{ "cells": [ { "cell_type": "code", "execution_count": 32, "id": "2ae2c777-5a38-4a72-a3f5-34f309b3716a", "metadata": {}, "outputs": [], "source": [ "# 1.Import data dari csv" ] }, { "cell_type": "code", "execution_count": 84, "id": "aef4febf-8655-42c8-a7cc-5cc56caec1b8", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import re\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 85, "id": "1fab43e8-27fa-4b6c-a342-7638094f505d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
created_atid_strfull_textquote_countreply_countretweet_countfavorite_countlanguser_id_strconversation_id_strusernametweet_url
0Sat Feb 10 23:30:48 +0000 20241756460740138119204@geriisme Ini bisa basis partai, financing, ak...0000in16137429534739005461756382503865327916kwaier_https://twitter.com/kwaier_/status/17564607401...
1Sat Feb 10 23:30:23 +0000 20241756460633535766878Hallo semuanya!!!! Tak terasa Pemilihan Legisl...0000in11720895283932037121756460633535766878MudiBantenhttps://twitter.com/MudiBanten/status/17564606...
2Sat Feb 10 23:30:17 +0000 202417564606101064135452025 Anis presiden Kader partai pendukungny...0000in14826418585140224041756460610106413545jogjaethhttps://twitter.com/jogjaeth/status/1756460610...
3Sat Feb 10 23:30:00 +0000 20241756460540531208457@calunaeruby @losta_masta_ @peachyvann @mapedo...0001in14818827062336880641755207806284931256Blokshiahttps://twitter.com/Blokshia/status/1756460540...
4Sat Feb 10 23:29:44 +0000 20241756460470264090668Udah masuk masa tenang tapi cuma ngingetin, ca...0000in837420721756460470264090668ofuku89https://twitter.com/ofuku89/status/17564604702...
.......................................
541Fri Feb 09 23:11:32 +0000 20241756093502600147146@Rapdo5 @Miduk17 bukan hebat tp culas dan lici...0000in15387157178389749761755995641363534093MsElva10530471https://twitter.com/MsElva10530471/status/1756...
542Fri Feb 09 23:11:21 +0000 20241756093457985388779@KakekHalal Kalau melalui proses Pemilu Langsu...0004in14669797385602580491755993623945220130Aryadwiwarna1https://twitter.com/Aryadwiwarna1/status/17560...
543Fri Feb 09 23:10:00 +0000 20241756093116237389849Kenalan yuk dengan Caleg DPR RI Partai Demokra...0001in2848309331756093116237389849Demokrat_TVhttps://twitter.com/Demokrat_TV/status/1756093...
544Fri Feb 09 23:09:17 +0000 20241756092936113267194@sunprintme aku tempelin sticker gede ya, stic...0100in17425681636011663361756005949641462263vaneelyahttps://twitter.com/vaneelya/status/1756092936...
545Fri Feb 09 23:08:42 +0000 20241756092789165785325@Twillight_Loid @GusbacheV Hebat. Jokowi bener...0002in14925107428176814091755978097164517699AbdulRozakUBhttps://twitter.com/AbdulRozakUB/status/175609...
\n", "

546 rows × 12 columns

\n", "
" ], "text/plain": [ " created_at id_str \\\n", "0 Sat Feb 10 23:30:48 +0000 2024 1756460740138119204 \n", "1 Sat Feb 10 23:30:23 +0000 2024 1756460633535766878 \n", "2 Sat Feb 10 23:30:17 +0000 2024 1756460610106413545 \n", "3 Sat Feb 10 23:30:00 +0000 2024 1756460540531208457 \n", "4 Sat Feb 10 23:29:44 +0000 2024 1756460470264090668 \n", ".. ... ... \n", "541 Fri Feb 09 23:11:32 +0000 2024 1756093502600147146 \n", "542 Fri Feb 09 23:11:21 +0000 2024 1756093457985388779 \n", "543 Fri Feb 09 23:10:00 +0000 2024 1756093116237389849 \n", "544 Fri Feb 09 23:09:17 +0000 2024 1756092936113267194 \n", "545 Fri Feb 09 23:08:42 +0000 2024 1756092789165785325 \n", "\n", " full_text quote_count \\\n", "0 @geriisme Ini bisa basis partai, financing, ak... 0 \n", "1 Hallo semuanya!!!! Tak terasa Pemilihan Legisl... 0 \n", "2 2025 Anis presiden Kader partai pendukungny... 0 \n", "3 @calunaeruby @losta_masta_ @peachyvann @mapedo... 0 \n", "4 Udah masuk masa tenang tapi cuma ngingetin, ca... 0 \n", ".. ... ... \n", "541 @Rapdo5 @Miduk17 bukan hebat tp culas dan lici... 0 \n", "542 @KakekHalal Kalau melalui proses Pemilu Langsu... 0 \n", "543 Kenalan yuk dengan Caleg DPR RI Partai Demokra... 0 \n", "544 @sunprintme aku tempelin sticker gede ya, stic... 0 \n", "545 @Twillight_Loid @GusbacheV Hebat. Jokowi bener... 0 \n", "\n", " reply_count retweet_count favorite_count lang user_id_str \\\n", "0 0 0 0 in 1613742953473900546 \n", "1 0 0 0 in 1172089528393203712 \n", "2 0 0 0 in 1482641858514022404 \n", "3 0 0 1 in 1481882706233688064 \n", "4 0 0 0 in 83742072 \n", ".. ... ... ... ... ... \n", "541 0 0 0 in 1538715717838974976 \n", "542 0 0 4 in 1466979738560258049 \n", "543 0 0 1 in 284830933 \n", "544 1 0 0 in 1742568163601166336 \n", "545 0 0 2 in 1492510742817681409 \n", "\n", " conversation_id_str username \\\n", "0 1756382503865327916 kwaier_ \n", "1 1756460633535766878 MudiBanten \n", "2 1756460610106413545 jogjaeth \n", "3 1755207806284931256 Blokshia \n", "4 1756460470264090668 ofuku89 \n", ".. ... ... \n", "541 1755995641363534093 MsElva10530471 \n", "542 1755993623945220130 Aryadwiwarna1 \n", "543 1756093116237389849 Demokrat_TV \n", "544 1756005949641462263 vaneelya \n", "545 1755978097164517699 AbdulRozakUB \n", "\n", " tweet_url \n", "0 https://twitter.com/kwaier_/status/17564607401... \n", "1 https://twitter.com/MudiBanten/status/17564606... \n", "2 https://twitter.com/jogjaeth/status/1756460610... \n", "3 https://twitter.com/Blokshia/status/1756460540... \n", "4 https://twitter.com/ofuku89/status/17564604702... \n", ".. ... \n", "541 https://twitter.com/MsElva10530471/status/1756... \n", "542 https://twitter.com/Aryadwiwarna1/status/17560... \n", "543 https://twitter.com/Demokrat_TV/status/1756093... \n", "544 https://twitter.com/vaneelya/status/1756092936... \n", "545 https://twitter.com/AbdulRozakUB/status/175609... \n", "\n", "[546 rows x 12 columns]" ] }, "execution_count": 85, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"data_test.csv\")\n", "df" ] }, { "cell_type": "code", "execution_count": 86, "id": "e500eda1-311d-4691-9b41-553c57cac920", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
created_atfull_textuser_id_str
0Sat Feb 10 23:30:48 +0000 2024@geriisme Ini bisa basis partai, financing, ak...1613742953473900546
1Sat Feb 10 23:30:23 +0000 2024Hallo semuanya!!!! Tak terasa Pemilihan Legisl...1172089528393203712
2Sat Feb 10 23:30:17 +0000 20242025 Anis presiden Kader partai pendukungny...1482641858514022404
3Sat Feb 10 23:30:00 +0000 2024@calunaeruby @losta_masta_ @peachyvann @mapedo...1481882706233688064
4Sat Feb 10 23:29:44 +0000 2024Udah masuk masa tenang tapi cuma ngingetin, ca...83742072
............
541Fri Feb 09 23:11:32 +0000 2024@Rapdo5 @Miduk17 bukan hebat tp culas dan lici...1538715717838974976
542Fri Feb 09 23:11:21 +0000 2024@KakekHalal Kalau melalui proses Pemilu Langsu...1466979738560258049
543Fri Feb 09 23:10:00 +0000 2024Kenalan yuk dengan Caleg DPR RI Partai Demokra...284830933
544Fri Feb 09 23:09:17 +0000 2024@sunprintme aku tempelin sticker gede ya, stic...1742568163601166336
545Fri Feb 09 23:08:42 +0000 2024@Twillight_Loid @GusbacheV Hebat. Jokowi bener...1492510742817681409
\n", "

546 rows × 3 columns

\n", "
" ], "text/plain": [ " created_at \\\n", "0 Sat Feb 10 23:30:48 +0000 2024 \n", "1 Sat Feb 10 23:30:23 +0000 2024 \n", "2 Sat Feb 10 23:30:17 +0000 2024 \n", "3 Sat Feb 10 23:30:00 +0000 2024 \n", "4 Sat Feb 10 23:29:44 +0000 2024 \n", ".. ... \n", "541 Fri Feb 09 23:11:32 +0000 2024 \n", "542 Fri Feb 09 23:11:21 +0000 2024 \n", "543 Fri Feb 09 23:10:00 +0000 2024 \n", "544 Fri Feb 09 23:09:17 +0000 2024 \n", "545 Fri Feb 09 23:08:42 +0000 2024 \n", "\n", " full_text user_id_str \n", "0 @geriisme Ini bisa basis partai, financing, ak... 1613742953473900546 \n", "1 Hallo semuanya!!!! Tak terasa Pemilihan Legisl... 1172089528393203712 \n", "2 2025 Anis presiden Kader partai pendukungny... 1482641858514022404 \n", "3 @calunaeruby @losta_masta_ @peachyvann @mapedo... 1481882706233688064 \n", "4 Udah masuk masa tenang tapi cuma ngingetin, ca... 83742072 \n", ".. ... ... \n", "541 @Rapdo5 @Miduk17 bukan hebat tp culas dan lici... 1538715717838974976 \n", "542 @KakekHalal Kalau melalui proses Pemilu Langsu... 1466979738560258049 \n", "543 Kenalan yuk dengan Caleg DPR RI Partai Demokra... 284830933 \n", "544 @sunprintme aku tempelin sticker gede ya, stic... 1742568163601166336 \n", "545 @Twillight_Loid @GusbacheV Hebat. Jokowi bener... 1492510742817681409 \n", "\n", "[546 rows x 3 columns]" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = df[[ 'created_at','full_text','user_id_str']]\n", "df" ] }, { "cell_type": "code", "execution_count": 87, "id": "aa073590-2ad7-4e6e-bd1e-0eb5f1b7717c", "metadata": {}, "outputs": [], "source": [ "# 2.cleaning data" ] }, { "cell_type": "code", "execution_count": 88, "id": "78149731-c5e3-4cb4-a586-496c52963645", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(546, 3)" ] }, "execution_count": 88, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "code", "execution_count": 89, "id": "5eb1c631-73e1-4332-9810-dd3572d6832b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "33" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.duplicated().sum()" ] }, { "cell_type": "code", "execution_count": 90, "id": "f5ce7f88-13f7-4dd6-a10c-b44614150dee", "metadata": {}, "outputs": [], "source": [ "df = df.drop_duplicates(subset=['full_text'])" ] }, { "cell_type": "code", "execution_count": 91, "id": "a7dd506c-d8ed-4e2e-ba05-6a23b53cd881", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.duplicated().sum()" ] }, { "cell_type": "code", "execution_count": 92, "id": "1b0ef15a-be11-45ea-a7d1-29c908884f6a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "created_at 0\n", "full_text 0\n", "user_id_str 0\n", "dtype: int64" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.isnull().sum()" ] }, { "cell_type": "code", "execution_count": 93, "id": "4cb70598-a556-4918-9302-db96c085dd67", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(513, 3)" ] }, "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "code", "execution_count": 94, "id": "cd4f2551-a87f-4bdc-a1ed-b0dc44b85421", "metadata": {}, "outputs": [], "source": [ "def clean_twitter_text(text):\n", " # Menghapus karakter @mentions, #hastag, dan url\n", " text = re.sub(r'@[A-Za-z0-9_]+', '', text)\n", " text = re.sub(r'#\\w+', '', text)\n", " text = re.sub(r'RT[\\s]+', '', text)\n", " text = re.sub(r'https?://\\S+', '', text)\n", "\n", " text = re.sub(r'[^A-Za-z0-9 ]', '', text)\n", " text = re.sub(r'\\s+', ' ', text)\n", "\n", " return text\n", "\n", "# Memanggil fungsi clean_twitter_text() setelah didefinisikan\n", "df.loc[:, 'full_text'] = df['full_text'].apply(clean_twitter_text)\n" ] }, { "cell_type": "code", "execution_count": 95, "id": "c200e99f-2770-41dd-818f-a11d93429436", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
created_atfull_textuser_id_str
0Sat Feb 10 23:30:48 +0000 2024ini bisa basis partai financing akses ke figu...1613742953473900546
1Sat Feb 10 23:30:23 +0000 2024hallo semuanya tak terasa pemilihan legislatif...1172089528393203712
2Sat Feb 10 23:30:17 +0000 20242025 anis presiden kader partai pendukungnya k...1482641858514022404
3Sat Feb 10 23:30:00 +0000 2024u think hal ky gini pure dr paslon 02 mereka ...1481882706233688064
4Sat Feb 10 23:29:44 +0000 2024udah masuk masa tenang tapi cuma ngingetin cal...83742072
............
541Fri Feb 09 23:11:32 +0000 2024bukan hebat tp culas dan licik di angkat dr n...1538715717838974976
542Fri Feb 09 23:11:21 +0000 2024kalau melalui proses pemilu langsung menurut ...1466979738560258049
543Fri Feb 09 23:10:00 +0000 2024kenalan yuk dengan caleg dpr ri partai demokra...284830933
544Fri Feb 09 23:09:17 +0000 2024aku tempelin sticker gede ya sticker partai1742568163601166336
545Fri Feb 09 23:08:42 +0000 2024hebat jokowi bener2 serius buat bangsa ini be...1492510742817681409
\n", "

513 rows × 3 columns

\n", "
" ], "text/plain": [ " created_at \\\n", "0 Sat Feb 10 23:30:48 +0000 2024 \n", "1 Sat Feb 10 23:30:23 +0000 2024 \n", "2 Sat Feb 10 23:30:17 +0000 2024 \n", "3 Sat Feb 10 23:30:00 +0000 2024 \n", "4 Sat Feb 10 23:29:44 +0000 2024 \n", ".. ... \n", "541 Fri Feb 09 23:11:32 +0000 2024 \n", "542 Fri Feb 09 23:11:21 +0000 2024 \n", "543 Fri Feb 09 23:10:00 +0000 2024 \n", "544 Fri Feb 09 23:09:17 +0000 2024 \n", "545 Fri Feb 09 23:08:42 +0000 2024 \n", "\n", " full_text user_id_str \n", "0 ini bisa basis partai financing akses ke figu... 1613742953473900546 \n", "1 hallo semuanya tak terasa pemilihan legislatif... 1172089528393203712 \n", "2 2025 anis presiden kader partai pendukungnya k... 1482641858514022404 \n", "3 u think hal ky gini pure dr paslon 02 mereka ... 1481882706233688064 \n", "4 udah masuk masa tenang tapi cuma ngingetin cal... 83742072 \n", ".. ... ... \n", "541 bukan hebat tp culas dan licik di angkat dr n... 1538715717838974976 \n", "542 kalau melalui proses pemilu langsung menurut ... 1466979738560258049 \n", "543 kenalan yuk dengan caleg dpr ri partai demokra... 284830933 \n", "544 aku tempelin sticker gede ya sticker partai 1742568163601166336 \n", "545 hebat jokowi bener2 serius buat bangsa ini be... 1492510742817681409 \n", "\n", "[513 rows x 3 columns]" ] }, "execution_count": 95, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[:, 'full_text'] = df['full_text'].str.lower()\n", "df" ] }, { "cell_type": "code", "execution_count": 96, "id": "6cf0e8d9-5364-4c8b-8d4e-5b6580b496d1", "metadata": {}, "outputs": [], "source": [ "# 3.prepocessing data" ] }, { "cell_type": "code", "execution_count": 97, "id": "6ce3bf2a-c24b-4dec-85f8-aaab10b1316f", "metadata": {}, "outputs": [], "source": [ "# 3.1 Normalisasi" ] }, { "cell_type": "code", "execution_count": 98, "id": "864462f3-d623-4c73-aa98-42b34adf39b4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
created_atfull_textuser_id_str
0Sat Feb 10 23:30:48 +0000 2024ini bisa basis partai financing akses ke figu...1613742953473900546
1Sat Feb 10 23:30:23 +0000 2024hallo semuanya tak terasa pemilihan legislatif...1172089528393203712
2Sat Feb 10 23:30:17 +0000 20242025 anis presiden kader partai pendukungnya k...1482641858514022404
3Sat Feb 10 23:30:00 +0000 2024u think hal ky gini pure dr paslon 02 mereka ...1481882706233688064
4Sat Feb 10 23:29:44 +0000 2024udah masuk masa tenang tapi cuma ngingetin cal...83742072
............
541Fri Feb 09 23:11:32 +0000 2024bukan hebat tp culas dan licik di angkat dr n...1538715717838974976
542Fri Feb 09 23:11:21 +0000 2024kalau melalui proses pemilu langsung menurut ...1466979738560258049
543Fri Feb 09 23:10:00 +0000 2024kenalan yuk dengan caleg dpr ri partai demokra...284830933
544Fri Feb 09 23:09:17 +0000 2024aku tempelin sticker gede ya sticker partai1742568163601166336
545Fri Feb 09 23:08:42 +0000 2024hebat jokowi bener2 serius buat bangsa ini be...1492510742817681409
\n", "

513 rows × 3 columns

\n", "
" ], "text/plain": [ " created_at \\\n", "0 Sat Feb 10 23:30:48 +0000 2024 \n", "1 Sat Feb 10 23:30:23 +0000 2024 \n", "2 Sat Feb 10 23:30:17 +0000 2024 \n", "3 Sat Feb 10 23:30:00 +0000 2024 \n", "4 Sat Feb 10 23:29:44 +0000 2024 \n", ".. ... \n", "541 Fri Feb 09 23:11:32 +0000 2024 \n", "542 Fri Feb 09 23:11:21 +0000 2024 \n", "543 Fri Feb 09 23:10:00 +0000 2024 \n", "544 Fri Feb 09 23:09:17 +0000 2024 \n", "545 Fri Feb 09 23:08:42 +0000 2024 \n", "\n", " full_text user_id_str \n", "0 ini bisa basis partai financing akses ke figu... 1613742953473900546 \n", "1 hallo semuanya tak terasa pemilihan legislatif... 1172089528393203712 \n", "2 2025 anis presiden kader partai pendukungnya k... 1482641858514022404 \n", "3 u think hal ky gini pure dr paslon 02 mereka ... 1481882706233688064 \n", "4 udah masuk masa tenang tapi cuma ngingetin cal... 83742072 \n", ".. ... ... \n", "541 bukan hebat tp culas dan licik di angkat dr n... 1538715717838974976 \n", "542 kalau melalui proses pemilu langsung menurut ... 1466979738560258049 \n", "543 kenalan yuk dengan caleg dpr ri partai demokra... 284830933 \n", "544 aku tempelin sticker gede ya sticker partai 1742568163601166336 \n", "545 hebat jokowi bener2 serius buat bangsa ini be... 1492510742817681409 \n", "\n", "[513 rows x 3 columns]" ] }, "execution_count": 98, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 99, "id": "50f2c622-b3d9-4914-b634-7a55ae358def", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
created_atfull_textuser_id_str
0Sat Feb 10 23:30:48 +0000 2024ini bisa basis partai financing akses ke figur...1613742953473900546
1Sat Feb 10 23:30:23 +0000 2024hallo semuanya tak terasa pemilihan legislatif...1172089528393203712
2Sat Feb 10 23:30:17 +0000 20242025 anis presiden kader partai pendukungnya k...1482641858514022404
3Sat Feb 10 23:30:00 +0000 2024u think hal ky begini pure dari pasangan calon...1481882706233688064
4Sat Feb 10 23:29:44 +0000 2024sudah masuk masa tenang tapi cuma ngingetin ca...83742072
............
