TIF_E41200638/playground.ipynb

210 lines
5.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fastai.vision.all import *\n",
"\n",
"learn = load_learner('model.pkl')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import firebase_admin\n",
"from firebase_admin import credentials\n",
"from firebase_admin import firestore\n",
"import base64\n",
"from io import BytesIO\n",
"\n",
"cred = credentials.Certificate('firebase_key.json')\n",
"app = firebase_admin.initialize_app(cred)\n",
"db = firestore.client()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"doc_ref = db.collection(u'preds').add({\n",
" u'image': u'Lovelace',\n",
" u'prediction': 1815,\n",
" u'time_added': firestore.SERVER_TIMESTAMP\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"preds_ref = db.collection(u'preds')\n",
"docs = preds_ref.stream()\n",
"\n",
"for doc in docs:\n",
" data = base64.b64decode(doc.to_dict()['image'])\n",
" buff = BytesIO(data)\n",
" img = Image.open(buff)\n",
" img.show()"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"900\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(<gradio.routes.App at 0x7f3279fb6af0>, 'http://127.0.0.1:7860/', None)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
" background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import gradio as gr\n",
"from fastai.vision.all import *\n",
"import firebase_admin\n",
"from firebase_admin import credentials\n",
"from firebase_admin import firestore\n",
"import base64\n",
"from io import BytesIO\n",
"\n",
"cred = credentials.Certificate('firebase_key.json')\n",
"app = firebase_admin.initialize_app(cred)\n",
"db = firestore.client()\n",
"\n",
"learn = load_learner('model.pkl')\n",
"names = list(map(lambda name: name.title(), learn.dls.vocab))\n",
"\n",
"\n",
"def classify(image):\n",
" buffered = BytesIO()\n",
" image.save(buffered, format=\"JPEG\")\n",
" img_str = base64.b64encode(buffered.getvalue())\n",
"\n",
" pred, idx, probs = learn.predict(np.asarray(image))\n",
"\n",
" db.collection(u'preds').add({\n",
" u'image': img_str,\n",
" u'prediction': pred.title(),\n",
" u'time_added': firestore.SERVER_TIMESTAMP\n",
" })\n",
"\n",
" return dict(zip(names, map(float, probs)))\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
" with gr.Row():\n",
" with gr.Column():\n",
" image_input = gr.Image(label=\"Gambar\", shape=(200, 200), type='pil')\n",
" predict_btn = gr.Button(\"Klasifikasi\", variant='primary')\n",
" with gr.Column():\n",
" chart = gr.Label(label=\"Hasil\")\n",
"\n",
" predict_btn.click(fn=classify, inputs=image_input,\n",
" outputs=chart, api_name='classify_image')\n",
"\n",
"demo.launch()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)]"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "b671c20432fcd147198c92e7f072af9e705f087eb990bee22b07f08caab9f630"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}