIMESTAMP\n",
" })\n",
"\n",
" return dict(zip(names, map(float, probs)))\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
" with gr.Row():\n",
" with gr.Column():\n",
" image_input = gr.Image(label=\"Gambar\", shape=(200, 200), type='pil')\n",
" predict_btn = gr.Button(\"Klasifikasi\", variant='primary')\n",
" with gr.Column():\n",
" chart = gr.Label(label=\"Hasil\")\n",
"\n",
" predict_btn.click(fn=classify, inputs=image_input,\n",
" outputs=chart, api_name='classify_image')\n",
"\n",
"demo.launch()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.12 ('base')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "fdff80770fe959a274e11f3f42c90636d375da6f3b1d0ebe5804fc741631cbf3"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

67
app.py Normal file
View File

@ -0,0 +1,67 @@
import base64
from io import BytesIO
import firebase_admin
import gradio as gr
import numpy as np
from fastai.vision.all import *
import json
from firebase_admin import credentials, firestore
import pathlib
temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath
cred = credentials.Certificate("firebase_key.json")
app = firebase_admin.initialize_app(cred)
db = firestore.client()
learn = load_learner("model.pkl")
names = json.load(open("./translations.json"))
def classify(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
pred, idx, probs = learn.predict(np.asarray(image))
db.collection("preds").add( # inilo db
{
"image": img_str,
"prediction": pred.title(),
"time_added": firestore.SERVER_TIMESTAMP,
}
)
return [
names[pred]["id"],
names[pred]["en"],
f"./audios/en/{pred}.mp3",
f"./audios/id/{pred}.mp3",
]
with gr.Blocks(
css=".gradio-container {background-image: url('file=Fruitzone.jpg')}"
) as demo:
with gr.Row():
with gr.Column():
image_input = gr.Webcam(label="Gambar", shape=(200, 200), type="pil")
predict_btn = gr.Button("Cek Nama Buah Yuk", variant="primary")
with gr.Column():
id_fruit_name = gr.Label(label="Bahasa indonesia")
en_fruit_name = gr.Label(label="Bahasa inggris")
en_audio = gr.Audio(label="Audio inggris")
id_audio = gr.Audio(label="Audio indonesia")
predict_btn.click(
fn=classify,
inputs=image_input,
outputs=[id_fruit_name, en_fruit_name, id_audio, en_audio],
api_name="classify_image",
)
demo.launch()

76
app_coba.py Normal file
View File

@ -0,0 +1,76 @@
import base64
from io import BytesIO
import firebase_admin
import gradio as gr
import numpy as np
from fastai.vision.all import *
import json
from firebase_admin import credentials, firestore
import pathlib
temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath
cred = credentials.Certificate("firebase_key.json")
app = firebase_admin.initialize_app(cred)
db = firestore.client()
learn = load_learner("model.pkl")
names = json.load(open("./translations.json"))
def classify(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
pred, idx, probs = learn.predict(np.asarray(image))
db.collection("preds").add(
{
"image": img_str,
"prediction": pred.title(),
"time_added": firestore.SERVER_TIMESTAMP,
}
)
return [
names[pred]["id"],
names[pred]["en"],
f"./audios/en/{pred}.mp3",
f"./audios/id/{pred}.mp3",
]
with gr.Blocks(
css=".gradio-container {background-image: url('file=Background\fix.png');background-size: cover; background-size: 100% 100%;}"
) as demo:
with gr.Row():
with gr.Column():
image_input = gr.Webcam(label="Gambar", shape=(200, 200), type="pil")
predict_id_btn = gr.Button("Prediksi Bahasa Indonesia", variant="primary")
predict_en_btn = gr.Button("Predict English", variant="primary")
with gr.Column():
id_fruit_name = gr.Label(label="Bahasa Indonesia")
id_audio = gr.Audio(label="Audio Indonesia")
with gr.Column():
en_fruit_name = gr.Label(label="English")
en_audio = gr.Audio(label="English Audio")
predict_id_btn.click(
fn=classify,
inputs=image_input,
outputs=[id_fruit_name, id_audio],
api_name="classify_image",
)
predict_en_btn.click(
fn=classify,
inputs=image_input,
outputs=[en_fruit_name, en_audio],
api_name="classify_image",
)
demo.launch()

BIN
audios/en/Alpukat.mp3 Normal file

Binary file not shown.

BIN
audios/en/Anggur.mp3 Normal file

Binary file not shown.