541Fri Feb 09 23:11:32 +0000 2024bukan hebat tetapi culas dan licik di angkat d...1538715717838974976
542Fri Feb 09 23:11:21 +0000 2024kalau melalui proses pemilihan umum langsung m...1466979738560258049
543Fri Feb 09 23:10:00 +0000 2024kenalan yuk dengan calon legislatif dewan perw...284830933
544Fri Feb 09 23:09:17 +0000 2024aku tempelin sticker besar ya sticker partai1742568163601166336
545Fri Feb 09 23:08:42 +0000 2024hebat jokowi bener2 serius buat bangsa ini bel...1492510742817681409
\n", "

513 rows × 3 columns

\n", "
" ], "text/plain": [ " created_at \\\n", "0 Sat Feb 10 23:30:48 +0000 2024 \n", "1 Sat Feb 10 23:30:23 +0000 2024 \n", "2 Sat Feb 10 23:30:17 +0000 2024 \n", "3 Sat Feb 10 23:30:00 +0000 2024 \n", "4 Sat Feb 10 23:29:44 +0000 2024 \n", ".. ... \n", "541 Fri Feb 09 23:11:32 +0000 2024 \n", "542 Fri Feb 09 23:11:21 +0000 2024 \n", "543 Fri Feb 09 23:10:00 +0000 2024 \n", "544 Fri Feb 09 23:09:17 +0000 2024 \n", "545 Fri Feb 09 23:08:42 +0000 2024 \n", "\n", " full_text user_id_str \n", "0 ini bisa basis partai financing akses ke figur... 1613742953473900546 \n", "1 hallo semuanya tak terasa pemilihan legislatif... 1172089528393203712 \n", "2 2025 anis presiden kader partai pendukungnya k... 1482641858514022404 \n", "3 u think hal ky begini pure dari pasangan calon... 1481882706233688064 \n", "4 sudah masuk masa tenang tapi cuma ngingetin ca... 83742072 \n", ".. ... ... \n", "541 bukan hebat tetapi culas dan licik di angkat d... 1538715717838974976 \n", "542 kalau melalui proses pemilihan umum langsung m... 1466979738560258049 \n", "543 kenalan yuk dengan calon legislatif dewan perw... 284830933 \n", "544 aku tempelin sticker besar ya sticker partai 1742568163601166336 \n", "545 hebat jokowi bener2 serius buat bangsa ini bel... 1492510742817681409 \n", "\n", "[513 rows x 3 columns]" ] }, "execution_count": 99, "metadata": {}, "output_type": "execute_result" } ], "source": [ "norm = {\n", " 'emang': 'memang',\n", " 'yg': 'yang',\n", " 'tau': 'tahu',\n", " 'itu': 'itu',\n", " 'ngga': 'tidak',\n", " 'gak': 'tidak',\n", " 'udah': 'sudah',\n", " 'ngomong': 'berbicara',\n", " 'sampe': 'sampai',\n", " 'tsb': 'tersebut',\n", " 'aja': 'saja',\n", " 'gaess': 'teman-teman',\n", " 'gue': 'saya',\n", " 'bgt': 'banget',\n", " 'bro': 'sobat',\n", " 'loh': 'lho',\n", " 'klo': 'kalau',\n", " 'gtu': 'begitu',\n", " 'wkwkwk': 'tertawa',\n", " 'mbak': 'kakak perempuan',\n", " 'masnya': 'kakak laki-laki',\n", " 'nih': 'ini',\n", " 'sbg': 'sebagai',\n", " 'ampun': 'maaf',\n", " 'tp': 'tetapi',\n", " 'krna': 'karena',\n", " 'jd': 'jadi',\n", " 'kl': 'kalau',\n", " 'klh': 'kalah',\n", " 'bs': 'bisa',\n", " 'dlu': 'dulu',\n", " 'cm': 'hanya',\n", " 'ntn': 'menonton',\n", " 'blm': 'belum',\n", " 'klu': 'kalau',\n", " 'skrg': 'sekarang',\n", " 'mu': 'dirimu',\n", " 'kmu': 'kamu',\n", " 'dgn': 'dengan',\n", " 'nyinyir': 'bercanda',\n", " 'sosmed': 'media sosial',\n", " 'mk': 'mahkamah konstitusi',\n", " 'nyerah': 'menyerah',\n", " 'ngetren': 'populer',\n", " 'kwkwk': 'tertawa',\n", " 'klw': 'kalau',\n", " 'gmn': 'bagaimana',\n", " 'gaada': 'tidak ada',\n", " 'mjd': 'menjadi',\n", " 'yaa': 'ya',\n", " 'jg': 'juga',\n", " 'biar': 'agar',\n", " 'masi': 'masih',\n", " 'jgn': 'jangan',\n", " 'emg': 'memang',\n", " 'hmm': 'hmm',\n", " 'bodoamat': 'tidak peduli',\n", " 'kayak': 'seperti',\n", " 'apapun': 'apapun',\n", " 'ga': 'tidak',\n", " 'muji': 'memuji',\n", " 'td': 'tadi',\n", " 'napa': 'kenapa',\n", " 'ketum': 'ketua umum',\n", " 'ngegas': 'bersikap tegas',\n", " 'bener': 'benar',\n", " 'lg': 'lagi',\n", " 'skrng': 'sekarang',\n", " 'knp': 'kenapa',\n", " 'yaudah': 'ya sudah',\n", " 'tdk': 'tidak',\n", " 'pdhl': 'padahal',\n", " 'bngt': 'banget',\n", " 'kasian': 'kasihan',\n", " 'dasar': 'dasar',\n", " 'akuny': 'akunnya',\n", " 'kok': 'kenapa',\n", " 'paslon': 'pasangan calon',\n", " 'pemilu': 'pemilihan umum',\n", " 'pilpres': 'pemilihan presiden',\n", " 'caleg': 'calon legislatif',\n", " 'timses': 'tim sukses',\n", " 'tpi': 'tetapi',\n", " 'lah': 'lah',\n", " 'ngaku': 'mengaku',\n", " 'dpr': 'dewan perwakilan rakyat',\n", " 'dprd': 'dewan perwakilan rakyat daerah',\n", " 'dpd': 'dewan perwakilan daerah',\n", " 'ngasih': 'memberikan',\n", " 'doang': 'saja',\n", " 'pdip': 'partai demokrasi indonesia perjuangan',\n", " 'kepantasan': 'kelayakan',\n", " 'jaman': 'zaman',\n", " 'rebo': 'rabu',\n", " 'tmsk': 'termasuk',\n", " 'lu': 'kamu',\n", " 'palingan': 'paling',\n", " 'lebih': 'lebih',\n", " 'jelasin': 'jelaskan',\n", " 'ini': 'ini',\n", " 'kalimatnya': 'kalimatnya',\n", " 'sm': 'sama',\n", " 'sklrg': 'sekarang',\n", " 'diatas': 'di atas',\n", " 'bnyk': 'banyak',\n", " 'jd': 'jadi',\n", " 'bocor': 'bocor',\n", " 'sbb': 'sebab',\n", " 'bodoamat': 'tidak peduli',\n", " 'bgst': 'bangsat',\n", " 'pd': 'pada',\n", " 'sma': 'sama',\n", " 'bego': 'bodoh',\n", " 'sbgi': 'sebagai',\n", " 'blm': 'belum',\n", " 'knp': 'kenapa',\n", " 'gitu': 'begitu',\n", " 'lucu2': 'lucu-lucu',\n", " 'sih': 'sih',\n", " 'mikir': 'berpikir',\n", " 'lu': 'kamu',\n", " 'gini': 'begini',\n", " 'apaan': 'apa',\n", " 'kgk': 'tidak',\n", " 'dr': 'dari',\n", " 'tuk': 'untuk',\n", " 'nah': 'nah',\n", " 'yaudah': 'ya sudah',\n", " 'nntn': 'menonton',\n", " 'tahka': 'tahta',\n", " 'ngapa' : 'mengapa',\n", " 'isteri' : 'istri',\n", " 'alm' : 'almarhum',\n", " 'utk' : 'untuk',\n", " 'btw' : 'omong-omong',\n", " 'pks' : 'Partai Keadilan Sejahtera',\n", " 'ngebolehin' : 'mengizinkan',\n", " 'ttg': 'tentang',\n", " 'gede': 'besar',\n", " 'rebu': 'ribu',\n", "}\n", "\n", "def normalisasi_text(text):\n", " if isinstance(text, str):\n", " words = text.split()\n", " normalized_words = [norm[word] if word in norm else word for word in words]\n", " return ' '.join(normalized_words)\n", " else:\n", " return text\n", "\n", "# Melakukan normalisasi pada kolom 'full_text'\n", "df.loc[:, 'full_text'] = df['full_text'].apply(normalisasi_text)\n", "df\n" ] }, { "cell_type": "code", "execution_count": 100, "id": "c0e99d53-41b7-41b7-af54-1a61365545b1", "metadata": {}, "outputs": [], "source": [ "#3.2 Stopword" ] }, { "cell_type": "code", "execution_count": 101, "id": "a276f5b9-5033-4028-801a-f2ba96ca53ee", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: Sastrawi in c:\\laragon\\bin\\python\\python-3.10\\lib\\site-packages (1.0.1)\n" ] } ], "source": [ "!pip install Sastrawi" ] }, { "cell_type": "code", "execution_count": 102, "id": "d08abf95-4264-41de-8075-5b37ce43847a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
created_atfull_textuser_id_str
0Sat Feb 10 23:30:48 +0000 2024bisa basis partai financing akses figure milit...1613742953473900546
1Sat Feb 10 23:30:23 +0000 2024hallo semuanya tak terasa pemilihan legislatif...1172089528393203712
2Sat Feb 10 23:30:17 +0000 20242025 anis presiden kader partai pendukungnya k...1482641858514022404
3Sat Feb 10 23:30:00 +0000 2024u think ky begini pure pasangan calon 02 kan p...1481882706233688064
4Sat Feb 10 23:29:44 +0000 2024masuk masa tenang cuma ngingetin calon legisla...83742072
............
541Fri Feb 09 23:11:32 +0000 2024bukan hebat culas licik angkat nol smpai berku...1538715717838974976
542Fri Feb 09 23:11:21 +0000 2024kalau melalui proses pemilihan umum langsung s...1466979738560258049
543Fri Feb 09 23:10:00 +0000 2024kenalan yuk calon legislatif dewan perwakilan ...284830933
544Fri Feb 09 23:09:17 +0000 2024aku tempelin sticker besar sticker partai1742568163601166336
545Fri Feb 09 23:08:42 +0000 2024hebat jokowi bener2 serius buat bangsa beliyau...1492510742817681409
\n", "

513 rows × 3 columns

\n", "
" ], "text/plain": [ " created_at \\\n", "0 Sat Feb 10 23:30:48 +0000 2024 \n", "1 Sat Feb 10 23:30:23 +0000 2024 \n", "2 Sat Feb 10 23:30:17 +0000 2024 \n", "3 Sat Feb 10 23:30:00 +0000 2024 \n", "4 Sat Feb 10 23:29:44 +0000 2024 \n", ".. ... \n", "541 Fri Feb 09 23:11:32 +0000 2024 \n", "542 Fri Feb 09 23:11:21 +0000 2024 \n", "543 Fri Feb 09 23:10:00 +0000 2024 \n", "544 Fri Feb 09 23:09:17 +0000 2024 \n", "545 Fri Feb 09 23:08:42 +0000 2024 \n", "\n", " full_text user_id_str \n", "0 bisa basis partai financing akses figure milit... 1613742953473900546 \n", "1 hallo semuanya tak terasa pemilihan legislatif... 1172089528393203712 \n", "2 2025 anis presiden kader partai pendukungnya k... 1482641858514022404 \n", "3 u think ky begini pure pasangan calon 02 kan p... 1481882706233688064 \n", "4 masuk masa tenang cuma ngingetin calon legisla... 83742072 \n", ".. ... ... \n", "541 bukan hebat culas licik angkat nol smpai berku... 1538715717838974976 \n", "542 kalau melalui proses pemilihan umum langsung s... 1466979738560258049 \n", "543 kenalan yuk calon legislatif dewan perwakilan ... 284830933 \n", "544 aku tempelin sticker besar sticker partai 1742568163601166336 \n", "545 hebat jokowi bener2 serius buat bangsa beliyau... 1492510742817681409 \n", "\n", "[513 rows x 3 columns]" ] }, "execution_count": 102, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "from Sastrawi.StopWordRemover.StopWordRemoverFactory import StopWordRemoverFactory, StopWordRemover, ArrayDictionary\n", "\n", "# Tambahkan stop words tambahan\n", "more_stop_words = [\"tidak\"]\n", "\n", "# Buat stop word remover factory\n", "factory = StopWordRemoverFactory()\n", "stop_words = factory.get_stop_words()\n", "stop_words.extend(more_stop_words)\n", "\n", "# Buat array dictionary dengan stop words baru\n", "new_array = ArrayDictionary(stop_words)\n", "stop_word_remover = StopWordRemover(new_array)\n", "\n", "# Fungsi untuk menghapus stop words\n", "def remove_stop_words(text):\n", " return stop_word_remover.remove(text)\n", "\n", "# Menggunakan .loc untuk menghindari SettingWithCopyWarning\n", "df.loc[:, 'full_text'] = df['full_text'].apply(remove_stop_words)\n", "df\n" ] }, { "cell_type": "code", "execution_count": 103, "id": "f2d91400-10b1-43da-a8ce-f30ea6b031c7", "metadata": {}, "outputs": [], "source": [ "# 3.3 Tokenize" ] }, { "cell_type": "code", "execution_count": 104, "id": "054bc36a-81c6-4a83-81a2-cb7440a65bcf", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[nltk_data] Downloading package punkt to\n", "[nltk_data] C:\\Users\\Rizqi\\AppData\\Roaming\\nltk_data...\n", "[nltk_data] Package punkt is already up-to-date!\n", "C:\\Users\\Rizqi\\AppData\\Local\\Temp\\ipykernel_1452\\2370743566.py:8: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df.loc[:, 'tokenized'] = df['full_text'].apply(word_tokenize)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
full_texttokenized
0bisa basis partai financing akses figure milit...[bisa, basis, partai, financing, akses, figure...
1hallo semuanya tak terasa pemilihan legislatif...[hallo, semuanya, tak, terasa, pemilihan, legi...
22025 anis presiden kader partai pendukungnya k...[2025, anis, presiden, kader, partai, pendukun...
3u think ky begini pure pasangan calon 02 kan p...[u, think, ky, begini, pure, pasangan, calon, ...
4masuk masa tenang cuma ngingetin calon legisla...[masuk, masa, tenang, cuma, ngingetin, calon, ...
.........
541bukan hebat culas licik angkat nol smpai berku...[bukan, hebat, culas, licik, angkat, nol, smpa...
542kalau melalui proses pemilihan umum langsung s...[kalau, melalui, proses, pemilihan, umum, lang...
543kenalan yuk calon legislatif dewan perwakilan ...[kenalan, yuk, calon, legislatif, dewan, perwa...
544aku tempelin sticker besar sticker partai[aku, tempelin, sticker, besar, sticker, partai]
545hebat jokowi bener2 serius buat bangsa beliyau...[hebat, jokowi, bener2, serius, buat, bangsa, ...
\n", "

513 rows × 2 columns

\n", "
" ], "text/plain": [ " full_text \\\n", "0 bisa basis partai financing akses figure milit... \n", "1 hallo semuanya tak terasa pemilihan legislatif... \n", "2 2025 anis presiden kader partai pendukungnya k... \n", "3 u think ky begini pure pasangan calon 02 kan p... \n", "4 masuk masa tenang cuma ngingetin calon legisla... \n", ".. ... \n", "541 bukan hebat culas licik angkat nol smpai berku... \n", "542 kalau melalui proses pemilihan umum langsung s... \n", "543 kenalan yuk calon legislatif dewan perwakilan ... \n", "544 aku tempelin sticker besar sticker partai \n", "545 hebat jokowi bener2 serius buat bangsa beliyau... \n", "\n", " tokenized \n", "0 [bisa, basis, partai, financing, akses, figure... \n", "1 [hallo, semuanya, tak, terasa, pemilihan, legi... \n", "2 [2025, anis, presiden, kader, partai, pendukun... \n", "3 [u, think, ky, begini, pure, pasangan, calon, ... \n", "4 [masuk, masa, tenang, cuma, ngingetin, calon, ... \n", ".. ... \n", "541 [bukan, hebat, culas, licik, angkat, nol, smpa... \n", "542 [kalau, melalui, proses, pemilihan, umum, lang... \n", "543 [kenalan, yuk, calon, legislatif, dewan, perwa... \n", "544 [aku, tempelin, sticker, besar, sticker, partai] \n", "545 [hebat, jokowi, bener2, serius, buat, bangsa, ... \n", "\n", "[513 rows x 2 columns]" ] }, "execution_count": 104, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import nltk\n", "from nltk.tokenize import word_tokenize\n", "import pandas as pd\n", "\n", "# Unduh data punkt\n", "nltk.download('punkt')\n", "# Menggunakan .loc untuk menghindari SettingWithCopyWarning\n", "df.loc[:, 'tokenized'] = df['full_text'].apply(word_tokenize)\n", "\n", "# Tampilkan hasil tokenisasi\n", "df[['full_text', 'tokenized']]\n" ] }, { "cell_type": "code", "execution_count": 105, "id": "12c8b002-54f9-4ac1-a1bb-b5ab33697ba3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sebelum stemming: bisa basis partai financing akses figure militansi sejarah budaya menarik kalau liat pemilihan umum philippines taun lalu rame banget milih leni robredo berhasil dapet simpati semua kalangan masih kalah marcosduterte but lets see on 14\n", "Sesudah stemming: bisa basis partai financing akses figure militansi sejarah budaya tarik kalau liat pilih umum philippines taun lalu rame banget milih leni robredo hasil dapet simpati semua kalang masih kalah marcosduterte but lets see on 14\n", "\n", "Sebelum stemming: hallo semuanya tak terasa pemilihan legislatif tinggal menghitung hari yah jangan lupa tanggal 14 februari datang tps coblos ricky kurniawan chairul calon legislatif dewan perwakilan rakyat daerah provinsi banten dapil tangerang c nomor urut 1 partai demokrat semangat\n", "Sesudah stemming: hallo semua tak asa pilih legislatif tinggal hitung hari yah jangan lupa tanggal 14 februari datang tps coblos ricky kurniawan chairul calon legislatif dewan wakil rakyat daerah provinsi banten dapil tangerang c nomor urut 1 partai demokrat semangat\n", "\n", "Sebelum stemming: 2025 anis presiden kader partai pendukungnya korupsi suporter anis kampret kamu korupsi kalau jelek bilang jelek kami cebokin ya tetep korupsinya\n", "Sesudah stemming: 2025 anis presiden kader partai dukung korupsi suporter anis kampret kamu korupsi kalau jelek bilang jelek kami cebokin ya tetep korupsi\n", "\n", "Sebelum stemming: u think ky begini pure pasangan calon 02 kan punya timsespunya partai dn mereka punya gmna konsep kampanye berkedok sedekah omong-omong literasi dh gk cuma konsep 02 0103 sama lagian dulu metode berbagi ky begini memang udh\n", "Sesudah stemming: u think ky begini pure pasang calon 02 kan punya timsespunya partai dn mereka punya gmna konsep kampanye kedok sedekah omong literasi dh gk cuma konsep 02 0103 sama lagi dulu metode bagi ky begini memang udh\n", "\n", "Sebelum stemming: masuk masa tenang cuma ngingetin calon legislatif tu anggota partai jadi akan bekerja tujuan partai fitrahnya memang dah saja selamat mencoblos\n", "Sesudah stemming: masuk masa tenang cuma ngingetin calon legislatif tu anggota partai jadi akan kerja tuju partai fitrah memang dah saja selamat coblos\n", "\n", "Sebelum stemming: komposisi non muslim besar 03 menang ln partai demokrasi indonesia perjuangan menang partai memberi cek kosong jokowi sekarag rasakaan akibatnya\n", "Sesudah stemming: komposisi non muslim besar 03 menang ln partai demokrasi indonesia juang menang partai beri cek kosong jokowi sekarag rasakaan akibat\n", "\n", "Sebelum stemming: bersama partai demokrat wujudkan kesejahteraan bersama bisa ricky kurniawan chairul dewan perwakilan rakyat daerah provinsi banten dapil tangerang c\n", "Sesudah stemming: sama partai demokrat wujud sejahtera sama bisa ricky kurniawan chairul dewan wakil rakyat daerah provinsi banten dapil tangerang c\n", "\n", "Sebelum stemming: sejarah mencatat ada pemilihan presiden didukung partai tersandera kasus korupsi melanggar etik berat paman mahkamah konstitusi paman kpu melakukan pembagian bansos bukan kepentingan rakyat ingat dosa ditanggung pendukung kezoliman\n", "Sesudah stemming: sejarah catat ada pilih presiden dukung partai sandera kasus korupsi langgar etik berat paman mahkamah konstitusi paman kpu laku bagi bansos bukan penting rakyat ingat dosa tanggung dukung kezoliman\n", "\n", "Sebelum stemming: apa diharapkan debat partai kosong begini mas partai tidak sengaja dibuat partai dibuat pelengkap rame2 an\n", "Sesudah stemming: apa harap debat partai kosong begini mas partai tidak sengaja buat partai buat lengkap rame2 an\n", "\n", "Sebelum stemming: allah selalu memengkan partai partai islam masuk parlemen jangan psi masuk\n", "Sesudah stemming: allah selalu kan partai partai islam masuk parlemen jangan psi masuk\n", "\n" ] } ], "source": [ "from Sastrawi.Stemmer.StemmerFactory import StemmerFactory\n", "import pandas as pd\n", "\n", "# Fungsi untuk melakukan stemming pada setiap kalimat\n", "def stemming(text):\n", " factory = StemmerFactory()\n", " stemmer = factory.create_stemmer()\n", " return stemmer.stem(text)\n", "\n", "# Mengambil kolom yang diperlukan\n", "df = df[['created_at', 'full_text', 'user_id_str']]\n", "\n", "# Melakukan stemming pada kolom 'full_text'\n", "df['stemmed_text'] = df['full_text'].apply(stemming)\n", "\n", "# Menyimpan hasil ke dalam file CSV dengan kolom yang diminta\n", "df.to_csv('data_test_fix.csv', index=False)\n", "\n", "# Cetak hasil sebelum dan sesudah stemming setelah 10 baris pertama di-Stem\n", "stemmed_df = df.head(10)\n", "for index, row in stemmed_df.iterrows():\n", " print(\"Sebelum stemming:\", row['full_text'])\n", " print(\"Sesudah stemming:\", row['stemmed_text'])\n", " print()" ] }, { "cell_type": "code", "execution_count": 61, "id": "52dfb7d0-ef5e-4926-b7e1-a055e1551138", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " created_at \\\n", "0 Sat Feb 10 23:59:55 +0000 2024 \n", "1 Sat Feb 10 23:59:51 +0000 2024 \n", "2 Sat Feb 10 23:59:46 +0000 2024 \n", "3 Sat Feb 10 23:59:34 +0000 2024 \n", "4 Sat Feb 10 23:59:28 +0000 2024 \n", "... ... \n", "1299 Fri Feb 09 23:25:58 +0000 2024 \n", "1300 Fri Feb 09 23:25:56 +0000 2024 \n", "1301 Fri Feb 09 23:23:59 +0000 2024 \n", "1302 Fri Feb 09 23:23:52 +0000 2024 \n", "1303 Fri Feb 09 23:23:29 +0000 2024 \n", "\n", " full_text user_id_str \\\n", "0 tahu partai nya gabener di pilih hadeh 1489144415021322242 \n", "1 bukan tahun 2000an awal orang2 Partai Keadilan... 1358428069845889026 \n", "2 imagine invalidating someones fear and calling... 1334684348184887297 \n", "3 jangan lupa yah teman-teman 2024 pilih partai ... 1679186924685385728 \n", "4 h3 pemilihan umum heran seakan2 jokowi dosanya... 171050686 \n", "... ... ... \n", "1299 tahu orang tidak pernah mengkampanyekan partai... 1172134585502588929 \n", "1300 zarr tahu hati kecil kamu mengakui yang benar ... 1017062768631898113 \n", "1301 pilih partai buruh eti 226128927 \n", "1302 coba kau tanya presiden jokowiyuwono ibu megaw... 1487765772130992129 \n", "1303 terkesan ketua partai politik presiden atas pr... 1466979738560258049 \n", "\n", " stemmed_text label_text_number \n", "0 tahu partai nya gabener di pilih hadeh negatif \n", "1 bukan tahun 2000an awal orang2 partai adil sej... negatif \n", "2 imagine invalidating someones fear and calling... netral \n", "3 jangan lupa yah teman 2024 pilih partai ummat ... positif \n", "4 h3 pilih umum heran seakan2 jokowi dosa paling... positif \n", "... ... ... \n", "1299 tahu orang tidak pernah kampanye partai nya do... negatif \n", "1300 zarr tahu hati kecil kamu aku yang benar ayo p... netral \n", "1301 pilih partai buruh eti positif \n", "1302 coba kau tanya presiden jokowiyuwono ibu megaw... negatif \n", "1303 kes ketua partai politik presiden atas preside... negatif \n", "\n", "[1304 rows x 5 columns]\n" ] } ], "source": [ "import pandas as pd\n", "\n", "# Baca file CSV ke DataFrame\n", "data = pd.read_csv(\"labeled_data.csv\", index_col=False)\n", "\n", "# Ubah nilai kolom label_text_number\n", "data['label_text_number'] = data['label_text_number'].replace({1: 'positif', 2: 'negatif', 3: 'netral'})\n", "\n", "# Tampilkan DataFrame yang sudah diubah\n", "print(data)\n", "\n", "# Simpan DataFrame yang sudah diubah ke file CSV baru\n", "data.to_csv('labeled_data_updated.csv', index=False)\n" ] }, { "cell_type": "code", "execution_count": 245, "id": "3765c433-6377-4f05-b957-666bbcbf7b2b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Confusion Matrix:\n", "[[149 21 11]\n", " [ 74 37 13]\n", " [ 43 12 32]]\n", "Validation Accuracy: 0.5561224489795918\n", "Prediksi untuk data uji telah disimpan dalam 'data_test_with_predictions_higher_accuracy.csv'\n" ] } ], "source": [ "import pandas as pd\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.naive_bayes import MultinomialNB\n", "from sklearn.model_selection import cross_val_score, train_test_split\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.metrics import confusion_matrix\n", "\n", "# Baca data pelatihan dan data uji\n", "data_train = pd.read_csv('labeled_data_updated.csv', index_col=False)\n", "data_test = pd.read_csv('data_test_fix.csv', index_col=False)\n", "\n", "# Inisialisasi model Naive Bayes dengan smoothing parameter yang berbeda dan parameter lainnya\n", "model = MultinomialNB(alpha=0.5, fit_prior=False) # Contoh: menggunakan alpha=0.5 dan fit_prior=False\n", "\n", "# Pipeline untuk melakukan TfidfVectorizer dan pemodelan dengan Naive Bayes\n", "pipeline = Pipeline([\n", " ('tfidf', TfidfVectorizer(max_features=10000, ngram_range=(1, 2))), # Menambahkan pembuatan n-grams dan membatasi jumlah fitur\n", " ('clf', model)\n", "])\n", "\n", "# Pisahkan data pelatihan menjadi data pelatihan dan data validasi\n", "X_train, X_val, y_train, y_val = train_test_split(data_train['stemmed_text'], data_train['label_text'], test_size=0.3, random_state=42)\n", "\n", "# Lakukan pelatihan dengan data pelatihan dan evaluasi dengan data validasi\n", "pipeline.fit(X_train, y_train)\n", "\n", "# Prediksi label untuk data validasi\n", "val_predictions = pipeline.predict(X_val)\n", "\n", "# Tampilkan confusion matrix\n", "print(\"Confusion Matrix:\")\n", "print(confusion_matrix(y_val, val_predictions))\n", "\n", "# Hitung dan cetak akurasi\n", "accuracy = (val_predictions == y_val).mean()\n", "print(f'Validation Accuracy: {accuracy}')\n", "\n", "# Lakukan pelatihan dengan semua data pelatihan\n", "pipeline.fit(data_train['stemmed_text'], data_train['label_text'])\n", "\n", "# Prediksi label untuk data uji\n", "predictions = pipeline.predict(data_test['stemmed_text'])\n", "\n", "# Tambahkan kolom prediksi ke data uji\n", "data_test['label_text'] = predictions\n", "\n", "# Simpan hasil prediksi ke file baru\n", "data_test.to_csv('data_test_with_predictions_higher_accuracy.csv', index=False)\n", "\n", "print(\"Prediksi untuk data uji telah disimpan dalam 'data_test_with_predictions_higher_accuracy.csv'\")\n" ] }, { "cell_type": "code", "execution_count": 236, "id": "53ea2ced-d081-4ba1-aaac-91ca91f8de35", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Confusion Matrix:\n", "[[149 21 11]\n", " [ 74 37 13]\n", " [ 43 12 32]]\n", "Validation Accuracy: 0.5561224489795918\n", "Prediksi untuk data uji telah disimpan dalam 'data_test_with_predictions_higher_accuracy.csv'\n" ] }, { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.naive_bayes import MultinomialNB\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.metrics import confusion_matrix\n", "import matplotlib.pyplot as plt\n", "from wordcloud import WordCloud\n", "\n", "# Baca data pelatihan dan data uji\n", "data_train = pd.read_csv('labeled_data_updated.csv', index_col=False)\n", "data_test = pd.read_csv('data_test_fix.csv', index_col=False)\n", "\n", "# Inisialisasi model Naive Bayes dengan smoothing parameter yang berbeda dan parameter lainnya\n", "model = MultinomialNB(alpha=0.5, fit_prior=False) # Contoh: menggunakan alpha=0.5 dan fit_prior=False\n", "\n", "# Pipeline untuk melakukan TfidfVectorizer dan pemodelan dengan Naive Bayes\n", "pipeline = Pipeline([\n", " ('tfidf', TfidfVectorizer(max_features=10000, ngram_range=(1, 2))), # Menambahkan pembuatan n-grams dan membatasi jumlah fitur\n", " ('clf', model)\n", "])\n", "\n", "# Pisahkan data pelatihan menjadi data pelatihan dan data validasi\n", "X_train, X_val, y_train, y_val = train_test_split(data_train['stemmed_text'], data_train['label_text'], test_size=0.3, random_state=42)\n", "\n", "# Lakukan pelatihan dengan data pelatihan dan evaluasi dengan data validasi\n", "pipeline.fit(X_train, y_train)\n", "\n", "# Prediksi label untuk data validasi\n", "val_predictions = pipeline.predict(X_val)\n", "\n", "# Tampilkan confusion matrix\n", "print(\"Confusion Matrix:\")\n", "print(confusion_matrix(y_val, val_predictions))\n", "\n", "# Hitung dan cetak akurasi\n", "accuracy = (val_predictions == y_val).mean()\n", "print(f'Validation Accuracy: {accuracy}')\n", "\n", "# Lakukan pelatihan dengan semua data pelatihan\n", "pipeline.fit(data_train['stemmed_text'], data_train['label_text'])\n", "\n", "# Prediksi label untuk data uji\n", "predictions = pipeline.predict(data_test['stemmed_text'])\n", "\n", "# Tambahkan kolom prediksi ke data uji\n", "data_test['label_text'] = predictions\n", "\n", "# Simpan hasil prediksi ke file baru\n", "data_test.to_csv('data_test_with_predictions_higher_accuracy.csv', index=False)\n", "\n", "print(\"Prediksi untuk data uji telah disimpan dalam 'data_test_with_predictions_higher_accuracy.csv'\")\n", "\n", "# Menggabungkan teks berdasarkan prediksi sentimen\n", "netral_text = \" \".join(data_test[data_test['label_text'] == 'netral']['stemmed_text'])\n", "positif_text = \" \".join(data_test[data_test['label_text'] == 'positif']['stemmed_text'])\n", "negatif_text = \" \".join(data_test[data_test['label_text'] == 'negatif']['stemmed_text'])\n", "\n", "# Fungsi untuk menghitung bobot TF-IDF dan membuat word cloud\n", "def generate_tfidf_wordcloud(texts, title, colormap, filename):\n", " vectorizer = TfidfVectorizer(max_features=10000, ngram_range=(1, 2))\n", " tfidf_matrix = vectorizer.fit_transform(texts)\n", " tfidf_scores = dict(zip(vectorizer.get_feature_names_out(), tfidf_matrix.sum(axis=0).tolist()[0]))\n", " wordcloud = WordCloud(width=800, height=400, background_color='white', colormap=colormap, collocations=False).generate_from_frequencies(tfidf_scores)\n", " plt.imshow(wordcloud, interpolation='bilinear')\n", " plt.axis('off')\n", " plt.title(title)\n", " plt.savefig(f\"{filename}.png\")\n", " plt.clf()\n", "\n", "# Menyimpan word cloud untuk setiap sentimen sebagai file terpisah\n", "generate_tfidf_wordcloud([netral_text], 'Word Cloud untuk Sentimen Netral', 'viridis', 'wordcloud_netral')\n", "generate_tfidf_wordcloud([positif_text], 'Word Cloud untuk Sentimen Positif', 'plasma', 'wordcloud_positif')\n", "generate_tfidf_wordcloud([negatif_text], 'Word Cloud untuk Sentimen Negatif', 'inferno', 'wordcloud_negatif')\n" ] }, { "cell_type": "code", "execution_count": 241, "id": "c15a558b-57c4-482b-bae4-e800240f2270", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Confusion Matrix:\n", "[[138 27 16]\n", " [ 62 39 23]\n", " [ 40 13 34]]\n", "Validation Accuracy: 0.5382653061224489\n", "Prediksi untuk data uji telah disimpan dalam 'data_test_with_predictions_higher_accuracy.csv'\n", "Fitur TF-IDF telah disimpan dalam 'tfidf_features.csv'\n" ] }, { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.naive_bayes import MultinomialNB\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.metrics import confusion_matrix\n", "import matplotlib.pyplot as plt\n", "from wordcloud import WordCloud\n", "\n", "# Baca data pelatihan dan data uji\n", "data_train = pd.read_csv('labeled_data_updated.csv', index_col=False)\n", "data_test = pd.read_csv('data_test_fix.csv', index_col=False)\n", "\n", "# Inisialisasi model Naive Bayes dengan smoothing parameter yang berbeda dan parameter lainnya\n", "model = MultinomialNB(alpha=0.5, fit_prior=False) # Contoh: menggunakan alpha=0.5 dan fit_prior=False\n", "\n", "# Pipeline untuk melakukan TfidfVectorizer dan pemodelan dengan Naive Bayes\n", "pipeline = Pipeline([\n", " ('tfidf', TfidfVectorizer(max_features=10000, ngram_range=(1, 1))), # Menggunakan unigrams saja\n", " ('clf', model)\n", "])\n", "\n", "# Pisahkan data pelatihan menjadi data pelatihan dan data validasi\n", "X_train, X_val, y_train, y_val = train_test_split(data_train['stemmed_text'], data_train['label_text'], test_size=0.3, random_state=42)\n", "\n", "# Lakukan pelatihan dengan data pelatihan dan evaluasi dengan data validasi\n", "pipeline.fit(X_train, y_train)\n", "\n", "# Prediksi label untuk data validasi\n", "val_predictions = pipeline.predict(X_val)\n", "\n", "# Tampilkan confusion matrix\n", "print(\"Confusion Matrix:\")\n", "print(confusion_matrix(y_val, val_predictions))\n", "\n", "# Hitung dan cetak akurasi\n", "accuracy = (val_predictions == y_val).mean()\n", "print(f'Validation Accuracy: {accuracy}')\n", "\n", "# Lakukan pelatihan dengan semua data pelatihan\n", "pipeline.fit(data_train['stemmed_text'], data_train['label_text'])\n", "\n", "# Prediksi label untuk data uji\n", "predictions = pipeline.predict(data_test['stemmed_text'])\n", "\n", "# Tambahkan kolom prediksi ke data uji\n", "data_test['label_text'] = predictions\n", "\n", "# Simpan hasil prediksi ke file baru\n", "data_test.to_csv('data_test_with_predictions_higher_accuracy.csv', index=False)\n", "\n", "print(\"Prediksi untuk data uji telah disimpan dalam 'data_test_with_predictions_higher_accuracy.csv'\")\n", "\n", "# Mengambil kata-kata yang digunakan dalam TfidfVectorizer dan bobot TF-IDF\n", "vectorizer = pipeline.named_steps['tfidf']\n", "feature_names = vectorizer.get_feature_names_out()\n", "tfidf_matrix = vectorizer.transform(data_train['stemmed_text'])\n", "tfidf_scores = tfidf_matrix.sum(axis=0).A1 # Sum TF-IDF scores across all documents\n", "\n", "# Membuat DataFrame dari fitur dan skor TF-IDF\n", "tfidf_df = pd.DataFrame({'Term': feature_names, 'TF-IDF': tfidf_scores})\n", "\n", "# Menyimpan DataFrame ke dalam file CSV\n", "tfidf_df.to_csv('tfidf_features.csv', index=False)\n", "\n", "print(\"Fitur TF-IDF telah disimpan dalam 'tfidf_features.csv'\")\n", "\n", "# Menggabungkan teks berdasarkan prediksi sentimen\n", "netral_text = \" \".join(data_test[data_test['label_text'] == 'netral']['stemmed_text'])\n", "positif_text = \" \".join(data_test[data_test['label_text'] == 'positif']['stemmed_text'])\n", "negatif_text = \" \".join(data_test[data_test['label_text'] == 'negatif']['stemmed_text'])\n", "\n", "# Fungsi untuk menghitung bobot TF-IDF dan membuat word cloud\n", "def generate_tfidf_wordcloud(texts, title, colormap, filename):\n", " vectorizer = TfidfVectorizer(max_features=10000, ngram_range=(1, 1)) # Menggunakan unigrams saja\n", " tfidf_matrix = vectorizer.fit_transform(texts)\n", " tfidf_scores = dict(zip(vectorizer.get_feature_names_out(), tfidf_matrix.sum(axis=0).tolist()[0]))\n", " wordcloud = WordCloud(width=800, height=400, background_color='white', colormap=colormap, collocations=False).generate_from_frequencies(tfidf_scores)\n", " plt.imshow(wordcloud, interpolation='bilinear')\n", " plt.axis('off')\n", " plt.title(title)\n", " plt.savefig(f\"{filename}.png\")\n", " plt.clf()\n", "\n", "# Menyimpan word cloud untuk setiap sentimen sebagai file terpisah\n", "generate_tfidf_wordcloud([netral_text], 'Word Cloud untuk Sentimen Netral', 'viridis', 'wordcloud_netral')\n", "generate_tfidf_wordcloud([positif_text], 'Word Cloud untuk Sentimen Positif', 'plasma', 'wordcloud_positif')\n", "generate_tfidf_wordcloud([negatif_text], 'Word Cloud untuk Sentimen Negatif', 'inferno', 'wordcloud_negatif')\n" ] }, { "cell_type": "code", "execution_count": 247, "id": "59deabbe-d901-4a35-bb4f-8cbf286549b7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Jumlah data dengan sentimen:\n", "Netral: 96\n", "Positif: 87\n", "Negatif: 330\n" ] } ], "source": [ "import pandas as pd\n", "\n", "# Membaca data dari file CSV\n", "data = pd.read_csv(\"data_test_with_predictions_higher_accuracy.csv\")\n", "\n", "# Menghitung jumlah data dengan masing-masing sentimen\n", "sentiment_counts = data['label_text'].value_counts()\n", "\n", "# Mencetak jumlah data dengan masing-masing sentimen\n", "print(\"Jumlah data dengan sentimen:\")\n", "print(\"Netral:\", sentiment_counts['netral'])\n", "print(\"Positif:\", sentiment_counts['positif'])\n", "print(\"Negatif:\", sentiment_counts['negatif'])\n" ] }, { "cell_type": "code", "execution_count": 243, "id": "a8a3533c-bc44-4aed-afdf-373a87d3a092", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data telah digabungkan dan disimpan ke dalam 'combined_data.csv'\n" ] } ], "source": [ "import pandas as pd\n", "\n", "# Membaca data dari file CSV\n", "labeled_data = pd.read_csv(\"labeled_data_updated.csv\")\n", "predicted_data = pd.read_csv(\"data_test_with_predictions_higher_accuracy.csv\")\n", "\n", "# Menggabungkan data dengan menambahkan data dari file kedua di bawah data dari file pertama\n", "combined_data = pd.concat([labeled_data, predicted_data], ignore_index=True)\n", "\n", "# Menyimpan data gabungan ke dalam file CSV baru\n", "combined_data.to_csv(\"combined_data.csv\", index=False)\n", "\n", "print(\"Data telah digabungkan dan disimpan ke dalam 'combined_data.csv'\")\n" ] }, { "cell_type": "code", "execution_count": 246, "id": "07ab4476-8a71-4c8b-bcb7-05b7d643ca95", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Rizqi\\AppData\\Local\\Temp\\ipykernel_1452\\1594887086.py:17: FutureWarning: \n", "\n", "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n", "\n", " sns.barplot(x=sentiments, y=counts, palette='viridis')\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAIjCAYAAAAZajMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB8UlEQVR4nO3deVhV5f7//9cGZJZBE3BKzBm1HCPU1BRFxSkttazUUrMcK8uonDWPHnM8Tg0HzSxTG045m2M5pZbmJz1qhsMxECfAERTW749+7G9bUEGBrXfPx3Xt63Ld615rvddmb3mx9r3ubbMsyxIAAABgABdnFwAAAADkFcItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi3gZCNGjJDNZiuQYzVu3FiNGze2L2/YsEE2m01LliwpkONnmjt3rmw2m44cOVKgx70dNptNI0aMsC9nV3toaKhat259x8fK/Hls2LDhjvflDN27d1doaKizy0A2unfvLl9fX2eXARQIwi2QhzKDT+bD09NTJUqUUFRUlKZNm6bz58/nyXH++OMPjRgxQrt3786T/d2tMoN/5sPb21thYWF65513lJKS4uzynGrv3r164oknVKZMGXl6eqpkyZJq1qyZpk+fnq/H/bu89m6me/fuDq9LNzc3lS5dWl26dNG+ffsKtJYrV65o8uTJCg8Pl7+/vzw9PVWxYkX169dPBw8eLNBaMl26dEkjRoy4Z/9Iw73PzdkFACYaNWqUypYtq6tXryohIUEbNmzQoEGDNGnSJH3zzTd68MEH7X3feecdvfnmm7na/x9//KGRI0cqNDRUNWrUyPF2q1evztVx8suzzz6rLl26yMPDI0f9Z82aJV9fX124cEGrV6/W2LFjtW7dOm3evLnArnpnym3tudGwYUNdvnxZ7u7uN+23ZcsWPfbYY7r//vvVq1cvhYSE6Pjx49q2bZumTp2q/v3753ltmW722vvggw+UkZGRb8e+m3h4eOjDDz+UJF27dk2HDx/W7NmztXLlSu3bt08lSpTI9xpOnz6tFi1aaNeuXWrdurWefvpp+fr66sCBA1q4cKHef/99paWl5Xsd17t06ZJGjhwpSQ6fFAEFhXAL5IOWLVuqTp069uWYmBitW7dOrVu3Vtu2bbV//355eXlJktzc3OTmlr9vxUuXLsnb2/uWoamguLq6ytXVNcf9n3jiCd13332SpD59+qhjx4768ssvtW3bNkVERGS7TeY557Xc1p4bLi4u8vT0vGW/sWPHyt/fXzt27FBAQIDDusTExHypLScKFSrktGMXNDc3Nz3zzDMObY888ohat26tZcuWqVevXnd8jCtXrsjd3V0uLtl/yNq9e3f9/PPPWrJkiTp27OiwbvTo0Xr77bfvuIbcyMjIcEqYBq7HsASggDRp0kRDhw7V0aNH9cknn9jbsxtzu2bNGjVo0EABAQHy9fVVpUqV9NZbb0n6c1xm3bp1JUk9evSwfzQ6d+5cSX9eKalWrZp27dqlhg0bytvb277t9WNuM6Wnp+utt95SSEiIfHx81LZtWx0/ftyhT2hoqLp3755l2+z2OX36dFWtWlXe3t4KDAxUnTp19Omnn9rX3+mY2yZNmkiS4uLibnnOqampGj58uMqXLy8PDw+VLl1ab7zxhlJTUx32mZqaqldeeUXFihVT4cKF1bZtW/3vf//Lcuyc1j5v3jy5ubnp9ddft7ctXLhQtWvXVuHCheXn56fq1atr6tSp9vU5HXN7+PBhVa1aNUuwlaSgoKAsbZ988olq164tLy8vFSlSRF26dMny8818Dvft26fHHntM3t7eKlmypCZMmOBQ381ee9ePuT1y5IhsNpsmTpyoGTNm6IEHHpC3t7eaN2+u48ePy7IsjR49WqVKlZKXl5fatWuns2fPZql/xYoVevTRR+Xj46PChQsrOjpav/76q0OfzDGlJ06cUPv27eXr66tixYpp8ODBSk9Pv+nzmVdCQkIkyeGP1bNnz2rw4MGqXr26fH195efnp5YtW2rPnj0O22b+7BcuXKh33nlHJUuWlLe39w2H32zfvl3Lli3TCy+8kCXYSn9eWZ44cWKW9pw8PxMnTlS9evVUtGhReXl5qXbt2tmOy7fZbOrXr58WLFigqlWrysPDQ7Nnz1axYsUkSSNHjrS/Rv46bh3Ib1y5BQrQs88+q7feekurV6++4ZWdX3/9Va1bt9aDDz6oUaNGycPDQ7/99ps2b94sSapSpYpGjRqlYcOGqXfv3nr00UclSfXq1bPv48yZM2rZsqW6dOmiZ555RsHBwTeta+zYsbLZbBoyZIgSExM1ZcoURUZGavfu3fYrzDn1wQcfaMCAAXriiSc0cOBAXblyRb/88ou2b9+up59+Olf7upHDhw9LkooWLWpvy+6cMzIy1LZtW/3www/q3bu3qlSpor1792ry5Mk6ePCgvv76a/v2PXv21CeffKKnn35a9erV07p16xQdHX1b9b3//vvq06eP3nrrLY0ZM0bSn3+wPPXUU2ratKnGjx8vSdq/f782b96sgQMH5mr/ZcqU0datW/V///d/qlat2k37jh07VkOHDlWnTp3Us2dPnTp1StOnT1fDhg31888/OwTkc+fOqUWLFurQoYM6deqkJUuWaMiQIapevbpatmyZo9dedhYsWKC0tDT1799fZ8+e1YQJE9SpUyc1adJEGzZs0JAhQ/Tbb79p+vTpGjx4sP7973/bt50/f766deumqKgojR8/XpcuXdKsWbPUoEED/fzzzw5hOj09XVFRUQoPD9fEiRP13Xff6b333lO5cuX00ksv5eo5zonTp0/bj/v7779ryJAhKlq0qMPNhb///ru+/vprPfnkkypbtqxOnjypOXPmqFGjRtkOXxg9erTc3d01ePBgpaam3vDTlm+++UbSn/+n5FROn5+pU6eqbdu26tq1q9LS0rRw4UI9+eSTWrp0aZb3xLp167Ro0SL169dP9913nx566CHNmjVLL730kh5//HF16NBBkhyGYgH5zgKQZ2JjYy1J1o4dO27Yx9/f36pZs6Z9efjw4dZf34qTJ0+2JFmnTp264T527NhhSbJiY2OzrGvUqJElyZo9e3a26xo1amRfXr9+vSXJKlmypJWSkmJvX7RokSXJmjp1qr2tTJkyVrdu3W65z3bt2llVq1a9Ye2W9f+ep7i4uJv2y3xuDhw4YJ06dcqKi4uz5syZY3l4eFjBwcHWxYsXb3rO8+fPt1xcXKzvv//eoX327NmWJGvz5s2WZVnW7t27LUnWyy+/7NDv6aeftiRZw4cPv2ntZcqUsaKjoy3LsqypU6daNpvNGj16tMO+Bg4caPn5+VnXrl274flm/jzWr19/0+dl9erVlqurq+Xq6mpFRERYb7zxhrVq1SorLS3Nod+RI0csV1dXa+zYsQ7te/futdzc3BzaM5/Djz/+2N6WmppqhYSEWB07drS33ey1161bN6tMmTL25bi4OEuSVaxYMSspKcneHhMTY0myHnroIevq1av29qeeespyd3e3rly5YlmWZZ0/f94KCAiwevXq5XCchIQEy9/f36G9W7duliRr1KhRDn1r1qxp1a5dO0utdyLzWNc/SpYsae3atcuh75UrV6z09HSHtri4OMvDw8Oh1syf/QMPPGBdunTpljU8/vjjliTr3Llzuao5J8/P9cdPS0uzqlWrZjVp0sShXZLl4uJi/frrrw7tp06dyvK+AQoSwxKAAubr63vTWRMyr6T95z//ue2bczw8PNSjR48c93/uuedUuHBh+/ITTzyh4sWLa/ny5bk+dkBAgP73v/9px44dud72RipVqqRixYqpbNmyevHFF1W+fHktW7bMYUxtdue8ePFiValSRZUrV9bp06ftj8xhDevXr5ck+3kOGDDAYftBgwblqs4JEyZo4MCBGj9+vN555x2HdQEBAbp48aLWrFmTq31mp1mzZtq6davatm2rPXv2aMKECYqKilLJkiXtV/Qk6csvv1RGRoY6derkcP4hISGqUKGC/fwz+fr6OowjdXd318MPP6zff//9jup98skn5e/vb18ODw+XJD3zzDMOH+GHh4crLS1NJ06ckPTn1e6kpCQ99dRTDvW7uroqPDw8S/3Sn2Oy/+rRRx+94/qz4+npqTVr1mjNmjVatWqV5syZI19fX7Vq1cphlgIPDw/7mNn09HSdOXPGPtTop59+yrLfbt265ejTkszhCn993+ZETp6fvx7/3LlzSk5O1qOPPpptvY0aNVJYWFiuagDyG8MSgAJ24cKFbMdFZurcubM+/PBD9ezZU2+++aaaNm2qDh066IknnrjhjSXXK1myZK5uHqtQoYLDss1mU/ny5W9rTOyQIUP03Xff6eGHH1b58uXVvHlzPf3006pfv36u95Xpiy++kJ+fnwoVKqRSpUqpXLlyWfpkd86HDh3S/v377WMAr5d589XRo0fl4uKSZb+VKlXKcY0bN27UsmXLNGTIEIdxtplefvllLVq0SC1btlTJkiXVvHlzderUSS1atMjxMf6qbt26+vLLL5WWlqY9e/boq6++0uTJk/XEE09o9+7dCgsL06FDh2RZVpafb6brbwArVapUlvHfgYGB+uWXX26rxkz333+/w3Jm0C1dunS27efOnZP0589P+n9jrK/n5+fnsOzp6ZnlZx0YGGjf340kJyfr8uXL9mV3d3cVKVLkptu4uroqMjLSoa1Vq1aqUKGCYmJi9MUXX0j68yarqVOnaubMmYqLi3MY3/rXYTWZypYte9PjZso89/Pnz2c79jo7OX1+li5dqjFjxmj37t0OY9Ozm5kkp/UCBYlwCxSg//3vf0pOTlb58uVv2MfLy0ubNm3S+vXrtWzZMq1cuVKff/65mjRpotWrV+foTv3cjpPNiRtNuZWenu5QU5UqVXTgwAEtXbpUK1eu1BdffKGZM2dq2LBh9umBcqthw4b22RJuJLtzzsjIUPXq1TVp0qRst7k+XN2JqlWrKikpSfPnz9eLL76Y5Zd+UFCQdu/erVWrVmnFihVasWKFYmNj9dxzz2nevHm3fVx3d3fVrVtXdevWVcWKFdWjRw8tXrxYw4cPV0ZGhmw2m1asWJHt6+b6Sf1v9NqyLOu267vZfm91vMxPLubPn2+/Weuvrp9l5HZnsRg4cKDDz6BRo0a3NUdrqVKlVKlSJW3atMne9u6772ro0KF6/vnnNXr0aBUpUkQuLi4aNGhQtp/M5PS9W7lyZUl/znecOfb5VnLy/Hz//fdq27atGjZsqJkzZ6p48eIqVKiQYmNjHW4KzW29QEEi3AIFaP78+ZKkqKiom/ZzcXFR06ZN1bRpU02aNEnvvvuu3n77ba1fv16RkZF5Prdr5hWyTJZl6bfffnO4CSQwMFBJSUlZtj169KgeeOABhzYfHx917txZnTt3Vlpamjp06KCxY8cqJiYmR1Nd5ZVy5cppz549atq06U2fszJlyigjI0OHDx92uFp74MCBHB/rvvvu05IlS9SgQQM1bdpUP/zwQ5abhdzd3dWmTRu1adNGGRkZevnllzVnzhwNHTr0pn/w5FTm9HPx8fGS/jx/y7JUtmxZVaxY8Y73L934j5z8kHklPSgoKMtV0rz0xhtvOAzHCAwMvO19Xbt2TRcuXLAvL1myRI899pg++ugjh35JSUm3/IPtZtq0aaNx48bpk08+yXG4zYkvvvhCnp6eWrVqlcNczrGxsTneR0HPPQ1cjzG3QAFZt26dRo8erbJly6pr16437JfdVEiZk+VnfkTo4+MjSdmGzdvx8ccfO4wDXrJkieLj49WyZUt7W7ly5bRt2zaHeSyXLl2aZUqpM2fOOCy7u7srLCxMlmXp6tWreVJvTnXq1EknTpzQBx98kGXd5cuXdfHiRUmyn+e0adMc+kyZMiVXxytVqpS+++47Xb58Wc2aNXN4Lq5/XlxcXOx/PFw/LdmtrF+/PturqZljhzMDeocOHeTq6qqRI0dm6W9ZVpaaciKvX3s3ExUVJT8/P7377rvZvnZOnTqVJ8cJCwtTZGSk/VG7du3b2s/Bgwd14MABPfTQQ/Y2V1fXLM/94sWL7eOKb1dERIRatGihDz/80GHWj0xpaWkaPHhwrvfr6uoqm83mMHziyJEj2R7jRjLHwhfEawTIDldugXywYsUK/fe//9W1a9d08uRJrVu3TmvWrFGZMmX0zTff3PTq5ahRo7Rp0yZFR0erTJkySkxM1MyZM1WqVCk1aNBA0p9BMyAgQLNnz1bhwoXl4+Oj8PDw2x7/VqRIETVo0EA9evTQyZMnNWXKFJUvX95hurKePXtqyZIlatGihTp16qTDhw/rk08+yTJOtXnz5goJCVH9+vUVHBys/fv361//+peio6NzffPLnXr22We1aNEi9enTR+vXr1f9+vWVnp6u//73v1q0aJFWrVqlOnXqqEaNGnrqqac0c+ZMJScnq169elq7dq1+++23XB+zfPnyWr16tRo3bqyoqCitW7dOfn5+6tmzp86ePasmTZqoVKlSOnr0qKZPn64aNWqoSpUquTpG//79denSJT3++OOqXLmy0tLStGXLFn3++ecKDQ2131hXrlw5jRkzRjExMTpy5Ijat2+vwoULKy4uTl999ZV69+6d6wCU16+9m/Hz89OsWbP07LPPqlatWurSpYuKFSumY8eOadmyZapfv77+9a9/5flxc+LatWv2+aozMjJ05MgRzZ49WxkZGRo+fLi9X+vWrTVq1Cj16NFD9erV0969e7VgwYIsn3bcjo8//ljNmzdXhw4d1KZNGzVt2lQ+Pj46dOiQFi5cqPj4+Gznur2Z6OhoTZo0SS1atNDTTz+txMREzZgxQ+XLl8/x2GsvLy+FhYXp888/V8WKFVWkSBFVq1btltPWAXnGWdM0ACbKnCYq8+Hu7m6FhIRYzZo1s6ZOneow3Vam66cCW7t2rdWuXTurRIkSlru7u1WiRAnrqaeesg4ePOiw3X/+8x8rLCzMcnNzc5iaqVGjRjeciutGU4F99tlnVkxMjBUUFGR5eXlZ0dHR1tGjR7Ns/95771klS5a0PDw8rPr161s7d+7Mss85c+ZYDRs2tIoWLWp5eHhY5cqVs15//XUrOTk5y/OU06nAbjYt2q3OOS0tzRo/frxVtWpVy8PDwwoMDLRq165tjRw50qGmy5cvWwMGDLCKFi1q+fj4WG3atLGOHz+e66nAMm3fvt0qXLiw1bBhQ+vSpUvWkiVLrObNm1tBQUGWu7u7df/991svvviiFR8fb98mp1OBrVixwnr++eetypUrW76+vpa7u7tVvnx5q3///tbJkyez9P/iiy+sBg0aWD4+PpaPj49VuXJlq2/fvtaBAwdu+RxeP72XZd34tXejqcD++c9/OmyfeZ6LFy92aL/RVHrr16+3oqKiLH9/f8vT09MqV66c1b17d2vnzp0Odfr4+GSp//r3V17IbiowPz8/q2nTptZ3333n0PfKlSvWa6+9ZhUvXtzy8vKy6tevb23duvWG78Xrn5NbuXTpkjVx4kSrbt269tdChQoVrP79+1u//fabQ805fX4++ugjq0KFCpaHh4dVuXJlKzY2Ntt+kqy+fftmW9eWLVus2rVrW+7u7kwLhgJns6w7vFMAAAAAuEsw5hYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMwZc46M8JuP/44w8VLlyYrw0EAAC4C1mWpfPnz6tEiRJycbnx9VnCraQ//vhDpUuXdnYZAAAAuIXjx4+rVKlSN1xPuJXsXwl6/Phx+fn5ObkaAAAAXC8lJUWlS5e+5Ve5E24l+1AEPz8/wi0AAMBd7FZDSLmhDAAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGMPN2QUAAIA713/tQGeXADiY3nSqU47LlVsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADCGU8Ntenq6hg4dqrJly8rLy0vlypXT6NGjZVmWvY9lWRo2bJiKFy8uLy8vRUZG6tChQw77OXv2rLp27So/Pz8FBATohRde0IULFwr6dAAAAOBkTg2348eP16xZs/Svf/1L+/fv1/jx4zVhwgRNnz7d3mfChAmaNm2aZs+ere3bt8vHx0dRUVG6cuWKvU/Xrl3166+/as2aNVq6dKk2bdqk3r17O+OUAAAA4ERuzjz4li1b1K5dO0VHR0uSQkND9dlnn+nHH3+U9OdV2ylTpuidd95Ru3btJEkff/yxgoOD9fXXX6tLly7av3+/Vq5cqR07dqhOnTqSpOnTp6tVq1aaOHGiSpQo4ZyTAwAAQIFz6pXbevXqae3atTp48KAkac+ePfrhhx/UsmVLSVJcXJwSEhIUGRlp38bf31/h4eHaunWrJGnr1q0KCAiwB1tJioyMlIuLi7Zv357tcVNTU5WSkuLwAAAAwL3PqVdu33zzTaWkpKhy5cpydXVVenq6xo4dq65du0qSEhISJEnBwcEO2wUHB9vXJSQkKCgoyGG9m5ubihQpYu9zvXHjxmnkyJF5fToAAABwMqdeuV20aJEWLFigTz/9VD/99JPmzZuniRMnat68efl63JiYGCUnJ9sfx48fz9fjAQAAoGA49crt66+/rjfffFNdunSRJFWvXl1Hjx7VuHHj1K1bN4WEhEiSTp48qeLFi9u3O3nypGrUqCFJCgkJUWJiosN+r127prNnz9q3v56Hh4c8PDzy4YwAAADgTE69cnvp0iW5uDiW4OrqqoyMDElS2bJlFRISorVr19rXp6SkaPv27YqIiJAkRUREKCkpSbt27bL3WbdunTIyMhQeHl4AZwEAAIC7hVOv3LZp00Zjx47V/fffr6pVq+rnn3/WpEmT9Pzzz0uSbDabBg0apDFjxqhChQoqW7ashg4dqhIlSqh9+/aSpCpVqqhFixbq1auXZs+eratXr6pfv37q0qULMyUAAAD8zTg13E6fPl1Dhw7Vyy+/rMTERJUoUUIvvviihg0bZu/zxhtv6OLFi+rdu7eSkpLUoEEDrVy5Up6envY+CxYsUL9+/dS0aVO5uLioY8eOmjZtmjNOCQAAAE5ks/76dWB/UykpKfL391dycrL8/PycXQ4AALnWf+1AZ5cAOJjedGqe7i+nec2pY24BAACAvES4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAynh9sTJ07omWeeUdGiReXl5aXq1atr586d9vWWZWnYsGEqXry4vLy8FBkZqUOHDjns4+zZs+ratav8/PwUEBCgF154QRcuXCjoUwEAAICTOTXcnjt3TvXr11ehQoW0YsUK7du3T++9954CAwPtfSZMmKBp06Zp9uzZ2r59u3x8fBQVFaUrV67Y+3Tt2lW//vqr1qxZo6VLl2rTpk3q3bu3M04JAAAATmSzLMty1sHffPNNbd68Wd9//3226y3LUokSJfTaa69p8ODBkqTk5GQFBwdr7ty56tKli/bv36+wsDDt2LFDderUkSStXLlSrVq10v/+9z+VKFHilnWkpKTI399fycnJ8vPzy7sTBACggPRfO9DZJQAOpjedmqf7y2lec+qV22+++UZ16tTRk08+qaCgINWsWVMffPCBfX1cXJwSEhIUGRlpb/P391d4eLi2bt0qSdq6dasCAgLswVaSIiMj5eLiou3bt2d73NTUVKWkpDg8AAAAcO9zarj9/fffNWvWLFWoUEGrVq3SSy+9pAEDBmjevHmSpISEBElScHCww3bBwcH2dQkJCQoKCnJY7+bmpiJFitj7XG/cuHHy9/e3P0qXLp3XpwYAAAAncGq4zcjIUK1atfTuu++qZs2a6t27t3r16qXZs2fn63FjYmKUnJxsfxw/fjxfjwcAAICC4dRwW7x4cYWFhTm0ValSRceOHZMkhYSESJJOnjzp0OfkyZP2dSEhIUpMTHRYf+3aNZ09e9be53oeHh7y8/NzeAAAAODe59RwW79+fR04cMCh7eDBgypTpowkqWzZsgoJCdHatWvt61NSUrR9+3ZFRERIkiIiIpSUlKRdu3bZ+6xbt04ZGRkKDw8vgLMAAADA3cLNmQd/5ZVXVK9ePb377rvq1KmTfvzxR73//vt6//33JUk2m02DBg3SmDFjVKFCBZUtW1ZDhw5ViRIl1L59e0l/Xult0aKFfTjD1atX1a9fP3Xp0iVHMyUAAADAHE4Nt3Xr1tVXX32lmJgYjRo1SmXLltWUKVPUtWtXe5833nhDFy9eVO/evZWUlKQGDRpo5cqV8vT0tPdZsGCB+vXrp6ZNm8rFxUUdO3bUtGnTnHFKAAAAcCKnznN7t2CeWwDAvY55bnG3+VvOcwsAAADkJcItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjuDm7AFM17zzK2SUAWaz+fJizSwAAIF9x5RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAy33G6QlJSkH3/8UYmJicrIyHBY99xzz+VZYQAAAEBu5Srcfvvtt+ratasuXLggPz8/2Ww2+zqbzUa4BQAAgFPlaljCa6+9pueff14XLlxQUlKSzp07Z3+cPXs2v2oEAAAAciRX4fbEiRMaMGCAvL2986seAAAA4LblKtxGRUVp586d+VULAAAAcEduOeb2m2++sf87Ojpar7/+uvbt26fq1aurUKFCDn3btm2b9xUCAAAAOXTLcNu+ffssbaNGjcrSZrPZlJ6enidFAQAAALfjluH2+um+AAAAgLsVX+IAAAAAY+T6SxwuXryojRs36tixY0pLS3NYN2DAgDwrDAAAAMitXIXbn3/+Wa1atdKlS5d08eJFFSlSRKdPn5a3t7eCgoIItwAAAHCqXA1LeOWVV9SmTRudO3dOXl5e2rZtm44eParatWtr4sSJ+VUjAAAAkCO5Cre7d+/Wa6+9JhcXF7m6uio1NVWlS5fWhAkT9NZbb+VXjQAAAECO5CrcFipUSC4uf24SFBSkY8eOSZL8/f11/PjxvK8OAAAAyIVcjbmtWbOmduzYoQoVKqhRo0YaNmyYTp8+rfnz56tatWr5VSMAAACQI7m6cvvuu++qePHikqSxY8cqMDBQL730kk6dOqX3338/XwoEAAAAcipXV27r1Klj/3dQUJBWrlyZ5wUBAAAAt4svcQAAAIAxbnnltmbNmrLZbDna2U8//XTHBQEAAAC365bhtn379gVQBgAAAHDnbhluhw8fXhB1AAAAAHcsVzeU/dWFCxeUkZHh0Obn53fHBQEAAAC3K1c3lMXFxSk6Olo+Pj7y9/dXYGCgAgMDFRAQoMDAwPyqEQAAAMiRXF25feaZZ2RZlv79738rODg4xzeaAQAAAAUhV+F2z5492rVrlypVqpRf9QAAAAC3LVfDEurWravjx4/nVy0AAADAHcnVldsPP/xQffr00YkTJ1StWjUVKlTIYf2DDz6Yp8UBAAAAuZGrcHvq1CkdPnxYPXr0sLfZbDZZliWbzab09PQ8LxAAAADIqVyF2+eff141a9bUZ599xg1lAAAAuOvkKtwePXpU33zzjcqXL59f9QAAAAC3LVc3lDVp0kR79uzJr1oAAACAO5KrK7dt2rTRK6+8or1796p69epZbihr27ZtnhYHAAAA5Eauwm2fPn0kSaNGjcqyjhvKAAAA4Gy5CrcZGRn5VQcAAABwx3I15hYAAAC4m+Xqym12wxH+atiwYXdUDAAAAHAnchVuv/rqK4flq1evKi4uTm5ubipXrhzhFgAAAE6Vq3D7888/Z2lLSUlR9+7d9fjjj+dZUQAAAMDtuOMxt35+fho5cqSGDh2aF/UAAAAAty1PbihLTk5WcnJyXuwKAAAAuG25GpYwbdo0h2XLshQfH6/58+erZcuWeVoYAAAAkFu5CreTJ092WHZxcVGxYsXUrVs3xcTE5GlhAAAAQG7lKtzGxcXlVx0AAADAHctRuO3QocOtd+TmppCQEDVr1kxt2rS548IAAACA3MrRDWX+/v63fHh5eenQoUPq3Lkz890CAADAKXJ05TY2NjbHO1y6dKlefvnlW36bGQAAAJDX8mQqsL9q0KCB6tSpk9e7BQAAAG4pz8NtQECAvvzyy7zeLQAAAHBLeR5uAQAAAGch3AIAAMAYd024/cc//iGbzaZBgwbZ265cuaK+ffuqaNGi8vX1VceOHXXy5EmH7Y4dO6bo6Gh5e3srKChIr7/+uq5du1bA1QMAAOBucFeE2x07dmjOnDl68MEHHdpfeeUVffvtt1q8eLE2btyoP/74w2HO3fT0dEVHRystLU1btmzRvHnzNHfuXKYiAwAA+Jtyeri9cOGCunbtqg8++ECBgYH29uTkZH300UeaNGmSmjRpotq1ays2NlZbtmzRtm3bJEmrV6/Wvn379Mknn6hGjRpq2bKlRo8erRkzZigtLc1ZpwQAAAAncXq47du3r6KjoxUZGenQvmvXLl29etWhvXLlyrr//vu1detWSdLWrVtVvXp1BQcH2/tERUUpJSVFv/766w2PmZqaqpSUFIcHAAAA7n05+hKH/LJw4UL99NNP2rFjR5Z1CQkJcnd3V0BAgEN7cHCwEhIS7H3+Gmwz12euu5Fx48Zp5MiRd1g9AAAA7jZOu3J7/PhxDRw4UAsWLJCnp2eBHjsmJkbJycn2x/Hjxwv0+AAAAMgfTgu3u3btUmJiomrVqiU3Nze5ublp48aNmjZtmtzc3BQcHKy0tDQlJSU5bHfy5EmFhIRIkkJCQrLMnpC5nNknOx4eHvLz83N4AAAA4N7ntHDbtGlT7d27V7t377Y/6tSpo65du9r/XahQIa1du9a+zYEDB3Ts2DFFRERIkiIiIrR3714lJiba+6xZs0Z+fn4KCwsr8HMCAACAczltzG3hwoVVrVo1hzYfHx8VLVrU3v7CCy/o1VdfVZEiReTn56f+/fsrIiJCjzzyiCSpefPmCgsL07PPPqsJEyYoISFB77zzjvr27SsPD48CPycAd67GmBHOLgFwsPudEc4uAUAuOPWGsluZPHmyXFxc1LFjR6WmpioqKkozZ860r3d1ddXSpUv10ksvKSIiQj4+PurWrZtGjRrlxKoBAADgLHdVuN2wYYPDsqenp2bMmKEZM2bccJsyZcpo+fLl+VwZAAAA7gVOn+cWAAAAyCuEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYTg2348aNU926dVW4cGEFBQWpffv2OnDggEOfK1euqG/fvipatKh8fX3VsWNHnTx50qHPsWPHFB0dLW9vbwUFBen111/XtWvXCvJUAAAAcBdwarjduHGj+vbtq23btmnNmjW6evWqmjdvrosXL9r7vPLKK/r222+1ePFibdy4UX/88Yc6dOhgX5+enq7o6GilpaVpy5YtmjdvnubOnathw4Y545QAAADgRG7OPPjKlSsdlufOnaugoCDt2rVLDRs2VHJysj766CN9+umnatKkiSQpNjZWVapU0bZt2/TII49o9erV2rdvn7777jsFBwerRo0aGj16tIYMGaIRI0bI3d3dGacGAAAAJ7irxtwmJydLkooUKSJJ2rVrl65evarIyEh7n8qVK+v+++/X1q1bJUlbt25V9erVFRwcbO8TFRWllJQU/frrr9keJzU1VSkpKQ4PAAAA3PvumnCbkZGhQYMGqX79+qpWrZokKSEhQe7u7goICHDoGxwcrISEBHufvwbbzPWZ67Izbtw4+fv72x+lS5fO47MBAACAM9w14bZv3776v//7Py1cuDDfjxUTE6Pk5GT74/jx4/l+TAAAAOQ/p465zdSvXz8tXbpUmzZtUqlSpeztISEhSktLU1JSksPV25MnTyokJMTe58cff3TYX+ZsCpl9rufh4SEPD488PgsAAAA4m1Ov3FqWpX79+umrr77SunXrVLZsWYf1tWvXVqFChbR27Vp724EDB3Ts2DFFRERIkiIiIrR3714lJiba+6xZs0Z+fn4KCwsrmBMBAADAXcGpV2779u2rTz/9VP/5z39UuHBh+xhZf39/eXl5yd/fXy+88IJeffVVFSlSRH5+furfv78iIiL0yCOPSJKaN2+usLAwPfvss5owYYISEhL0zjvvqG/fvlydBQAA+JtxaridNWuWJKlx48YO7bGxserevbskafLkyXJxcVHHjh2VmpqqqKgozZw5097X1dVVS5cu1UsvvaSIiAj5+PioW7duGjVqVEGdBgAAAO4STg23lmXdso+np6dmzJihGTNm3LBPmTJltHz58rwsDQAAAPegu2a2BAAAAOBOEW4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYw5hwO2PGDIWGhsrT01Ph4eH68ccfnV0SAAAACpgR4fbzzz/Xq6++quHDh+unn37SQw89pKioKCUmJjq7NAAAABQgI8LtpEmT1KtXL/Xo0UNhYWGaPXu2vL299e9//9vZpQEAAKAAuTm7gDuVlpamXbt2KSYmxt7m4uKiyMhIbd26NdttUlNTlZqaal9OTk6WJKWkpORZXdeuXsmzfQF5JS9f4/kl/UrqrTsBBeheeN9IUtpF3ju4u+T1eydzf5Zl3bTfPR9uT58+rfT0dAUHBzu0BwcH67///W+224wbN04jR47M0l66dOl8qRG4W/h/Nc7ZJQD3HP+x/3B2CcA96X3NyZf9nj9/Xv7+/jdcf8+H29sRExOjV1991b6ckZGhs2fPqmjRorLZbE6sDNdLSUlR6dKldfz4cfn5+Tm7HOCewXsHyD3eN3c3y7J0/vx5lShR4qb97vlwe99998nV1VUnT550aD958qRCQkKy3cbDw0MeHh4ObQEBAflVIvKAn58f/9EAt4H3DpB7vG/uXje7Ypvpnr+hzN3dXbVr19batWvtbRkZGVq7dq0iIiKcWBkAAAAK2j1/5VaSXn31VXXr1k116tTRww8/rClTpujixYvq0aOHs0sDAABAATIi3Hbu3FmnTp3SsGHDlJCQoBo1amjlypVZbjLDvcfDw0PDhw/PMowEwM3x3gFyj/eNGWzWreZTAAAAAO4R9/yYWwAAACAT4RYAAADGINwCAADAGIRb/C10795d7du3d3YZgNNs2LBBNptNSUlJN+0XGhqqKVOm2JcTEhLUrFkz+fj4MB84kAMjRoxQjRo1srQFBwfLZrPp66+/dkpdfyeEW9yVsvvPAcDtq1evnuLj4+0ToM+dOzfbsLpjxw717t3bvjx58mTFx8dr9+7dOnjwYEGVC9wTsgurgwcPdph7f//+/Ro5cqTmzJmj+Ph4tWzZsoCr/PsxYiow/H1dvXpVhQoVcnYZwF3P3d39ht/a+FfFihVzWD58+LBq166tChUq5FdpgFF8fX3l6+trXz58+LAkqV27drLZbM4q62+FK7fIF40bN9aAAQP0xhtvqEiRIgoJCdGIESPs65OSktSzZ08VK1ZMfn5+atKkifbs2SPpzytKI0eO1J49e2Sz2WSz2TR37lxJf/6VPGvWLLVt21Y+Pj4aO3as0tPT9cILL6hs2bLy8vJSpUqVNHXqVCecNXBnGjdurH79+qlfv37y9/fXfffdp6FDhypzxsZz587pueeeU2BgoLy9vdWyZUsdOnTIvv3Ro0fVpk0bBQYGysfHR1WrVtXy5cslOQ5L2LBhg3r06KHk5GT7eyzz/fnXYQmhoaH64osv9PHHH8tms6l79+4F+XQAN3Qnv2MyjRkzRkFBQSpcuLB69uypN9980+ETwx07dqhZs2a677775O/vr0aNGumnn36yrw8NDZUkPf7447LZbPblv37yOGLECLVp00aS5OLiQrgtIIRb5Jt58+bJx8dH27dv14QJEzRq1CitWbNGkvTkk08qMTFRK1as0K5du1SrVi01bdpUZ8+eVefOnfXaa6+patWqio+PV3x8vDp37mzf74gRI/T4449r7969ev7555WRkaFSpUpp8eLF2rdvn4YNG6a33npLixYtctapA7dt3rx5cnNz048//qipU6dq0qRJ+vDDDyX9OXZ8586d+uabb7R161ZZlqVWrVrp6tWrkqS+ffsqNTVVmzZt0t69ezV+/HiHK0iZ6tWrpylTpsjPz8/+Hhs8eHCWfjt27FCLFi3UqVMnxcfH80cj7iq3+ztGkhYsWKCxY8dq/Pjx2rVrl+6//37NmjXLYf/nz59Xt27d9MMPP2jbtm2qUKGCWrVqpfPnz0v68/0hSbGxsYqPj7cv/9XgwYMVGxsrSfb3GgqABeSDRo0aWQ0aNHBoq1u3rjVkyBDr+++/t/z8/KwrV644rC9Xrpw1Z84cy7Isa/jw4dZDDz2UZb+SrEGDBt3y+H379rU6duxoX+7WrZvVrl273J8IUIAaNWpkValSxcrIyLC3DRkyxKpSpYp18OBBS5K1efNm+7rTp09bXl5e1qJFiyzLsqzq1atbI0aMyHbf69evtyRZ586dsyzLsmJjYy1/f/8s/cqUKWNNnjzZvtyuXTurW7dud3xuQF66098x4eHhVt++fR3W169fP9vfO5nS09OtwoULW99++629TZL11VdfOfS7/vfXV199ZRG3ChZXbpFvHnzwQYfl4sWLKzExUXv27NGFCxdUtGhR+9gkX19fxcXF2ccm3UydOnWytM2YMUO1a9dWsWLF5Ovrq/fff1/Hjh3Ls3MBCsojjzzi8NFlRESEDh06pH379snNzU3h4eH2dUWLFlWlSpW0f/9+SdKAAQM0ZswY1a9fX8OHD9cvv/xS4PUDBeVOfsccOHBADz/8sMP21y+fPHlSvXr1UoUKFeTv7y8/Pz9duHCB3y33AG4oQ765/kYvm82mjIwMXbhwQcWLF9eGDRuybJOTqYZ8fHwclhcuXKjBgwfrvffeU0REhAoXLqx//vOf2r59+52UD9xzevbsqaioKC1btkyrV6/WuHHj9N5776l///7OLg3Ic/n1OyZTt27ddObMGU2dOlVlypSRh4eHIiIilJaWdoeVI78RblHgatWqpYSEBLm5udkH4F/P3d1d6enpOdrf5s2bVa9ePb388sv2tpxcAQbuRtf/UZY51i8sLEzXrl3T9u3bVa9ePUnSmTNndODAAYWFhdn7ly5dWn369FGfPn0UExOjDz74INtwm5v3GHAvycnvmEqVKmnHjh167rnn7G3Xj5ndvHmzZs6cqVatWkmSjh8/rtOnTzv0KVSoEO+juxDDElDgIiMjFRERofbt22v16tU6cuSItmzZorfffls7d+6U9OddqHFxcdq9e7dOnz6t1NTUG+6vQoUK2rlzp1atWqWDBw9q6NCh2Q7sB+4Fx44d06uvvqoDBw7os88+0/Tp0zVw4EBVqFBB7dq1U69evfTDDz9oz549euaZZ1SyZEm1a9dOkjRo0CCtWrVKcXFx+umnn7R+/XpVqVIl2+OEhobqwoULWrt2rU6fPq1Lly4V5GkC+SYnv2P69++vjz76SPPmzdOhQ4c0ZswY/fLLLw5DgipUqKD58+dr//792r59u7p27SovLy+HY4WGhmrt2rVKSEjQuXPnCvQ8cWOEWxQ4m82m5cuXq2HDhurRo4cqVqyoLl266OjRowoODpYkdezYUS1atNBjjz2mYsWK6bPPPrvh/l588UV16NBBnTt3Vnh4uM6cOeNwFRe4lzz33HO6fPmyHn74YfXt21cDBw60f6lCbGysateurdatWysiIkKWZWn58uX2j2fT09PVt29fValSRS1atFDFihU1c+bMbI9Tr1499enTR507d1axYsU0YcKEAjtHID/l5HdM165dFRMTo8GDB6tWrVqKi4tT9+7d5enpad/PRx99pHPnzqlWrVp69tlnNWDAAAUFBTkc67333tOaNWtUunRp1axZs0DPEzdms6z/fwJFAIBTNW7cWDVq1HD4+lsABaNZs2YKCQnR/PnznV0K7hBjbgEAwN/KpUuXNHv2bEVFRcnV1VWfffaZvvvuO/s8ubi3EW4BAMDfSubQhbFjx+rKlSuqVKmSvvjiC0VGRjq7NOQBhiUAAADAGNxQBgAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAMs2HDBtlsNiUlJTm7FAAocIRbAMgnp06d0ksvvaT7779fHh4eCgkJUVRUlDZv3pxnx2jcuLEGDRrk0FavXj3Fx8fL398/z44DAPcKvsQBAPJJx44dlZaWpnnz5umBBx7QyZMntXbtWp05cyZfj+vu7q6QkJB8PQYA3K24cgsA+SApKUnff/+9xo8fr8cee0xlypTRww8/rJiYGLVt29bep2fPnipWrJj8/PzUpEkT7dmzx76PESNGqEaNGpo/f75CQ0Pl7++vLl266Pz585Kk7t27a+PGjZo6dapsNptsNpuOHDmSZVjC3LlzFRAQoKVLl6pSpUry9vbWE088oUuXLmnevHkKDQ1VYGCgBgwYoPT0dPvxU1NTNXjwYJUsWVI+Pj4KDw/Xhg0b7Osz97tq1SpVqVJFvr6+atGiheLj4/P/CQaAGyDcAkA+8PX1la+vr77++mulpqZm2+fJJ59UYmKiVqxYoV27dqlWrVpq2rSpzp49a+9z+PBhff3111q6dKmWLl2qjRs36h//+IckaerUqYqIiFCvXr0UHx+v+Ph4lS5dOttjXbp0SdOmTdPChQu1cuVKbdiwQY8//riWL1+u5cuXa/78+ZozZ46WLFli36Zfv37aunWrFi5cqF9++UVPPvmkWrRooUOHDjnsd+LEiZo/f742bdqkY8eOafDgwXnxFALA7bEAAPliyZIlVmBgoOXp6WnVq1fPiomJsfbs2WNZlmV9//33lp+fn3XlyhWHbcqVK2fNmTPHsizLGj58uOXt7W2lpKTY17/++utWeHi4fblRo0bWwIEDHfaxfv16S5J17tw5y7IsKzY21pJk/fbbb/Y+L774ouXt7W2dP3/e3hYVFWW9+OKLlmVZ1tGjRy1XV1frxIkTDvtu2rSpFRMTc8P9zpgxwwoODs7V8wQAeYkxtwCQTzp27Kjo6Gh9//332rZtm1asWKEJEyboww8/1MWLF3XhwgUVLVrUYZvLly/r8OHD9uXQ0FAVLlzYvly8eHElJibmuhZvb2+VK1fOvhwcHKzQ0FD5+vo6tGXue+/evUpPT1fFihUd9pOamupQ8/X7vd36ACCvEG4BIB95enqqWbNmatasmYYOHaqePXtq+PDhevnll1W8eHGHMayZAgIC7P8uVKiQwzqbzaaMjIxc15Hdfm627wsXLsjV1VW7du2Sq6urQ7+/BuLs9mFZVq7rA4C8QrgFgAIUFhamr7/+WrVq1VJCQoLc3NwUGhp62/tzd3d3uAksr9SsWVPp6elKTEzUo48+muf7B4D8wg1lAJAPzpw5oyZNmuiTTz7RL7/8ori4OC1evFgTJkxQu3btFBkZqYiICLVv316rV6/WkSNHtGXLFr399tvauXNnjo8TGhqq7du368iRIzp9+vRtXdXNTsWKFdW1a1c999xz+vLLLxUXF6cff/xR48aN07Jly/LkGACQH7hyCwD5wNfXV+Hh4Zo8ebIOHz6sq1evqnTp0urVq5feeust2Ww2LV++XG+//bZ69OihU6dOKSQkRA0bNlRwcHCOjzN48GB169ZNYWFhunz5suLi4vLsHGJjYzVmzBi99tprOnHihO677z498sgjat26dZ4dAwDyms1icBQAAAAMwbAEAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYIz/D9rzCdiGElXAAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAH4CAYAAABuRBWpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmNElEQVR4nO3dd3xT9eI+8CdJm7RNuvdu6WDvWUZBhkwFFQG9IuBV9Lr1qrjFde9Pr6hc5/16vYLgBFkKyEak7L26KN177zZtcn5/IJVCCy1N+jlJnvfrxUuTJuc8adM8Ped8zvkoJEmSQERERLKjFB2AiIiIWsaSJiIikimWNBERkUyxpImIiGSKJU1ERCRTLGkiIiKZYkkTERHJFEuaiIhIpljSREREMsWSlpnFixdDoVB0yrrGjBmDMWPGNN3evXs3FAoFVq9e3Snrv2TZsmVQKBRIS0vr1PXeCIVCgcWLFzfdbil7WFgYpk2b1uF1Xfp57N69u8PLEmH+/PkICwsTHUM2wsLCMH/+fCHrvvQ+PXLkiJD1041jSZvRpV+MS/8cHBwQEBCAiRMn4t///jcqKytNsp6cnBwsXrwYJ06cMMny5OrSHzCX/jk5OaFHjx54+eWXUVFRITqeUKdPn8bMmTMRGhoKBwcHBAYGYsKECfjoo4/Mul5bee9dy/z585u9L11cXNC3b18sWbIE9fX1Zl//2rVrMXnyZHh5eUGtViMgIACzZs3Czp07zb7u1nz66adYtmyZsPVbEzvRAWzBG2+8gfDwcDQ0NCAvLw+7d+/Gk08+iffffx8bNmxAnz59mh778ssv4/nnn2/X8nNycvD6668jLCwM/fr1a/Pztm7d2q71mMvcuXMxZ84caDSaNj3+s88+g06nQ1VVFbZu3Yq3334bO3fuRFxcXKfthbikvdnbIzY2FrW1tVCr1dd83L59+3DTTTchJCQEDzzwAPz8/JCZmYkDBw5g6dKleOyxx0ye7ZJrvfe++OILGI1Gs61bTjQaDf773/8CAMrKyvDTTz/hmWeeweHDh/H9998DABITE6FUmm67SJIk3HfffVi2bBn69++Pp59+Gn5+fsjNzcXatWsxbtw4xMXFYfjw4SZbZ1t9+umn8PLyErbnwJqwpDvB5MmTMWjQoKbbL7zwAnbu3Ilp06bh1ltvRXx8PBwdHQEAdnZ2sLMz74+lpqYGTk5O1/3w7ywqlQoqlarNj585cya8vLwAAA899BDuuOMOrFmzBgcOHEBMTEyLz7n0mk2tvdnbQ6lUwsHB4bqPe/vtt+Hq6orDhw/Dzc2t2dcKCgrMkq0t7O3tha27s9nZ2eGee+5puv3www9j6NCh+OGHH/D+++8jICDA5H/ILVmyBMuWLWv6g//yP1BfeuklrFixwuyfJVcy1++ZLePubkHGjh2LV155Benp6Vi5cmXT/S0dk962bRtGjhwJNzc36HQ6dO3aFS+++CKAi8ctBw8eDABYsGBB0y63S7uaxowZg169euHo0aOIjY2Fk5NT03OvPCZ9icFgwIsvvgg/Pz9otVrceuutyMzMbPaY1o6vtbTMjz76CD179oSTkxPc3d0xaNAgfPvtt01f7+gx6bFjxwIAUlNTr/ua6+vr8dprryEyMhIajQbBwcF47rnnrtotWV9fj6eeegre3t5wdnbGrbfeiqysrKvW3dbsy5cvh52dHZ599tmm+77//nsMHDgQzs7OcHFxQe/evbF06dKmr7f1mHRKSgp69ux5VUEDgI+Pz1X3rVy5EgMHDoSjoyM8PDwwZ86cq36+l76H586dw0033QQnJycEBgbi3XffbZbvWu+9K49Jp6WlQaFQ4L333sMnn3yCLl26wMnJCTfffDMyMzMhSRLefPNNBAUFwdHREdOnT0dJSclV+Tdv3oxRo0ZBq9XC2dkZU6dOxdmzZ5s9Zv78+dDpdMjOzsaMGTOg0+ng7e2NZ555BgaD4ZrfT1NQKpVNvweX3hst/c6UlZXhySefRHBwMDQaDSIjI/HOO+9cdw9EbW0t/vnPf6Jbt2547733WtyDNHfuXAwZMqTZffX19Xj66afh7e0NrVaL2267DYWFhc0es379ekydOrXpD4uIiAi8+eabV33fWvs9CwsLw9mzZ/Hbb781vSda+pyhtuGWtEBz587Fiy++iK1bt+KBBx5o8TFnz57FtGnT0KdPH7zxxhvQaDQ4f/484uLiAADdu3fHG2+8gVdffRULFy7EqFGjAKDZLq7i4mJMnjwZc+bMwT333ANfX99r5nr77behUCiwaNEiFBQU4MMPP8T48eNx4sSJpi3+tvriiy/w+OOPY+bMmXjiiSdQV1eHU6dO4eDBg7j77rvbtazWpKSkAAA8PT2b7mvpNRuNRtx6663Yu3cvFi5ciO7du+P06dP44IMPkJSUhHXr1jU9//7778fKlStx9913Y/jw4di5cyemTp16Q/n+7//+Dw899BBefPFFvPXWWwAu/uF11113Ydy4cXjnnXcAAPHx8YiLi8MTTzzRruWHhoZi//79OHPmDHr16nXNx7799tt45ZVXMGvWLNx///0oLCzERx99hNjYWBw/frxZ0ZeWlmLSpEm4/fbbMWvWLKxevRqLFi1C7969MXny5Da991ryzTffQK/X47HHHkNJSQneffddzJo1C2PHjsXu3buxaNEinD9/Hh999BGeeeYZ/O9//2t67ooVKzBv3jxMnDgR77zzDmpqavDZZ59h5MiROH78eLM/CgwGAyZOnIihQ4fivffew/bt27FkyRJERETgb3/7W7u+xzeipffl5WpqajB69GhkZ2fjwQcfREhICPbt24cXXngBubm5+PDDD1td9t69e1FSUoInn3yyXXtyHnvsMbi7u+O1115DWloaPvzwQzz66KP44Ycfmh6zbNky6HQ6PP3009DpdNi5cydeffVVVFRU4F//+lez5bX0ezZmzBg89thj0Ol0eOmllwDgup85dA0Smc1XX30lAZAOHz7c6mNcXV2l/v37N91+7bXXpMt/LB988IEEQCosLGx1GYcPH5YASF999dVVXxs9erQEQPr8889b/Nro0aObbu/atUsCIAUGBkoVFRVN9//4448SAGnp0qVN94WGhkrz5s277jKnT58u9ezZs9XskvTn9yk1NfWaj7v0vUlMTJQKCwul1NRU6T//+Y+k0WgkX19fqbq6+pqvecWKFZJSqZR+//33Zvd//vnnEgApLi5OkiRJOnHihARAevjhh5s97u6775YASK+99to1s4eGhkpTp06VJEmSli5dKikUCunNN99stqwnnnhCcnFxkRobG1t9vZd+Hrt27brm92Xr1q2SSqWSVCqVFBMTIz333HPSli1bJL1e3+xxaWlpkkqlkt5+++1m958+fVqys7Nrdv+l7+HXX3/ddF99fb3k5+cn3XHHHU33Xeu9N2/ePCk0NLTpdmpqqgRA8vb2lsrKypruf+GFFyQAUt++faWGhoam+++66y5JrVZLdXV1kiRJUmVlpeTm5iY98MADzdaTl5cnubq6Nrt/3rx5EgDpjTfeaPbY/v37SwMHDrwqa0fMmzdP0mq1UmFhoVRYWCidP39e+sc//iEpFAqpT58+TY+78nfmzTfflLRarZSUlNRsec8//7ykUqmkjIyMVte5dOlSCYC0du3aNmW89D4dP368ZDQam+5/6qmnJJVK1eznUVNTc9XzH3zwQcnJyanpZyFJ1/5s6dmzZ7PPAbpx3N0tmE6nu+Yo70tbNuvXr7/hQTgajQYLFixo8+PvvfdeODs7N92eOXMm/P39sWnTpnav283NDVlZWTh8+HC7n9uarl27wtvbG+Hh4XjwwQcRGRmJjRs3NjsW1tJrXrVqFbp3745u3bqhqKio6d+l3eW7du0CgKbX+fjjjzd7/pNPPtmunO+++y6eeOIJvPPOO3j55Zebfc3NzQ3V1dXYtm1bu5bZkgkTJmD//v249dZbcfLkSbz77ruYOHEiAgMDsWHDhqbHrVmzBkajEbNmzWr2+v38/BAVFdX0+i/R6XTNjrOq1WoMGTIEFy5c6FDeO++8E66urk23hw4dCgC45557mh1DHTp0KPR6PbKzswFc3PtQVlaGu+66q1l+lUqFoUOHXpUfuDhm4XKjRo3qcP6WVFdXw9vbG97e3oiMjMSLL76ImJgYrF27ttXnrFq1CqNGjYK7u3uz1zN+/HgYDAbs2bOn1edeOpvh8t/Ttli4cGGzXeOjRo2CwWBAenp6032X7y2rrKxEUVERRo0ahZqaGiQkJDRbXns/W6j9uLtbsKqqqhaPG14ye/Zs/Pe//8X999+P559/HuPGjcPtt9+OmTNntnmkaGBgYLsGiUVFRTW7rVAoEBkZeUPHjBctWoTt27djyJAhiIyMxM0334y7774bI0aMaPeyLvnpp5/g4uICe3t7BAUFISIi4qrHtPSak5OTER8fD29v7xaXe2mQVXp6OpRK5VXL7dq1a5sz/vbbb9i4cSMWLVrU7Dj0JQ8//DB+/PFHTJ48GYGBgbj55psxa9YsTJo0qc3ruNzgwYOxZs0a6PV6nDx5EmvXrsUHH3yAmTNn4sSJE+jRoweSk5MhSdJVP99LrhzoFRQUdNWxTnd3d5w6deqGMl4SEhLS7Palwg4ODm7x/tLSUgAXf37An2MQruTi4tLstoODw1U/a3d396bltaa8vBy1tbVNt9VqNTw8PK75HAcHB/z8888ALhZXeHg4goKCrvmc5ORknDp16rrvx5Zceq3tPY3zyu+9u7s7ADT7npw9exYvv/wydu7cedWpjeXl5c1ut/ezhdqPJS1QVlYWysvLERkZ2epjHB0dsWfPHuzatQsbN27Er7/+ih9++AFjx47F1q1b23Q8qr3HkduitVOdDAZDs0zdu3dHYmIifvnlF/z666/46aef8Omnn+LVV1/F66+/fkPrjo2NbRrd3ZqWXrPRaETv3r3x/vvvt/icK0uiI3r27ImysjKsWLECDz74IMLDw5t93cfHBydOnMCWLVuwefNmbN68GV999RXuvfdeLF++/IbXq1arMXjwYAwePBjR0dFYsGABVq1ahddeew1GoxEKhQKbN29u8X2j0+ma3W7tvSVJ0g3nu9Zyr7e+S3uSVqxYAT8/v6sed+VI5hsddf/EE080+xmMHj36uoP3VCoVxo8f3671GI1GTJgwAc8991yLX4+Ojm71ud26dQNw8fz4GTNmtHmd1/sel5WVYfTo0XBxccEbb7yBiIgIODg44NixY1i0aNFVe/PM8dlCzbGkBVqxYgUAYOLEidd8nFKpxLhx4zBu3Di8//77+Mc//oGXXnoJu3btwvjx401+bvClLZZLJEnC+fPnm53P7e7ujrKysquem56eji5dujS7T6vVYvbs2Zg9ezb0ej1uv/12vP3223jhhRfadIqRqURERODkyZMYN27cNb9noaGhMBqNSElJabb1nJiY2OZ1eXl5YfXq1Rg5ciTGjRuHvXv3IiAgoNlj1Go1brnlFtxyyy0wGo14+OGH8Z///AevvPLKNf9wa6tLp/3l5uYCuPj6JUlCeHj4NQugPTrzvPRLezZ8fHzaXYjt8dxzzzXbzX9pa9PUIiIiUFVVdUOvZeTIkXB3d8d3332HF1980WSnAe7evRvFxcVYs2YNYmNjm+6/dOZEW3X29QqsGY9JC7Jz5068+eabCA8Px1/+8pdWH9fSKSiXLhpx6bQhrVYLAC2W5o34+uuvm+1GW716NXJzczF58uSm+yIiInDgwAHo9fqm+3755ZerTuUpLi5udlutVqNHjx6QJAkNDQ0mydtWs2bNQnZ2Nr744ourvlZbW4vq6moAaHqd//73v5s95lqjbVsSFBSE7du3o7a2FhMmTGj2vbjy+6JUKpv+CGrvVap27drV4tbtpWPrl/7QuP3226FSqfD6669f9XhJkq7K1Bamfu9dy8SJE+Hi4oJ//OMfLb53rjyV6Eb16NED48ePb/o3cOBAkyz3SrNmzcL+/fuxZcuWq75WVlaGxsbGVp/r5OSERYsWIT4+HosWLWrx579y5UocOnSoXZkulf3ly9Pr9fj000/btRytVtsp7wlbwC3pTrB582YkJCSgsbER+fn52LlzJ7Zt24bQ0FBs2LDhmluTb7zxBvbs2YOpU6ciNDQUBQUF+PTTTxEUFISRI0cCuFiYbm5u+Pzzz+Hs7AytVouhQ4detYu1rTw8PDBy5EgsWLAA+fn5+PDDDxEZGdnsNLH7778fq1evxqRJkzBr1iykpKRg5cqVVx3Hvfnmm+Hn54cRI0bA19cX8fHx+PjjjzF16tR2D3rpqLlz5+LHH3/EQw89hF27dmHEiBEwGAxISEjAjz/+iC1btmDQoEHo168f7rrrLnz66acoLy/H8OHDsWPHDpw/f77d64yMjMTWrVsxZswYTJw4ETt37oSLiwvuv/9+lJSUYOzYsQgKCkJ6ejo++ugj9OvXD927d2/XOh577DHU1NTgtttuQ7du3aDX67Fv3z788MMPCAsLaxrYExERgbfeegsvvPAC0tLSMGPGDDg7OyM1NRVr167FwoUL8cwzz7Rr3aZ+712Li4sLPvvsM8ydOxcDBgzAnDlz4O3tjYyMDGzcuBEjRozAxx9/bPL1msuzzz6LDRs2YNq0aZg/fz4GDhyI6upqnD59GqtXr0ZaWto1D+s8++yzOHv2LJYsWYJdu3Zh5syZ8PPzQ15eHtatW4dDhw5h37597co0fPhwuLu7Y968eXj88cehUCiwYsWKdh/iGDhwID777DO89dZbiIyMhI+PT6tjCeg6hIwptxGXTnu49E+tVkt+fn7ShAkTpKVLlzY7zemSK0/B2rFjhzR9+nQpICBAUqvVUkBAgHTXXXddddrG+vXrpR49ekh2dnbNTokZPXp0q6dAtXYK1nfffSe98MILko+Pj+To6ChNnTpVSk9Pv+r5S5YskQIDAyWNRiONGDFCOnLkyFXL/M9//iPFxsZKnp6ekkajkSIiIqRnn31WKi8vv+r71NZTsK51Otr1XrNer5feeecdqWfPnpJGo5Hc3d2lgQMHSq+//nqzTLW1tdLjjz8ueXp6SlqtVrrlllukzMzMdp+CdcnBgwclZ2dnKTY2VqqpqZFWr14t3XzzzZKPj4+kVqulkJAQ6cEHH5Ryc3ObntPWU7A2b94s3XfffVK3bt0knU4nqdVqKTIyUnrsscek/Pz8qx7/008/SSNHjpS0Wq2k1Wqlbt26SY888oiUmJh43e/hladVSVLr773WTsH617/+1ez5l17nqlWrmt3f2imMu3btkiZOnCi5urpKDg4OUkREhDR//nzpyJEjzXJqtdqr8l/5+2UKra3rSi2dtlhZWSm98MILUmRkpKRWqyUvLy9p+PDh0nvvvXfVKXStufRe8vDwkOzs7CR/f39p9uzZ0u7du5sec63v5ZXvsbi4OGnYsGGSo6OjFBAQ0HRK35WPu9bvWV5enjR16lTJ2dlZAsDTsTpAIUkdHAVCREREZsFj0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkU3aiAxBR68pq6lBYVYWymjpU1etRVV+Pyjo9KuvrL96uq0dlvR7V9XroDQZIkgSDUYJRkmCUjH/8FzAajZAAqFUqONjbwdHe/or/2sHB3h5Oanu4OznCU+sED60jvHRaeGgdYa9Sif5WENkkljSRILX6BqQVlyKjtBx55ZXIrahEXnkl8iqqUFBZjaKqaugNBtExAQAuDhp4aJ3gpXWCt7MWQe6uCHF3RbCHG4LdXeHv4gylUiE6JpHVUUiSJIkOQWTN8iuqkFpUggtFpbhQVIILRSVIKy5FbnklrOWXz16lQqCbC0LcXRHk7ooIbw908/VGV18v6Bw0ouMRWSyWNJGJSJKE9JIynM7Ox5mcfJzJyUNifhGq6vWiowmjABDo5oLufj7o6ueFbr7e6ObnjSB3V9HRiCwCS5roBuWVV+Jkdt7FQs7Ow9ncAlTU1YuOZRGcNRr0CfLDwJAADAgJRN9APziq7UXHIpIdljRRGxVUVuFgaiYOpmbhQGoGssoqREeyGvZKJbr7+2BASAAGhgRiYEgAPLROomMRCceSJmpFaXUtDqZl4mBqJg6kZiK1uFR0JJsS4eWBkZFhiI0Kw+DQQKjtOM6VbA9LmugyCXmF2JGQgp2JKTiXW2A1A7ssnZO9PYaEByE2MhyxUWE8pk02gyVNNq3RYMTh9CzsSEjBrqQLyOYubIsQ5umO0VFhmNA9EgNDAqFQ8PQvsk4sabI5dQ2N2J10AdsTUrAnOZWDvSycr7MOE3tEYVLPaPQP9mdhk1VhSZNNMBolHEzLxPqT8dgWfx7Vets9Lcqa+bs4Y2LPKEzuGY2+Qf6i4xB1GEuarFpiXiHWn4rHxtOJyK+sEh2HOlGgmwtu6d0Nd/TviWAPN9FxiG4IS5qsTlFVNdafjMf6k/FIKigSHYcEUwAYGh6MOwf0xoTuERwlThaFJU1W40h6Fr49fArb4s+jQSbXvCZ5cXN0wK19uuPOgb0Q5eMlOg7RdbGkyaJV1+vx86l4fHfkFBLzudVMbdc30A+zB/XBtN7doLbjLF8kTyxpskgphcX49vAprD95zqavjU0d561zwt2D+2HO4D5wd3IUHYeoGZY0WZTDaVn4v72H8fv5NNFRyMo42NlhRr8emDdsAMK93EXHIQLAkiYLIEkSdiVdwBd7D+N4Zq7oOGTlFABGR4djQcxADA0PFh2HbJxSdACi1hiMRvx8KgHTP1uJh7/bwIKmTiEB2J2UinnLV+PO//sWvyWlio5kdRYvXox+/fpddZ+vry8UCgXWrVsnJJcccUuaZEff2Ig1x8/iy31HkVlaLjoOEfoG+uHRm2IwKjJMdBSLo1AosHbtWsyYMaPpvqqqKtTX18PT0xMAEB8fjx49emDt2rUYNmwY3N3dodFoBCWWF54wSLJhNEpYd/IcPt59ADnlvIY2ycfJ7Dw8sHIt+gf747ExMRgeESo6kkXT6XTQ6XRNt1NSUgAA06dP52Vdr8Dd3SQL2+PPY/pnK/Di+q0saJKt45m5uG/FGtzzvx9xIDVTdJxrGjNmDB5//HE899xz8PDwgJ+fHxYvXtz09bKyMtx///3w9vaGi4sLxo4di5MnTzZbxltvvQUfHx84Ozvj/vvvx/PPP99sN/Xhw4cxYcIEeHl5wdXVFaNHj8axY8eavh4WFgYAuO2226BQKJpuX767e/HixbjlllsAAEqlkiV9BZY0CXU4LQtz/vs9Hv3hZyQXFouOQ9QmRzKyMX/5atz39U+yPj9/+fLl0Gq1OHjwIN5991288cYb2LZtGwDgzjvvREFBATZv3oyjR49iwIABGDduHEpKSgAA33zzDd5++2288847OHr0KEJCQvDZZ581W35lZSXmzZuHvXv34sCBA4iKisKUKVNQWVkJ4GKJA8BXX32F3NzcptuXe+aZZ/DVV18BAHJzc5Gby7Enl+MxaRIiPrcA7++I46lUZPFUCgXuGNALT9w0HJ46J9FxmowZMwYGgwG///57031DhgzB2LFjMW3aNEydOhUFBQXNjv1GRkbiueeew8KFCzFs2DAMGjQIH3/8cdPXR44ciaqqKpw4caLFdRqNRri5ueHbb7/FtGnTALR8THrx4sVYt25d03LWrVuH2267Dayjq3FLmjpVaXUtXtmwDXf837csaLIKBknCj0dPY+JHX+GLvYehb2wUHalJnz59mt329/dHQUEBTp48iaqqKnh6ejYdH9bpdEhNTW06PpyYmIghQ4Y0e/6Vt/Pz8/HAAw8gKioKrq6ucHFxQVVVFTIyMsz7wmwIB45RpzAaJXx/5BSW7oxDOedvJitUVa/Hku178cORU3hmwihM6hktOhLs7e2b3VYoFDAajaiqqoK/vz9279591XPc3NzavPx58+ahuLgYS5cuRWhoKDQaDWJiYqDnVLAmw5ImszuWkYO3Nu3CubwC0VGIzC6rrAJPrtqIQQdP4JUpN6Grn7foSFcZMGAA8vLyYGdn1zSY60pdu3bF4cOHce+99zbdd+Ux5bi4OHz66aeYMmUKACAzMxNFRc2P0dvb28PACW9uGHd3k9kUVVVj0dpf8Zf//cCCJptzJCMbd/zft1iy7XfUNchnFzgAjB8/HjExMZgxYwa2bt2KtLQ07Nu3Dy+99BKOHDkCAHjsscfw5ZdfYvny5UhOTsZbb72FU6dONRt9HRUVhRUrViA+Ph4HDx7EX/7yFzg6Nr/+eVhYGHbs2IG8vDyUlpZ26uu0BixpMjlJkrDi4HFM+mgZ1p+MB4eCkK1qNBrxRdwR3Prp19iXki46ThOFQoFNmzYhNjYWCxYsQHR0NObMmYP09HT4+voCAP7yl7/ghRdewDPPPIMBAwYgNTUV8+fPh4ODQ9NyvvzyS5SWlmLAgAGYO3cuHn/8cfj4+DRb15IlS7Bt2zYEBwejf//+nfo6rQFHd5NJpRWX4qX1W3E0I0d0FCLZmd6nO56fOBruWsucbWvChAnw8/PDihUrREexGTwmTSZhNEpYfuAYlu7chzoZjW4lkpP1p+Kx53waFt0cixn9eoiOc001NTX4/PPPMXHiRKhUKnz33XfYvn1703nW1Dm4JU0ddqGoBC+u24oTWbwIAVFbjYwIxdvTb4avi+76DxagtrYWt9xyC44fP466ujp07doVL7/8Mm6//XbR0WwKS5pumMFoxFf7juKj3ftR38jRm0Tt5erogDduGY+JPaJERyGZYknTDckoKcOzP23Gyew80VGILN5t/Xrgpck3QadRi45CMsOSpnb75XQCXvt5B6p5wQIikwl2d8U7t03CgJAA0VFIRljS1GY1+ga8tWkX1pw4KzoKkVVSKRRYOGoIHhk9DHYqniFLLGlqo4S8Qjy9ehMuFJWIjkJk9XoH+OKDO6ciyN1VdBQSjCVN1/XNoRN4d+seDg4j6kQuDhr8v9smYmzXCNFRSCCWNLWqsq4eL67bim0J50VHIbJJCgB/HTEIT40bAZWSu79tEUuaWnShqASPfLcBqcW81i6RaINDg/DhnVNlNV81dQ6WNF1ld9IFPPvTr6is55SSRHLh56LDv2fdgj5BfqKjUCdiSVMzn+85iH/v2g8j3xZEsqNWqfDylJswa2Bv0VGok7CkCcDF06teXLcFv55LFh2FiK7j3qH98fzE0VAqFdd/MFk0ljQhq7Qcj3y/AYn5Rdd/MBHJwtiuXfDeHVPgpLYXHYXMiCVt405k5uJv361HaU2t6ChE1E49/H3w+d3T4eMsz0k6qONY0jZsZ2IKnl61iVNLElkwfxdnfH73dHT18