BIN
audios/en/Apel.mp3 Normal file

Binary file not shown.

BIN
audios/en/Belimbing.mp3 Normal file

Binary file not shown.

BIN
audios/en/Buah naga.mp3 Normal file

Binary file not shown.

BIN
audios/en/Delima.mp3 Normal file

Binary file not shown.

BIN
audios/en/Durian.mp3 Normal file

Binary file not shown.

BIN
audios/en/Jeruk.mp3 Normal file

Binary file not shown.

BIN
audios/en/Kiwi.mp3 Normal file

Binary file not shown.

BIN
audios/en/Lemon.mp3 Normal file

Binary file not shown.

BIN
audios/en/Mangga.mp3 Normal file

Binary file not shown.

BIN
audios/en/Manggis.mp3 Normal file

Binary file not shown.

BIN
audios/en/Melon.mp3 Normal file

Binary file not shown.

BIN
audios/en/Nanas.mp3 Normal file

Binary file not shown.

BIN
audios/en/Pir.mp3 Normal file

Binary file not shown.

BIN
audios/en/Pisang.mp3 Normal file

Binary file not shown.

BIN
audios/en/Rambutan.mp3 Normal file

Binary file not shown.

BIN
audios/en/Salak.mp3 Normal file

Binary file not shown.

BIN
audios/en/Semangka.mp3 Normal file

Binary file not shown.

BIN
audios/en/Srikaya.mp3 Normal file

Binary file not shown.

BIN
audios/en/Strawberry.mp3 Normal file

Binary file not shown.

BIN
audios/id/Alpukat.mp3 Normal file

Binary file not shown.

BIN
audios/id/Anggur.mp3 Normal file

Binary file not shown.

BIN
audios/id/Apel.mp3 Normal file

Binary file not shown.

BIN
audios/id/Belimbing.mp3 Normal file

Binary file not shown.

BIN
audios/id/Buah Naga.mp3 Normal file

Binary file not shown.

BIN
audios/id/Delima.mp3 Normal file

Binary file not shown.

BIN
audios/id/Durian.mp3 Normal file

Binary file not shown.

BIN
audios/id/Jeruk.mp3 Normal file

Binary file not shown.

BIN
audios/id/Kiwi.mp3 Normal file

Binary file not shown.

BIN
audios/id/Lemon.mp3 Normal file

Binary file not shown.

BIN
audios/id/Mangga.mp3 Normal file

Binary file not shown.

BIN
audios/id/Manggis.mp3 Normal file

Binary file not shown.

BIN
audios/id/Melon.mp3 Normal file

Binary file not shown.

BIN
audios/id/Nanas.mp3 Normal file

Binary file not shown.

BIN
audios/id/Pir.mp3 Normal file

Binary file not shown.

BIN
audios/id/Pisang.mp3 Normal file

Binary file not shown.

BIN
audios/id/Rambutan.mp3 Normal file

Binary file not shown.

BIN
audios/id/Salak.mp3 Normal file

Binary file not shown.

BIN
audios/id/Semangka.mp3 Normal file

Binary file not shown.

BIN
audios/id/Srikaya.mp3 Normal file

Binary file not shown.

BIN
audios/id/Strawberry.mp3 Normal file

Binary file not shown.

8
jalur.py Normal file
View File

@ -0,0 +1,8 @@
import os
file_path = "audios/en/Srikaya.mp3" # Ganti dengan jalur file yang ingin Anda periksa
if os.path.exists(file_path):
print("File ada.")
else:
print("File tidak ada atau jalur file salah.")

209
playground.ipynb Normal file
View File

@ -0,0 +1,209 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fastai.vision.all import *\n",
"\n",
"learn = load_learner('model.pkl')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import firebase_admin\n",
"from firebase_admin import credentials\n",
"from firebase_admin import firestore\n",
"import base64\n",
"from io import BytesIO\n",
"\n",
"cred = credentials.Certificate('firebase_key.json')\n",
"app = firebase_admin.initialize_app(cred)\n",
"db = firestore.client()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"doc_ref = db.collection(u'preds').add({\n",
" u'image': u'Lovelace',\n",
" u'prediction': 1815,\n",
" u'time_added': firestore.SERVER_TIMESTAMP\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"preds_ref = db.collection(u'preds')\n",
"docs = preds_ref.stream()\n",
"\n",
"for doc in docs:\n",
" data = base64.b64decode(doc.to_dict()['image'])\n",
" buff = BytesIO(data)\n",
" img = Image.open(buff)\n",
" img.show()"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"900\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(<gradio.routes.App at 0x7f3279fb6af0>, 'http://127.0.0.1:7860/', None)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
" background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import gradio as gr\n",
"from fastai.vision.all import *\n",
"import firebase_admin\n",
"from firebase_admin import credentials\n",
"from firebase_admin import firestore\n",
"import base64\n",
"from io import BytesIO\n",
"\n",
"cred = credentials.Certificate('firebase_key.json')\n",
"app = firebase_admin.initialize_app(cred)\n",
"db = firestore.client()\n",
"\n",
"learn = load_learner('model.pkl')\n",
"names = list(map(lambda name: name.title(), learn.dls.vocab))\n",
"\n",
"\n",
"def classify(image):\n",
" buffered = BytesIO()\n",
" image.save(buffered, format=\"JPEG\")\n",
" img_str = base64.b64encode(buffered.getvalue())\n",
"\n",
" pred, idx, probs = learn.predict(np.asarray(image))\n",
"\n",
" db.collection(u'preds').add({\n",
" u'image': img_str,\n",
" u'prediction': pred.title(),\n",
" u'time_added': firestore.SERVER_TIMESTAMP\n",
" })\n",
"\n",
" return dict(zip(names, map(float, probs)))\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
" with gr.Row():\n",
" with gr.Column():\n",
" image_input = gr.Image(label=\"Gambar\", shape=(200, 200), type='pil')\n",
" predict_btn = gr.Button(\"Klasifikasi\", variant='primary')\n",
" with gr.Column():\n",
" chart = gr.Label(label=\"Hasil\")\n",
"\n",
" predict_btn.click(fn=classify, inputs=image_input,\n",
" outputs=chart, api_name='classify_image')\n",
"\n",
"demo.launch()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)]"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "b671c20432fcd147198c92e7f072af9e705f087eb990bee22b07f08caab9f630"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

2
requirements.txt Normal file
View File

@ -0,0 +1,2 @@
fastai
firebase_admin

103
test.py Normal file
View File

@ -0,0 +1,103 @@
import base64
from io import BytesIO
import firebase_admin
import gradio as gr
import numpy as np
from fastai.vision.all import *
import json
from firebase_admin import credentials, firestore
import pathlib
temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath
cred = credentials.Certificate("firebase_key.json")
app = firebase_admin.initialize_app(cred)
db = firestore.client()
learn = load_learner("model.pkl")
names = json.load(open("./translations.json"))
with gr.Blocks(
css=".gradio-container {background-image: url('file=Background/4.jpeg');background-size: cover; background-size: 100% 100%;}" # .block.svelte-kz0ejz{background-color: rgba(0,0,0,0);} kalo butuh transparan
) as demo:
gr.Markdown(" ")
gr.Markdown(" ")
with gr.Row():
with gr.Column():
image_input = gr.Webcam(label="Gambar", shape=(200, 200), type="pil")
with gr.Row():
predict_id_btn = gr.Button("Bahasa Indonesia", variant="primary")
predict_en_btn = gr.Button("Bahasa Inggris", variant="secondary")
with gr.Column():
with gr.Column(visible=False) as id_fruit_name_col:
id_fruit_name = gr.Label(label="Bahasa indonesia")
id_audio = gr.Audio(label="Audio indonesia")
with gr.Column(visible=False) as en_fruit_name_col:
en_fruit_name = gr.Label(label="Bahasa inggris")
en_audio = gr.Audio(label="Audio inggris")
def classify_id(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
pred, idx, probs = learn.predict(np.asarray(image))
db.collection("preds").add( # inilo db
{
"image": img_str,
"prediction": pred.title(),
"time_added": firestore.SERVER_TIMESTAMP,
}
)
id_fruit_name_col = gr.update(visible=True)
en_fruit_name_col = gr.update(visible=False)
return [
names[pred]["id"],
f"./audios/id/" + names[pred]["id"] + ".mp3",
id_fruit_name_col,
en_fruit_name_col,
]
def classify_en(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
pred, idx, probs = learn.predict(np.asarray(image))
db.collection("preds").add( # inilo db
{
"image": img_str,
"prediction": pred.title(),
"time_added": firestore.SERVER_TIMESTAMP,
}
)
en_fruit_name_col = gr.update(visible=True)
id_fruit_name_col = gr.update(visible=False)
return [
names[pred]["en"],
f"./audios/en/" + names[pred]["id"] + ".mp3",
id_fruit_name_col,
en_fruit_name_col,
]
predict_id_btn.click(
fn=classify_id,
inputs=image_input,
outputs=[id_fruit_name, id_audio, id_fruit_name_col, en_fruit_name_col],
api_name="classify_image",
)
predict_en_btn.click(
fn=classify_en,
inputs=image_input,
outputs=[en_fruit_name, en_audio, id_fruit_name_col, en_fruit_name_col],
api_name="classify_image",
)
# demo.launch(share=True)
demo.launch()

95
test2.py Normal file
View File

@ -0,0 +1,95 @@
import base64
from io import BytesIO
import firebase_admin
import gradio as gr
import numpy as np
from fastai.vision.all import *
import json
from firebase_admin import credentials, firestore
import pathlib
temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath
cred = credentials.Certificate("firebase_key.json")
app = firebase_admin.initialize_app(cred)
db = firestore.client()
learn = load_learner("model.pkl")
names = json.load(open("./translations.json"))
def classify_id(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
pred, idx, probs = learn.predict(np.asarray(image))
db.collection("preds").add( # inilo db
{
"image": img_str,
"prediction": pred.title(),
"time_added": firestore.SERVER_TIMESTAMP,
}
)
return [
names[pred]["id"],
f"./audios/id/" + names[pred]["id"] + ".mp3",
]
def classify_en(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
pred, idx, probs = learn.predict(np.asarray(image))
db.collection("preds").add( # inilo db
{
"image": img_str,
"prediction": pred.title(),
"time_added": firestore.SERVER_TIMESTAMP,
}
)
return [
# names[pred]["id"],
names[pred]["en"],
f"./audios/en/" + names[pred]["id"] + ".mp3",
]
with gr.Blocks(
css=".gradio-container {background-image: url('file=Background/Fruitzone.jpg');background-size: cover; background-size: 100% 100%;}.block.svelte-kz0ejz{background-color: rgba(0,0,0,0);}"
) as demo:
with gr.Row():
with gr.Column():
image_input = gr.Webcam(label="Gambar", shape=(200, 200), type="pil")
predict_id_btn = gr.Button("Bahasa Indonesia", variant="primary")
predict_en_btn = gr.Button("Bahasa Inggris", variant="secondary")
with gr.Column():
id_fruit_name = gr.Label(label="Bahasa indonesia", visible=False)
id_audio = gr.Audio(label="Audio indonesia", visible=False)
en_fruit_name = gr.Label(label="Bahasa inggris", visible=False)
en_audio = gr.Audio(label="Audio inggris", visible=False)
predict_id_btn.click(
fn=classify_id,
inputs=image_input,
outputs=[id_fruit_name, id_audio],
api_name="classify_image",
)
predict_en_btn.click(
fn=classify_en,
inputs=image_input,
outputs=[en_fruit_name, en_audio],
api_name="classify_image",
)
demo.launch()

86
translations.json Normal file
View File

@ -0,0 +1,86 @@
{
"apel": {
"id": "Apel",
"en": "Apple"
},
"anggur": {
"id": "anggur",
"en": "grape"
},
"alpukat": {
"id": "Alpukat",
"en": "Avocado"
},
"belimbing": {
"id": "Belimbing",
"en": "Starfruit"
},
"buah naga": {
"id": "Buah Naga",
"en": "Dragonfruit"
},
"delima": {
"id": "Delima",
"en": "Pomegranate"
},
"durian": {
"id": "Durian",
"en": "Durian"
},
"jeruk": {
"id": "Jeruk",
"en": "Orange"
},
"kiwi": {
"id": "Kiwi",
"en": "Kiwi"
},
"lemon": {
"id": "Lemon",
"en": "Lemon"
},
"mangga": {
"id": "Mangga",
"en": "Mango"
},
"manggis": {
"id": "Manggis",
"en": "mangosteen"
},
"melon": {
"id": "Melon",
"en": "Melon"
},
"nanas": {
"id": "Nanas",
"en": "Pineapple"
},
"pir": {
"id": "Pir",
"en": "Pear"
},
"pisang": {
"id": "Pisang",
"en": "Banana"
},
"rambutan": {
"id": "Rambutan",
"en": "Rambutan"
},
"salak": {
"id": "Salak",
"en": "Snakefruit"
},
"semangka": {
"id": "Semangka",
"en": "Watermelon"
},
"srikaya": {
"id": "Srikaya",
"en": "Srikaya"
},
"stroberi": {
"id": "Stroberi",
"en": "Strawberry"
}
}