xYdhcyAJW2jfjhyCm9s3AkDf/xEFk+rVuODO6cgNipcdBQyMZa0Dfr3zn34dM9B0TGIyIRUCgVemXIT5gzuKzoKmRBL2oY0GoxY/MsOrD5+RnQUIjKTJ8eOwEOxQ0THIBNhSduIGn0Dnlq1Eb8lp4qOQkRm9sCIQfj7hFGiY5AJsKRtQFW9HgtXrsWxzBzRUYiok9w9uC9emXITFAqeS23JWNJWrrKuHvevWIOT2XmioxBRJ5vetzv+Mf1mTs5hwVjSVqy8tg5/XbEGZ3LyRUchIkEmdI/EkjumQG2nEh2FbgBL2kqV1tTir1+vwbm8AtFRiEiwkRGh+HjOrXCwtxMdhdqJJW2FSqprsODrn3iZTyJqMiIiFJ/ddSvUdixqS8IDFVamqKoa85atZkETUTNxKel4ctVGNBqMoqNQO7CkrUhpTS3mL1+N5MJi0VGISIZ2Jl7As2s2w2BkUVsKlrSVqP7jNKvzhSWioxCRjG0+m4SX1m8Dj3RaBpa0FdA3NuKR7zfgNEdxE1EbrDt5Dq9v3Ck6BrUBS9rCGYxG/H31ZhxIzRQdhYgsyPdHTuGfv/4mOgZdB0vawr328w5sSzgvOgYRWaDlB47hs9842Y6csaQt2L+27uFkGUTUIUt37cP6k+dEx6BWsKQt1H/3HsaX+46KjkFEVuDl9dt4yEymWNIWaOPpRCzZvld0DCKyEg1GIx7/4WecL+Dpm3LDkrYwxzJy8MK6LeDJE0RkShV19Vj4zToUVlaLjkKXYUlbkKzScjz6/QboDQbRUYjICuWUV+Chb9ehRt8gOgr9gSVtIaqr6vDJl9tRrdeLjkJEVuxsbgGeWrWRVyWTCZa0BTAajfh/L/2EY9+dQr90e3g6OYqORERW7LfkVLzPcS+ywJK2AP/7eDsO7U0CAOQdy0Pgvhp0cXMTG4qIrNqX+47i17NJomPYPJa0zO3YdBKrlsc1u688sxyqNTno7+kjKBUR2YIX129FcgFn1BOJJS1jyfE5+PCtDS1+TV+tR+nXyRjh4tfJqYjIVtToG/Do9z+jsq5edBSbxZKWqeqqOrz9/Cro6xtbfYxklJD1TQJiJS/Yq/ijJCLTSy8pw7NrNnPWLEH4yS5TH761AblZbZt2Mv2X8xiY4wA3RwczpyIiW7Q7KRWf/HZAdAybxJKWoV9WH8aebWfb9ZzcQzkIPVyHEFdXM6UiIlv2ye4D2JV4QXQMm8OSlpmUpDz85/1fb+i5ZallcNiQhz6e3iZORUS2TgLwwrotyK+oEh3FprCkZaS2ph7/eP7Hax6Hvp76inpUrEjBcDcOKCMi0yqrrcPza3/l8elOxJKWkX//4xdkpXf8AveSwYjsFQmIVXnDTskfMRGZzv7UTHwZd0R0DJvBT3CZ2LL+GHZuPmXSZaavS8aQYi2cNWqTLpeIbNvSnftwJidfdAybwJKWgbSUAnzy7iazLDt7byYiTxkQ6OJsluUTke1pMBrxzE+bORFHJ2BJC9bYYMC7r/yE+jrzvdlLkorh/GsRenp6mW0dRGRb0opL8Y/Nu0XHsHosacF+WPY7UhLzzL6e2uJa1H6TimEeHFBGRKax+vgZbDmXLDqGVWNJC5SWUoDvvtzTaeszNBiQuzwBozU+UCoUnbZeIrJei3/ZgZLqGtExrBZLWhCDwYglr69DQ4Oh09edtjoJwytcoFXbd/q6ici6lNbU4i3u9jYblrQgP63ch6Sz2cLWn7k7Hd3jJfg564RlICLrsOlMIq9GZiYsaQEy04qw4j+7RMdA4bkieGwrRVcPT9FRiMjCvb5xB6o4W5bJsaQ7mdFoxPtvrOvQVcVMqbqwGo3fp2Owp6/oKERkwfIqqvCvbb+LjmF1WNKdbP33B3HuZKboGM001jeiYFkiRjn5gsPJiOhG/Xj0NA6lZYmOYVVY0p0oN6sEX32yQ3SMVmX8kIiRdW5wsLcTHYWILJAE4JUN21DfII89hdaAJd2JPn13k1kvWmIKGdvS0DtFBW+tk+goRGSB0kvK8Omeg6JjWA2WdCc5HJeMQ3GWcdJ/wcl8+O6pRKS7u+goRGSBvtp3FJklZaJjWAWWdCcwNBpueI5oUSpzKoFVWRjIAWVE1E56gwHvbO28CzVZM5Z0J1j/4yFkphWJjtFuDbUNKFqehFHOvJQoEbXP9oQU7EtJFx3D4ikkzt5tVuWl1bjvtn+jqrJOdJQOCZ0SgQPqMugNnX+FNKJLivfuQNGOjXAfOgo+k24DADRWVaBw28+oTkmCUV8Ptac3PEeNh3OPvq0uRzIaUbx7CypOH0VjVQXsnF3h0ncwPGMnQPHHJXNL9u1CSdzF6xl4jBgLj+Fjmp5fm5WO/E0/IfT+J6BQqsz3gi1cpLcH1j00F3Yqbg/eKH7nzGzZZzstvqABIH1TCgZkqeHh5Cg6Ctmo2uwMlB/dD42vf7P7c9d+C31RAQLvug9hf3sWzt37IGf116jLbf1UoJK4nSg7sg8+k29H+CPPw3v8NJTs24WyQxfP863Lz0HRrl/hP3Mu/O+4B0W7NqE+PwcAIBkNyN+4Gr5TZ7Kgr+N8YQm+PXxSdAyLxpI2o5SkPPy69qjoGCaTeyQXQftrEObmJjoK2Rijvh65a76B7y2zoHRofuZBbWYa3IaMgmNgKNTunvCMnQClg+M1S7o2Mw26rj2hi+4BezcPOPfoC21ENGqzMwAA+qICaHz9oQ2PgrZLNDS+AdAXFQAASuJ2wTGkCxwDQ8z3gq3IJ7v3o7S6VnQMi8WSNqPP39sMo9G6jiaUZ5RDvS4H/bx8REchG5K/6SfoorpD2yX6qq85Boeh8uwJGGqrIUlGVJw5DqmxEU5hEa0uzzE4DNWpydAXXyzeurxs1GakQhfZHQCg8fGHvrgQDeWlaCgrgb64EGoff+hLilB+4jC8x042zwu1QuV19Vi6a5/oGBaLx6TN5PftZ/HWoh9FxzAbhVKBwLu7Iq7c/HNhk22rOHMcxb9vQ+gDT0FpZ4+MZZ/AwS+g6Zi0oa4WOau/Rk1KIqBUQmmvRsCd86CN6NrqMiXJiKIdmy4ec1YqAKMEr7GT4TlqfNNjyo7sQ8mB3wAAHsNGw23QcGR+/RnchowEjEYU7d4ChUoFn0kz4BTa+h8EBKgUCvz8yL3o4uUhOorF4aWlzMDQaMCX/94mOoZZSUYJWSsTEHtrJPYpStBoNIqORFaoobwUBb+uRdDch6C0a3lq1aKdm2Gsq0XQ3IegctKiKuEMclYtR8iCR6HxDWjxOZVnT6Li9DH433EPNN6+qMvLQcGWdbBzdoVrv8EAALdBw+E2aHjTc8pPHIZSo4FjUBhSP/4nQh94Co0VZchZvQJdnngZSjt+nLbGIEn4eNd+vH/nVNFRLA7fVWaw7ZcTyM0uFR2jU6RvOI/BMUE4F9SI8jrLHyBH8lKXmwVDdRXS//P+n3dKRtSmX0DpoTiEP/o8yg7vRdjfnoPG5+Kpgg5+gajNuIDSw3Hwm3Zni8st3PYzPEaMhUuv/gAAjW8AGstLUbJ3R1NJX66xpgrFv21B8IJHUZedDrWnd9M/GA1oKC5o9Q8Cumjz2SQsHDUE3fy8RUexKCxpE2tsMOC7/9nWTDA5+7MQ3sUdxcNdkFleIToOWRFteBTC/vZss/vy1n8PtZcPPEaMhdSgv3in4oqpYZRK4BpH8owN+qufo1CgtaN/hVvWw33YaNi7uKEuOwPSZXuOJKOx1efRnyQAS3fuw2d3TxcdxaJw4JiJbfvlBPJsZCv6cqUXSqHdWIBenvwrmUxHqXGAxse/2T+FvRoqRydofPyh9vKFvYcX8n9ZhdrsdOhLilCybzdqUpKg69araTmZX3+G0kN//vGsi+6Jkt+3oyrpHBrKSlAZfwqlB36D82XPuaQ6JRH64kK4DRkBAHAIDIG+KB9VyfEoO7ofCoXy4hY1XdeupAs4mZUrOoZF4Za0CV3cirbdS+HVltZBuTIFw++Oxr5SDigj81OoVAi6+wEU7vgF2d99CaNeD7WHJ/xm3AVdVI+mx+lLimCoqW667Tv5NhTt2oz8TT/BUF158Vj0wBh4jb652fKNDXrkb16DgJn3QqG4uE1j7+IGn8m3I2/991DY2cFvxl1Q2qs75wVbgQ93xOGreTNFx7AYHN1tQpvWHMHSt38WHUMWQm+PRlxjIQx8exHRFZbNm4lh4cGiY1gE7u42kcYGA763sWPR15K+JgnDSnXQabiFQUTNfbgjTnQEi8GSNpEtG44hP7dMdAxZyfo9E13PGBHg7Cw6ChHJyImsXBxMzRQdwyKwpE2goaGRW9GtKEooguuWYnT39BQdhYhk5Mu4I6IjWASWtAls3XAcBXnlomPIVk1xDfTfpmGoJ6e8JKKL9pxPQ2K+5U3h29lY0h0kSRLWfLNfdAzZa9QbkLcsAbEOPlBeeX4qEdmk/+3j1vT1sKQ76HBcMrLSi0XHsBjpq5IwvNoFTvYtX+KRiGzHptOJyCuvFB1D1ljSHbTuuwOiI1iczB3p6JEE+Oq0oqMQkUANRiOWHTgmOoassaQ7ICO1EEcPpIiOYZEKzxTCa1c5oj04Kw6RLVt19Awqannd/9awpDtg/fcHRUewaFV5VTD8mIHBnr6ioxCRINV6Pb4/ckp0DNliSd+gqspabN94UnQMi9dY24iCZYkYpfUDh5MR2abvj5yC0cirE7aEJX2DNq89hrpavegYViPj+wSMrPeAA+fkJbI5OeWV2HM+VXQMWWJJ3wCDwYifVx0SHcPqZGy9gD7pdvB0chIdhYg62Q9HTouOIEss6Rtw4LdE5OeUiY5hlfKP5SFgbxUi3N1FRyGiTrQnORW5PB3rKizpG7D+Bw4YM6eK7AooVmdhAAeUEdkMgyRh1TFuTV+JJd1OeTmlOHU0TXQMq9dQ04Di5UkY6cJLiRLZip+OnYXBaBQdQ1ZY0u20c9MpcAruTiJJyPwmAbFGT9ir+FYlsnb5lVXYlXhBdAxZ4SdfO+3YxNOuOlv6xhQMzHaAu6OD6ChEZGY/HOUu78uxpNsh4XQWr9MtSO7hHIQcrkOoq6voKERkRnEp6civqBIdQzZY0u2wfeMJ0RFsWllqGTQb8tDX01t0FCIyE6Mk4dezSaJjyAZLuo0aGwz4betZ0TFsXn1FPcpXpGCEGweUEVmrX04niI4gGyzpNjq0NwkV5TWiYxAAyWBE1ooEjFZ5w07JtzCRtTmdk4/04jLRMWSBn3BttJ0DxmQnbV0yhhQ6wUWjER2FiExs05lE0RFkgSXdBpUVtTj0O4+RyFH2vixEnGhAkIuL6ChEZEIbz3CXN8CSbpM9286gocEgOga1ouR8CXSbC9HL00t0FCIykfOFJUjIKxQdQziWdBvE7eJfdHJXW1KL6pUXEOPBAWVE1mIjB5CxpK+ntqaelwG1EMZGI3KWJyBW7QOVgrNTE1m6zTwViyV9PUcPpKBB3yg6BrVD+k9JGFbhDK1aLToKEXVAVlkFkguKRMcQiiV9HQf2cIShJcranYFu8Ub4O+tERyGiDtidlCo6glAs6WswGo04tDdZdAy6QUXniuC+rRTdPDxFRyGiG/QbS5pak3AmG+Wl1aJjUAdUF1aj4bs0DPHkgDIiS3Q8MwfltXWiYwjDkr4G7uq2Do16A/KXJSDWyRccTkZkWQyShD3JaaJjCMOSvoaDLGmrkv5DIkbWusPR3k50FCJqh91JtjvHNEu6FXk5pUhLKRAdg0wsY3sqep1XwkerFR2FiNpo7/k0GIxG0TGEYEm3glvR1qvgVAF8fqtAlLuH6ChE1AbldfU4npkjOoYQLOlWHD2QIjoCmVFlbiWkVZkY5OkrOgoRtcH+C5miIwjBkm6B0WjEmeMZomOQmTXUNqBweRJG6VjURHJ3OD1LdAQhWNItSEnMQ3WV7Q75tymShIzvEhHb6AGNnUp0GiJqxamsPOgbbW+iI5Z0C04fSxMdgTpZ+uYL6JehhqeTo+goRNSCusZGnM7OEx2j07GkW3CSE2rYpLyjuQjcV4NwNzfRUYioBba4y5slfQVJknD2BI9H26ryzHLYr8tBPy8f0VGI6AqH07NFR+h0LOkrZKYVobK8VnQMEqi+Uo+y5ckY4cpLiRLJyfHMHDQabOt8aZb0FbgVTQAgGSVkrUxALLxgr+KvCZEc1OgbcC7Xti4yxU+fK5w7ZZvn4lHL0n8+j0F5jnB1cBAdhYgAHMmwrV3eLOkrnDvJLWlqLudANsKP1CHE1VV0FCKbdzYnX3SETsWSvkxlRS2y0otFxyAZKk0tg8OGPPT29BYdhcimcXe3DUtNtq2/0Kh96ivqUbkiBcPdOaCMSJT0kjLU6BtEx+g0LOnLpCbb3ony1D6SwYjsrxMw2s4bdkr++hB1NqMkISHPdram+SlzmdTztvODp45JW5uMIcVaOGvUoqMQ2ZxzuYWiI3QalvRl0s5zdze1XfbeTESeMiDQxVl0FCKbYkvHpVnSf5AkCWkptvODJ9MoSSqG869F6OHpJToKkc1gSdugvOxS1NboRccgC1RbXIu6b1IxzIMDyog6Q0phsc3MiMWS/gNHdlNHGBoMyF2egFiND5QKheg4RFatwWhESqFtnC7Lkv5DKo9Hkwmkr07C8EoXaNX2oqMQWbXU4lLREToFS/oPHNlNppK5Kx3dEwA/nU50FCKrlVrEkrYpHNlNplR4thAeO0vR1cNDdBQiq8QtaRtiNBqRk1kiOgZZmer8ajR+n4HBnhxQRmRqqUW28ZnNkgZQXFgJg43NUUqdo7G+EQXLEjDKyRccTkZkOpml5aIjdAqWNICCPNv4YZM4GT8kYmS9Oxzs7URHIbIKFXX1KKupEx3D7FjSAApZ0tQJMramos8FO3hpnURHIbIKmaVloiOYHUsaQH5umegIZCPyT+TBb08lIt3dRUchsni2sMubJQ1uSVPnqsypBFZnYYCnr+goRBYtp6xCdASzY0mDx6Sp8zXUNKB4eRJGunDkN9GNKqyqER3B7FjSYEmTIJKEzG8SEGvwhFqlEp2GyOIUVlWLjmB2LGkABbksaRInfVMK+mdp4O7oKDoKkUUpYklbv+qqOlRXWf8wfpK3vCM5CDlYizA3N9FRiCxGEXd3W7/CfOsfeECWoSy9DOr1uejr6SM6CpFFKKzklrTVq6yoFR2BqEl9RT3Kv07GCDcOKCO6nsr6etQ3NIqOYVY2X9LVldzVTfIiGSVkrUhArMILdkqb/xUluiZrHzxm858APB5NcpW+4TwGFzjCxUEjOgqRbLGkrRxLmuQsZ382uhzTI9jFRXQUIlkqr7Xuz3CbL+kq7u4mmStNKYV2UwF6eXqLjkIkOzX6BtERzMrmS7qmql50BKLrqi2tQ/XKFMS4c0AZ0eVY0laOW9JkKYyNRuR8nYBYe2+oFJydmghgSVs9HpMmS5O+JhnDypyh06hFRyESjiVt5aq5u5ssUNaeDHQ9Y0SAs050FCKhavR60RHMiiXN3d1koYoSiuC2tQTdPT1FRyEShlvSVq6u1rr/CiPrVl1UA/23aRjqwQFlZJtY0lbOKEmiIxB1SKPegLzlCYh19IWSA8rIxnB3NxFZhPQfEzG82hWO9naioxB1GoPRuje0WNLW/fMlG5O5Iw29kpXw0WlFRyEiE2BJE1mZgtMF8NlVjmgPD9FRiMzPyo/w2HxJSzwmTVaoMq8Khh8zMMjTV3QUIuoAmy9pImvVWNsI54Q6xHgGQmOnEh2HyCysfEOaJc0NabJmVc52OHcoCxG1OoS6u4qOQ0TtZPMlTWSt/KJ9kJRdBADIzihDzckKDPELFJyKyLQUVn7aIUuaw7vJSjlGuje7rW8wIjEuC4OcfOHq4CAoFRG1B0uayAo5e2lxNquwxa8ln86Dey7Q04fzU5Pls+7taJY07HnhB7JCfgODoG80tPr10pJaZB0oQIxXIOyUNv8xQBbMwd5edASzsvnfTietRnQEIpOys1fhfFn59R8oAecOZqFboysCXV3MH4zIDLRWPmUrS1rHkibrEh4ThtLK2jY/PjO1BI3x1RjkF2DGVETm4aTmlrRV07KkycoU2rW+m7s1dbWNSI7LxhBnf+isfMuErItWbd3vV5svae7uJmsS3DcQaXmlN/z8xBM58C20R1dvLxOmIjIfrYZb0lZNq+OpKGRF/Ds+sUZRYRUKDhUhxjcQKis/B5UsH7ekrRy3pMlaeAS54WxmgUmWZTRKOLcvCz0VHvB11plkmUTmwIFjVo4lTdbCo7cvjCa+zm16chGUyfUY4Odv0uUSmQoHjlk57u4ma+Cg0yA+v8Qsy66p1iMlLgdD3QKs/gORLI+1D3S0+ZLmljRZg5ChIaiu05t1HQlHsxFYpkGkJ+epJvnw0jqJjmBWNl/SWmduSZOFUyiQqW/7edEdUZBbiZKjJYjxC7T6yzGSZfC28jETNl/SHl7W/QMm6xc+JAS5xZWdtj6DQcK5uCz0t/e2+q0YkjdnjQYOVn5pZ5svaR8/zrFLlq3GVcyHVEpCARzSDOjr5ydk/UTezh0/5VDubL6kHRzVcHZ1FB2D6Ib4RXkjMatI2PorK+qQFpeLGI8AaOxUwnKQbfLWsaRtgrcvt6bJMjlGyWMQ17nD2Qiv1iLM3U10FLIhtrAlbd0789vI29cFF5LyRMcwiwt5e1FQloDquiIolXZw0wYjOnActA5/Xvaxpr4ESVnbUFqdCaOxEV4ukegWPAka+2sfr6/TVyA5eweKKs7DYGyAk8YDPUNvhav24kQNafn7kJq/DwAQ7jsCYb4xTc8tq85CfMZmDO32VygV/FvxRug8tTib3fKc0SLkZpVDna/E0CGBOJiXLToO2QBuSdsIa96SLq1KR7D3IAzteh8GRd4DSTLg6Plv0Gi4eLpOo0GPo8nfAFBgUNRcDOm6AEbJgOMp30O6xoUxGhprcSjpKygUSgyIvBvDe/wN0UETYG93cbR8ZU0+zufsRp/wO9An7Hacz9mFytp8AIBRMiI+YxN6hExhQXdAwKAg6BvaP5mGOekbjEiIy8IgRx+4O/LMCTIvW9iS5ickrHvw2MDIvyDQsx90jj5wdvJDr9DpqNOXo6ImFwBQVp2JWn0ZeoVNh7OjL5wdfdErbDoqanJQUpna6nJT8+PgYO+CXmHT4aoNhJPGHV4uEXDSXNz9Wl1fBGdHX3g6h8PTpQt0jj6orisGcHEL210XAldtoPm/AVZKZafC+fIK0TFalXwmH85ZCvT08REdhayYLVyyliUN696SvlKjoR4AYG93cbCc0dgIBQCl4s9BPyqFHRRQoLQqo9XlFJYnwUUbgJMXVmHXqfewP/7/kFV0rOnrOgcfVNcXo1Zfjtr6MtTUl0Dn4I2a+hLkFJ9AZMBN5nmBNiI8JhQlFTWiY1xTeVkNsg7kI8YrEPYqftSQ6YV6uomOYHY8Jg3A289FdIROIUkSErK2wE0bDGfHi1s4btogqJRqJGXvQFTgWEiShOScHZAgQd9Y1eqyautLkVV4BKE+wxDuNxIVNTlIyPwVCoUKgZ59oXP0RlTAWBxNXgkAiAoYC52jN44kr0B04HgUVaQgJfc3KBUqdA2aCA/n0E75HliLYnuj6AhtIwHnDmYhOswd5R5GZMl4658sT5inu+gIZseSBuBtxbu7LxefuQlVdQUYEr2g6T61vRZ9usxEfMYmZBQehAIK+Hn0grOjP3CNa0pJkODiFICowHEAABcnf1TVFiKr6AgCPfsCAIK9ByHYe1DTc7KLT8JOqYarNghx5z7B0K73o76hAqfTfsKono9DqeTbsS2CewfgdAfmjBYhK60Umjw7DB4YgMN5OaLjkBXw0jpZ/XW7AZY0AMDL2wV2dio0NsprEI4pxWduRmF5MgZHz4ODuvmeAy+XCIzq9Rj0jTVQQAl7OwfsPrUEjpqerS5PY+8MnYN3s/u0Dl7IL4tv8fH6xhpcyP0Ng6Pno7w6G04aT2gdLv4zSkZU1xfD2dG34y/UFgTpgPRq0Snarb6uEUlx2RjS1x/xDSWorDfvtcbJutnCVjTAY9IAADt7FQJDPUXHMAtJkhCfuRkFZQkYFDUXTprW39hqOyfY2zmguDIV+sZq+LhGt/pYN20wquuaX0Sjur4YDuqW90okZm1BqM8wOKhdIEGCJP25u1aSjNccSU5/8gh0xTkTzRktSuLJXHgX2KGbt9f1H0zUCls4Hg2wpJuERVjnKNT4zM3ILTmF3mG3wU6lQX1DFeobqmAwNjQ9Jrv4BMqqs/4Y1HUKpy6sRqjPsGbnUh9J/hoZBYeabof6DEV5dTYu5P2OmroS5JacRlbRMYR4D74qQ3FFCqrrihH8x9dcnQJQXVeEwvJkZBUdhQIKaB2s848kU/Po4weD0fL/oCkuqkb+oSLE+ATCTsmPIWo/W9mS5u7uP4RF+uC3raJTmF5W0REAF0v2cj1Db0WgZz8AQHVdEZKzd6DBUAtHtRvC/UYi1GdYs8fX1JdC3/jnaGJXbSD6RcxCcvZOXMjdA0e1O7oFTYS/R+9mzzMYGxCf+Sv6hN8BheLiMW4HtQu6BU/C2fQNUCrt0CtsOlRKzlN8PWonNRIKzDNntAhGo4Rz+7PQI8IThS565Fa0PlCR6EqhHm6iI3QKhcT9jACAfbsT8PrfvxMdg6hV0WOjcCjPsnd1t8bRyR4B/b1xLC9XdBSyEBv+NhfRvtZ/yIT7mf4QHmmdu7vJSigUyGqsE53CbGprGpASl4Ohrv7QqrlXha7NXqlEGI9J2xa/QHc4OFr/cH6yTOGDg5FTZP3nGCccy0FAiQaRnvKYOITkKcLbE2o72zhay5L+g0KhQGgX7+s/kEiAWjfb+QOyIL8SJUdLMMw3EEpF6+fqk+3q4W87ez5Z0pcJ4y5vkiHfSC8kZMlntqvOYDBIiN+Xhb4qT3hrnUTHIZlhSduosEheTIPkxynKdk9Pu5BYCHVqI/r5+omOQjLCkrZR4SxpkhmdhxPO5tjWVvSVqirrkbovF8M8AuBgI8chqXVKhQLd/Wzn0CRL+jKR3fybzuUlkoOAwcGymzNalPjD2QitckKYu5voKCRQuKc7HG3oDACW9GWcXRwRHGb9592RZVDZqZBSYf0jutsjL7scVSfLMdSPc5HbKlva1Q2wpK/SvU+Q6AhEAICwYaEoLpf3nNEiNDQYkRCXhYEOPnB3chQdhzpZzwDbOixp0SU9f/58zJgxw6TL7NEn2KTLI7pRpRpeDPBazp/Nh3OmhF4+trVlZesGBAeIjtCpOrWkFy9ejH79+nXmKtutO0uaZCCotz8u5FrPdbrNpbysFpkH8hHjFQh7lUVvc1AbOKntubtbDhoaGq7/IDMJCfeGsyt3oZFYyiBn0REshwScO5iF6HoXBLu1PFUqWYcBwQGws7E/xtr1aseMGYPHH38czz33HDw8PODn54fFixc3fb2srAz3338/vL294eLigrFjx+LkyZMAgGXLluH111/HyZMnoVAooFAosGzZMgAXr/b12Wef4dZbb4VWq8Xbb78Ng8GAv/71rwgPD4ejoyO6du2KpUuXmuyFt0ahUKBXv1Czr4eoNe4Brjhr4XNGi5CVXor6M5UY7Gdbu0NtyaBQ2xsz1O4/SZYvXw6tVouDBw/i3XffxRtvvIFt27YBAO68804UFBRg8+bNOHr0KAYMGIBx48ahpKQEs2fPxt///nf07NkTubm5yM3NxezZs5uWu3jxYtx22204ffo07rvvPhiNRgQFBWHVqlU4d+4cXn31Vbz44ov48ccfTffqW9FnIEuaxPHq628Vc0aLUF9vQFJcNgZrfeHioBEdh0xsSJjtjepv95UB+vTpg9deew0AEBUVhY8//hg7duyAo6MjDh06hIKCAmg0F3853nvvPaxbtw6rV6/GwoULodPpYGdnBz+/q68edPfdd2PBggXN7nv99deb/j88PBz79+/Hjz/+iFmzZrU3drv0HhBm1uUTtUbtaI+EQh6L7qikU3nw8HRCYJQX4guLRMchE3Cws0OvANu78twNlfTl/P39UVBQgJMnT6Kqqgqens0vYVhbW4uUlJTrLnfQoEFX3ffJJ5/gf//7HzIyMlBbWwu9Xt8pA8+6RPvBSatBTXW92ddFdLnQmFAczrPtK4yZSmlxDcpKahEzLBCHi3LRaDSKjkQd0DfIH2o7legYna7dJW1v3/xKLwqFAkajEVVVVfD398fu3buveo6bm9t1l6vVapvd/v777/HMM89gyZIliImJgbOzM/71r3/h4MGD7Y3cbiqVEr0HhOLg70lmXxdRE4UCOY38w9CUJEnCuf1Z6B7hiSKXBuRWVIqORDdosA3u6gZuoKRbM2DAAOTl5cHOzg5hYWEtPkatVsNgaNslDuPi4jB8+HA8/PDDTfe1ZYvcVAaPiGJJU6cKGxSEEzYwZ7QIGSnFcHC0x8CB/jiamys6Dt2AYeG2eXqsycayjx8/HjExMZgxYwa2bt2KtLQ07Nu3Dy+99BKOHDkCAAgLC0NqaipOnDiBoqIi1Ne3vtUQFRWFI0eOYMuWLUhKSsIrr7yCw4cPmyrudQ0d1bXT1kUEAPUeHOhkTnW1DTi/NwdDXfygtaFrP1sDV0cH9Lexi5hcYrKSVigU2LRpE2JjY7FgwQJER0djzpw5SE9Ph6/vxcu43XHHHZg0aRJuuukmeHt747vvvmt1eQ8++CBuv/12zJ49G0OHDkVxcXGzrWpz8/FzRXiUbV1+jsTxifBCfCaPRXeGhOO58C/RIMrLdqcAtTQjI0KhUtrW+dGXKCRJ4rkerfjqk+34/n+/i45BNqDLlK44lpYnOoZNUaoU6DY0CAcLsmHkx6Cs/ev2ybilTzfRMYSwzT9N2oi7vKkzOLk54mwOTxPqbEaDhHP7MtFH6Qlvnfb6TyAhVAoFYqPCRMcQhiV9Dd16BcLVnb+8ZF5BQ4JRr28UHcNmpSYVwv5CA/q1cP0GEq9/cABcHR1ExxCGJX0NSqUSg4dHio5BVkypUuJCZZXoGDavurIeqXG5GOYeAAd7k530QiYwJjpcdAShWNLXwV3eZE7hMWEoKq8WHYP+EH8kG6GVTgj3cBcdhf4wJrqL6AhCsaSvY2BMBOxs8Co31Dk4Z7T85GWXo+J4GYb5BUIhOoyNC3Z3RaSPbY/CZ0lfh1bngN6ccIPMILAn54yWq8ZGI+LjsjBA4wMPJ05dK8qkntGiIwjHkm6D0RN6iY5AVkgVwjmj5e78uXxoMyT09uU1E0SY1ouHG1nSbRA7vifUGg4mIdNx83fB2SxevMQSVJTXImN/HmI8A6FW8dBXZ4n09kBXP2/RMYRjSbeB1tkBQ0dytwuZjndffxgMnJXJYkjAuUNZiKjTIdjNVXQamzC1l21evORKLOk2Gje1r+gIZCXUDvZIKCoVHYNuQE5GGerOVGKIn21eR7ozTe3NXd0AS7rNBg+Pgourk+gYZAVCY0JRWcMpKS2Vvt6AxLhsDHbyhauD7V5kw5z6BPohxMNNdAxZYEm3kZ29CqNv7ik6Blk6hQI5Rr3oFGQCSafz4J6rQA8fHjc1takcMNaEJd0OY6dwlzd1TNjAIGQXlouOQSZSWlKDnAOFiPEOhJ2NztJkakqFApN7cQzQJXxXtUOPPsHwD/IQHYMsmN6Tc0ZbG0mScO5AFrob3BDgwtPqOmpERCh8nHWiY8gGS7qdxk3pIzoCWSjvcE/E87Qrq5VxoRiGhFoM8vMXHcWizRnEz9jLsaTbaSxLmm6QS3cvcNpi61ZX24DkuBwMdfGDTqMWHcfi+DrrbH5CjSuxpNspMNgT/Yfa9gXfqf2cXB1xLrdYdAzqJAnHc+FTaI9oL9u+7nR73TGgJ1Q8tt8Mvxs3YPrsoaIjkIUJGhKM2voG0TGoExUXVqHwSDGG+QZCpeBUHdejUihw54DeomPIDkv6BgwdFQ3/QE5lR22jVClxoZpzRtsio0FC/L4s9FJ6wEenFR1H1mKjwuHvyoF3V2JJ3wClUolbZg0RHYMsRPiwUBSVcc5oW5aWVAS783r09/MTHUW2Zg/iVnRLWNI3aOL0/nBw5MAQur4yznRIAKqr9bgQl4th7gFwtLcXHUdWAlydERvJAWMtYUnfIJ2zI0/HousK7OGHlBzOGU1/ij+SjeAKB3Tx5CGzS+YM6gOlksftW8KS7oDpcziAjK7NLpQzJtHV8nMqUH6sDMN8A2Hr1aRVq3lu9DWwpDsgtIsP+g3h6VjUMldfZ5zNKhAdg2SqsdGI+H1Z6K/2hqeT7R4TuXNgL7g4cqKS1rCkO2gGt6apFT79A9DIOaPpOlLiC+CUbkQfX1/RUTqdvVKJecMGiI4hayzpDho6KprX86arqB3skVRcJjoGWYiKijqk78tDjGcANHYq0XE6zZReXXna1XWwpDtIqVRizoKRomOQzIQOC0V5dZ3oGGRhzh3KRkStDqHutjGW4a8jBomOIHssaRMYP7Uf/HhxE7pMrsQ5o+nGZGeUoeZkBYb6B4qOYlaxkWGI9vUSHUP2WNImYGevwpwFo0THIJkIHRiELM4ZTR2gbzAiYW8WBjn5wtXBOgdV3cet6DZhSZvIhGn94BvgJjoGyUCDl+2O1CXTSj6dB/dcoKePt+goJtUvyB/DwoNFx7AILGkT4dY0AYB3mAfiedoVmVBpSS2yDhQgxisQdlYyQ9STY4eLjmAxrOMnLhM339Ifvv5uomOQQC7dvTlnNJmeBJw7mIVuja4IdHURnaZDhoUHY1iXENExLAZL2oTs7FWYcx+3pm2Vk4sDzuVxzmgyn8zUEjTGV2OQX4DoKDfsybEjREewKCxpE+PWtO0KGhrCOaPJ7OpqG5Ecl40hzv7QaSxrkp8x0eHoF+wvOoZFYUmbGLembZNCpURaDaejpM6TeCIHvoX26OptGacxKcCt6BvBkjaDm2/pj4BgXoXMloQPDUVBaZXoGGRjigqrUHCoCDE+gVAp5D1Vx6Se0ejmZ12j1DsDS9oM7OxVeODJiaJjUCeqcJL3ByRZL6NRwrn9Weip8ICvs050nBapFAo8dlOM6BgWiSVtJsPHdOMMWTYioLsvzudwwBiJlZ5cBGVyPQb4ye+Y7x0DeqGLF/cu3giWtBn97e+ToFTxW2zt1GFuoiMQAQBqqvVIicvBULcAOKntRccBALg4aPAUj0XfMDaIGYVF+mLyDE7DZs1cfJxxNpsXLyF5STiajcAyDSI9xW+9PjpmGNy1vArfjWJJm9m8v42Fztk6r71LgO+AADQ0cs5okp+C3EqUHC3BMN9AiBoxEentgbsH9xO0duvAkjYzV3ct/vLAaNExyAzsHeyQVFImOgZRqwwGCfH7stDf3hteWqdOX/8Lk8bAjof8OoTfvU5w66yhCAr1FB2DTCxsWCjKqzhnNMlfSkIBHNIM6Ovn12nrHNc1AiMiQjttfdaKJd0JeEqWdcpHo+gIRG1WWVGHtLhcDPMIgMZOZdZ1qVUqPD8x1qzrsBUs6U4yLLYrBo+IEh2DTCR0QBAyCspExyBqt/jD2Qiv1iLM3c1s65gfMwDBHuZbvi1hSXeix16YBkcny7rWLrXM4MPRqmS5crPKUX2yHEP9Ak2+7FAPNzw8epjJl2urWNKdyNffDfc9Nl50DOogrxB3nMssFB2DqEP0DUYkxGVhkKMv3BxNcwaKAsAbt4yHg72dSZZHLOlOd8udQ9CrPwdTWDLXnj4wctJoshLJZ/Lgmq1ATx+fDi/rzoG9MTQ82ASp6BKWdCdTKBR46pVbodbwL01L5OjMOaPJ+pSV1iDrQD5ivAJhf4OnTPk66/DcBM4AaGoKSeImgQg/Lt+LL/+9TXQMaqfoCdE4lJ0vOoZJ5ZzZgdKM06itKIBSZQ+ddyiC+0+Do+ufW1YFyftRnHoc1aVZMDbUY8Cst2Cnvv5xeX1NOTKP/YKynAQYDXo4OHshPGYOdJ4Xt7Zyz+1C7tndAAD/njfBv8eYpudWFaUj7dAa9Jz0OBRK845Gpj8Fhbmj3MOIrPKKdj3vs7um46aunK/A1LglLcgd9wxHdI8A0TGoHax1zujK/BT4dB2OHpMeR7fxD0IyGpG48/9gaKxveoyxsQGuAV0R0HNcm5fbWF+Dc1s+gkKpQtexD6DPLc8hZMCtTeVeU5qD7JNbEDnqHkSM/AuyTm5GTWkuAEAyGpB2cDXChtzBgu5kWWml0J+rxmC/tn8+TenVlQVtJixpQVQqJZ5+dQbszHy+IplO+JAQq5wzuuu4hfCOGAInNz84uQegy/A50FeXoro4q+kxft1jEdBrHHRebR9PkXtuJ9RObugyfA50XiHQ6DzhGtAVDs5eAIDaigI4uvvDxS8Krv7RcHILQF1FwR/P3Q1nnwjovEJM+2KpTerrGpEUl40hOj84a659Roq7kyNenjymc4LZIJa0QOFRvphzH4/hWIoqnW38QWVouHgVNTtNxy4jWZp1DlrPYCTvWY5jq17DmY1LUJB8oOnrTm7+qKsoRH11KeqrSlBXWQhHNz/UVRahMOUQgvpN6tD6qeMST+bCu8AO3by9Wn3MK1NugoeAS47aCo5eEuyu+2Kxb3cCLiTliY5C1xDQ1RfnsotExzA7STIi/cg66LzD4OTWsXmJ6yuLUVC5D37dRyOg1zhUF2ci/chaKJQqeEcMhqOrL4L7TUHi9v8AAIL7TYGjqy8Stn+OkAHTUJ6TiOxTW6FQKhEyaAZcfCNM8RKpnYqLqqEsqUHM0EAcKsyB4bJhTLf26YYpvboKTGf9uCUtmJ29Ci/+8044OPIiJ3Km7uImOkKnSD+0BrVleYgcOdcES5Og9QhEcP8p0HoEwScqBj6Rw1CQvL/pET7Rw9Fn+vPoM/15+EQPR2HKYajsNdB5hSH1wI+IGj0fIQOnI2XvShgNvAyrKEajhHP7s9ALHvBz1gEAAt1c8OqUsYKTWT+WtAwEh3nh0eenio5BrXDx1tnEnNFph9agLPscuk/4G9Ratw4vz97RBY6uvs3uc3D1hb66tMXHN9RVIef0VoQOug1VRelwcPGGg4s3XPwiIRkNqKvgBWRESztfBEVyPQb5B+Dd2yZB56ARHcnqsaRlYsK0fhg/ta/oGNQC34GBVj1ntCRJSDu0BqWZp9Ft/N+g0ZlmxjaddxhqryjWuopCaLTuLT4+4+gG+HaLhVrrBkmSIBkNl2U0QpKs92dgSWqq9RjjHYKBoaa/pChdjSUtI4+9MA1Boa0P0KDOZ6e2Q3JJuegYZpV+eA2KU48iYuQ9UNproK+tgL62AsbGhqbH6GsrUF2SjbrKi8fla8tyUV2Sjcb6mqbHJGz/DPmJe5tu+3WLRXVROnLObEddZRGKUo+hMPkAfLqOuCpDeW4i6ioK4fvH13SewaitKEBZdjwKkvdDoVDA0aXjV8SijhvYPRj3zeC1uTsLL2YiMylJeXhy/hfQ1/P4mxxEjo7AkULrHjB2aOXfW7w/PGY2vCOGAACyTm5Bzumt13zMibVvwavLYAT1/XNa1tKsc8g6sRF1FUXQ6Dzg1300fKKaf8AbGxtwZuMSRIyaC63Hn1tnBckHkH3yVyhUdggbfDvcgnp0+LVSx7i7OGHl2/fAy00nOorNYEnL0M8/HsLH72wUHYMAuN4UivT8MtExiIRTKIAPn70dw3qHiY5iU7i7W4ZumTUEo8Zxq0G0kH6BLGiiP8ydOpgFLQBLWqaeemU6fAPcRMewaUY/XqCBCAD6RAXgwZlXjyUg82NJy5TW2QGvvDsbGo296Cg2yTPIjXNGEwHwdNXirUemwu4GZ8eijuF3XcaiugfgqVeni45hk9x6+3LOaLJ5Dmo7LHl6Onw9nUVHsVksaZm7aVJvzJo3UnQMm+Kg0yA+n3NGk21TKhR4429T0L2Ln+goNo0lbQEWPDoOQ0ZGi45hM4KHhaKmruH6DySyYo/OGYXRgyJFx7B5LGkLoFQq8fzbdyCki7foKFZPoVQgo67m+g8ksmJ3jOuLv0wZJDoGgSVtMbQ6B7z54V/g6q4VHcWqhQ8JRX5JpegYRMLE9AnD3++9SXQM+gNL2oL4Bbpj8ft3Qa3hDKPmUuVsG3NGE7UkMtgLbz86DSolq0Eu+JOwMD36BOPpV2eIjmGV/KJ9kGQDc0YTtcTLTYv3/34btJw2V1ZY0hbopkm9Mf+RcaJjWB3HyJZnZyKydo4aeyz5+wyeaiVDLGkLddd9sZg5d7joGFbD2UuLs1m8eAnZHqVCgTcenoJuYb7XfzB1Opa0BXvgyYmYNGOA6BhWwW9gEPSNhus/kMjKPH5XLGIHRIiOQa1gSVu4J166BbETeoqOYdHs7FU4X2bdc0YTtWTm+L64a/JA0THoGljSFk6pVGLRm3dg8Igo0VEsVlhMGEora0XHIOpU44ZE4+m5PNVK7ljSVsDOXoVX3p2NXv1DRUexSEUq7uYm23JzTFe8+cgUnmplARSSxFkErEV1VR2ee3AZzifkio5iMYL7BuJ0Q5XoGESdZvKI7nhl4UQWtIXgT8mKaHUOePvjuQgO8xIdxXL48wpuZDumxfbEqwsnsaAtCLekrVBRQQUWPbQcWem8MMe1eAS5Ic0VnJKSbML0Mb3xwn3joVAoREehduCfU1bIy8cFS/67AF2iOcXctXhwzmiyEXeM68uCtlDckrZilRW1ePmxlUg4kyU6iuw46DSojHZBdZ1edBQis5p1c3/8naO4LRa3pK2Ys4sj/t9n96LPwDDRUWQnZGgIC5qs3t2TB7KgLRxL2so5Omnw1r/vwRCeR91EoVQgU8/zosm63TttMJ64e7ToGNRBLGkboHGwx2tL7sKocT1ER5GFsMEhyC3mnNFkvRZMH4pHZo8SHYNMgCVtI+zsVXjhn3diwrR+oqMIV+PK+bjJej1wWwwemjlCdAwyEQ4cszGSJOGzf23G+h8Oio4ihF+UNxLseSyarI9KqcBjd43GXZM46Y414Za0jVEoFHj4uSn42zOToVTZ3o/fMcpDdAQik9M5abDk7zNY0FaIW9I27NDeJPzzxdWoqa4XHaVT6Dy1KAjSQN/Aa3WT9QjydcOSp2cgLIB/gFoj29uUoiZDRkbj/S//Cl9/N9FROkXAoCAWNFmVwT1D8L/Fd7GgrRi3pAmlxVVY/PR3Vn3REzt7FYwDfVBSUSM6CpFJ3DGuL56eexPsbPCwlS1hSRMAQF/fgPcWr8NvW8+IjmIWUbFdcLioWHQMog5TqZR4+p4xmDm+n+go1Al4LgoBANQae7zwj5kIDPHEt//9TXQckyuyM4qOQNRhLjoH/PPRaRjUM0R0FOok3JKmq+zcfAofvrUB9XUNoqOYRHDvAJw2VIuOQdQhYQEeeO/p6Qj2dRcdhToRD2bQVcZO7oOPVixESBdv0VFMI0gnOgFRh8T0CcOXr93FgrZB3JKmVtXV6vHx/9uIbb+cEB3lhnkEuiLdXQGDkW9zskxzJg7A43fHQqXkNpUtYknTdW3dcBwfv7PRInd/R07uiiPpeaJjELWbzkmD5+aNxcTh3UVHIYFY0tQmaSkFeHvRj8hILRQdpc00WjWqu7miqpaXASXLMqhHMF5dOAm+ns6io5BgLGlqs7paPT765y/YvvGk6ChtEj0uCodyC0THIGozjb0Kf7tzJOZMGgCFQiE6DskAS5rabcv6Y/jk3U3y3v2tUMBpVBByiipEJyFqk+hQb7z+0GR0CfISHYVkhCVNNyQ7oxhLFq/D2ZMZoqO0KHxICI5XlYuOQXRdSoUCc6cNxsLbY2BnpxIdh2SGJU03zGg0Yt33B7Hskx2y26r2uzkSCVmWc/ycbFOgjytee3AS+kYHio5CMsWSpg7LzizG+6+vx5nj6aKjAAB8I72QqJbXHw1EV7p1dC88dc8YODmoRUchGWNJk0lIkoT13x/E/z7eLnyrOnxyVxznaVckU+4uTnjxrxMQOyBCdBSyACxpMqmczBJ88OZ6nDqaJmT9Og8nFAQ7cEpKkqVRAyLw4n0T4OHqJDoKWQiWNJmcJEnY8OMh/O+j7ajr5HOUoyZG43Bmfqeuk+h6fD2d8ejsUbg5ppvoKGRhWNJkNkUFFfjv0q3Y9evpTlmfyk4FDPJBMeeMJplwUNth7tTBuGfaIDio7UXHIQvEkiazO3siA5/+axPOJ+SadT0RI7vgaAnnjCZ5mBjTDY/MGQVfD141jG4cS5o6hdFoxK/rjmHZpztRXmqeaSM9xoXjQm6JWZZN1Fbdw33x9D03oU90gOgoZAVY0tSpqiprsfL/dmPDD4dgMBhNttyg3v44Y+BubhLH01WLh2eNxNRRPXhJTzIZljQJkX6hAJ+/9yuOHUwxyfJCJkfjVDoHjFHnU9urMGfiAMy/dSi0jjznmUyLJU1CHdiTiK8/34mUxBs/r9k9wBUZHpwzmjrfmEGRePyuWAT6uImOQlaKJU3CSZKEuF3xWPmf3Ug93/6tYc4ZTZ0tMtgLT/1lDAb1DBEdhawcS5pkQ5Ik7Nl2Fiu/2I2MC2277rba0R61Pd1RWVNv5nREQI8uvrh32hCMHhgJpZLHncn8WNIkO0ajEbu3nME3X+xGVvq1T6mKGhuJw3mcSIPMa0ivUMybNphbztTpWNIkWwaDETs3n8I3X/yG3KwWTq1SKKAdFYRszhlNZqBUKDB2SBTmThuMbmG+ouOQjWJJk+wZGg34betZ/PTNvmYXRAkbHIwT1SxoMi21vQpTRvbAPVMHIdjXXXQcsnEsabIoJ4+k4qeV+3BobzL8bo5AfCZ3dZNpaB3VuH1sH9w1aSA83bSi4xABYEmThcpMK8IPe05h4+/nUFPXuZN4kHXxcHXC7JsHYOb4vtA5aUTHIWqGJU0WrbpWj017z2L19pNIy+ElQantokK8cfvYPpg6qic0ajvRcYhaxJImq3H4bAZWbTuOvccv8MIm1CJPVy0mDu+GySN6IDrUW3QcoutiSZPVySuqwC97zmLbwURuXRM09iqMGhCJKSO7Y1ifMKiUStGRiNqMJU1W7XxmIbYfSMK2g4nIyi8THYc6Ud/oQEwZ2R3jh3blsWayWCxpshmJaQXYfjAR2w8mIaewXHQcMoNAH1dMHtEdU0b24PW0ySqwpMkmnbuQh20HErHjUBLyiytFx6EO0DlpMG5IFKaM7Il+XQNFxyEyKZY02TRJknDmfC62HUzEzkNJKCytFh2J2iDYzw3D+4ZjeN9wDOgWBLU9R2eTdWJJE/1BkiScSMrG78dScDwhC4lpBRwlLhNqexX6dwtqKuYQP14JjGwDS5qoFdW1epxKzsax+CwcT8hCfGo+Gg1G0bFsgkJx8TzmQT1CMKhHMAZ2D4aDxl50LKJOx5ImaqO6+gacSs7BsYSLpX3uQh70DQbRsaxGqL87BvUIwcAewRjUPRiuzo6iIxEJx5ImukH1+kacScnF8fgsHEvIwpmUXNTrG0XHsggB3q6ICvFCVIg3okK80aOLH3w8nEXHIpIdljSRiTQ0GpCYVoDUnGKkZZcgPbcEqTklyC0st9lj2xq1HSKCPJvKOCrEB5EhXtA58rxlorZgSROZmb6hEZl5ZUjLLUF6TgnSckqQlluCjNxS1NY3iI5nMt7uusvK+OK/YD83XuGLqANY0kSCSJKE/OLKptJOzylBUVk1yqvqUF5Vi4rqOlRU1QkfrKZ1VMPLTQtPNy283LTwctPBw9Wp6f893bTwdtPCWesgNCeRNWJJE8lcda2+qbTLK+su/reqFhVVdSiv+vN2VY0eSgWgUimhVCqhUiqgVCr+/H+FAirVpfuVUCoVf/6/QtFUxpeK1+uPfxxVTSQOS5qIiEimeLCIiIhIpljSREREMsWSJiIikimWNBFRC3bv3g2FQoGysrJrPi4sLAwffvhh0+28vDxMmDABWq0Wbm5uZs1I1o9TxxARtWD48OHIzc2Fq6srAGDZsmV48sknryrtw4cPQ6vVNt3+4IMPkJubixMnTjQ9l+hGsaSJiFqgVqvh5+d33cd5e3s3u52SkoKBAwciKirKXNHIhnB3NxFZrDFjxuDRRx/Fo48+CldXV3h5eeGVV17BpTNLS0tLce+998Ld3R1OTk6YPHkykpOTm56fnp6OW265Be7u7tBqtejZsyc2bdoEoPnu7t27d2PBggUoLy+HQqGAQqHA4sWLATTf3R0WFoaffvoJX3/9NRQKBebPn9+Z3w6yQtySJiKLtnz5cvz1r3/FoUOHcOTIESxcuBAhISF44IEHMH/+fCQnJ2PDhg1wcXHBokWLMGXKFJw7dw729vZ45JFHoNfrsWfPHmi1Wpw7dw46ne6qdQwfPhwffvghXn31VSQmJgJAi487fPgw7r33Xri4uGDp0qVwdORMXtQxLGkismjBwcH44IMPoFAo0LVrV5w+fRoffPABxowZgw0bNiAuLg7Dhw8HAHzzzTcIDg7GunXrcOeddyIjIwN33HEHevfuDQDo0qVLi+tQq9VwdXWFQqG45i5wb29vaDQaODo6tmlXOdH1cHc3EVm0YcOGQaFQNN2OiYlBcnIyzp07Bzs7OwwdOrTpa56enujatSvi4+MBAI8//jjeeustjBgxAq+99hpOnTrV6fmJroUlTUQ26/7778eFCxcwd+5cnD59GoMGDcJHH30kOhZRE5Y0EVm0gwcPNrt94MABREVFoUePHmhsbGz29eLiYiQmJqJHjx5N9wUHB+Ohhx7CmjVr8Pe//x1ffPFFi+tRq9UwGAzmeRFErWBJE5FFy8jIwNNPP43ExER89913+Oijj/DEE08gKioK06dPxwMPPIC9e/fi5MmTuOeeexAYGIjp06cDAJ588kls2bIFqampOHbsGHbt2oXu3bu3uJ6wsDBUVVVhx44dKCoqQk1NTWe+TLJRLGkismj33nsvamtrMWTIEDzyyCN44oknsHDhQgDAV199hYEDB2LatGmIiYmBJEnYtGkT7O0vTr9pMBjwyCOPoHv37pg0aRKio6Px6aeftrie4cOH46GHHsLs2bPh7e2Nd999t9NeI9kuTlVJRBZrzJgx6NevX7PLchJZE25JExERyRRLmoiISKa4u5uIiEimuCVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDLFkiYiIpIpljQREZFMsaSJiIhkiiVNREQkUyxpIiIimWJJExERyRRLmoiISKZY0kRERDL1/wHNAl6E42MNrwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAIjCAYAAAAZajMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDEUlEQVR4nO3deVxV1f7/8fcBFJnBAXAEU1Mpu44RalmKoTmmppbmUE45l5ZRzmlerRxzyAY1s7pm6S1zzKnBIdMcrpqaF5WrApIC4gAK+/dHP863k6igwNHl6/l4nMdtr732Xp992Mf7ZrP2PjbLsiwBAAAABnBxdgEAAABAXiHcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCTjB69GjZbLYCGevRRx/Vo48+al/euHGjbDablixZUiDjZ5k/f75sNpuOHj1aoOPeDJvNptGjR9uXs6s9NDRUzZs3v+Wxsn4eGzduvOV9OUO3bt0UGhrq7DJuO0ePHpXNZtP8+fOdXQpw1yHcArcoK/hkvYoUKaJSpUopKipK06dP17lz5/JknJMnT2r06NHatWtXnuzvdpUV/LNenp6eCgsL0/Dhw5WSkuLs8pxq7969ateunUJCQlSkSBGVLl1ajRs31owZM/J13Lvl3Luebt26ydvb+5rrbTab+vfvf8vjzJo1i0AM3CI3ZxcAmGLs2LEqX768Ll++rLi4OG3cuFGDBw/W5MmT9fXXX+uBBx6w9x0+fLheffXVXO3/5MmTGjNmjEJDQ1W9evUcb7dmzZpcjZNfnn32WXXs2FHu7u456j979mx5e3srNTVVa9as0fjx47V+/Xr99NNPBXbVO0tua8+NRx55RBcvXlThwoWv22/z5s167LHHVK5cOfXs2VPBwcGKjY3V1q1bNW3aNA0YMCDPa8tyvXPv/fffV2ZmZr6NfacKCQnRxYsXVahQoVxtN2vWLBUvXlzdunXLn8KAuwDhFsgjTZs2Ve3ate3L0dHRWr9+vZo3b66WLVvqwIED8vDwkCS5ubnJzS1/P34XLlyQp6fnDUNTQXF1dZWrq2uO+7dr107FixeXJPXp00dt27bVV199pa1btyoiIiLbbbKOOa/ltvbccHFxUZEiRW7Yb/z48fLz89P27dvl7+/vsC4hISFfasuJ3Ia3u0XWX3HuNPn1GQIKEtMSgHzUsGFDjRgxQseOHdMnn3xib89uzu3atWtVv359+fv7y9vbW5UrV9Zrr70m6c95mXXq1JEkde/e3f4n+6w/Xz766KO6//77tWPHDj3yyCPy9PS0b/v3ObdZMjIy9Nprryk4OFheXl5q2bKlYmNjHfqEhoZmewUpu33OmDFD9913nzw9PRUQEKDatWvr008/ta+/1Tm3DRs2lCTFxMTc8JjT0tI0atQoVaxYUe7u7ipbtqxeeeUVpaWlOewzLS1NL774okqUKCEfHx+1bNlS//vf/64aO6e1L1iwQG5ubnr55ZftbZ9//rlq1aolHx8f+fr6qlq1apo2bZp9fU7n3B45ckT33XffVcFWkgIDA69q++STT1SrVi15eHioaNGi6tix41U/36z3cP/+/Xrsscfk6emp0qVLa9KkSQ71Xe/c+/uc26y5pm+//bZmzpype+65R56ennr88ccVGxsry7L0xhtvqEyZMvLw8FCrVq105syZq+pfuXKlHn74YXl5ecnHx0fNmjXTvn37HPpkTRU4ceKEWrduLW9vb5UoUUJDhw5VRkbGdd/P/JbdnNu4uDh1795dZcqUkbu7u0qWLKlWrVrZz6vQ0FDt27dPmzZtsr/Pf/2c/fe//9VTTz2lokWLytPTUw899JC+/fbbq8Y+duyYWrZsKS8vLwUGBurFF1/U6tWrrzrPrvcZ+ve//61mzZqpVKlScnd3V4UKFfTGG29c9b5m7WPPnj1q0KCBPD09VbFiRfuc/k2bNik8PFweHh6qXLmyvvvuu7x5g4Hr4MotkM+effZZvfbaa1qzZo169uyZbZ99+/apefPmeuCBBzR27Fi5u7vr999/108//SRJqlq1qsaOHauRI0eqV69eevjhhyVJdevWte/jjz/+UNOmTdWxY0d17txZQUFB161r/PjxstlsGjZsmBISEjR16lRFRkZq165d9ivMOfX+++9r4MCBateunQYNGqRLly5pz5492rZtm5555plc7etajhw5IkkqVqyYvS27Y87MzFTLli31448/qlevXqpatar27t2rKVOm6NChQ1q2bJl9+x49euiTTz7RM888o7p162r9+vVq1qzZTdU3d+5c9enTR6+99prGjRsn6c9fWJ5++mk1atRIEydOlCQdOHBAP/30kwYNGpSr/YeEhGjLli36z3/+o/vvv/+6fcePH68RI0aoffv26tGjh06fPq0ZM2bokUce0a+//uoQkM+ePasmTZqoTZs2at++vZYsWaJhw4apWrVqatq0aY7OvewsWrRI6enpGjBggM6cOaNJkyapffv2atiwoTZu3Khhw4bp999/14wZMzR06FB99NFH9m0XLlyorl27KioqShMnTtSFCxc0e/Zs1a9fX7/++qtDmM7IyFBUVJTCw8P19ttv67vvvtM777yjChUq6IUXXsjVe5wTiYmJN71t27ZttW/fPg0YMEChoaFKSEjQ2rVrdfz4cYWGhmrq1KkaMGCAvL299frrr0uS/XMcHx+vunXr6sKFCxo4cKCKFSumBQsWqGXLllqyZImefPJJSdL58+fVsGFDnTp1SoMGDVJwcLA+/fRTbdiwIduarvXvxvz58+Xt7a2XXnpJ3t7eWr9+vUaOHKmUlBS99dZbDvs4e/asmjdvro4dO+qpp57S7Nmz1bFjRy1atEiDBw9Wnz599Mwzz+itt95Su3btFBsbKx8fn5t+H4EbsgDcknnz5lmSrO3bt1+zj5+fn1WjRg378qhRo6y/fvymTJliSbJOnz59zX1s377dkmTNmzfvqnUNGjSwJFlz5szJdl2DBg3syxs2bLAkWaVLl7ZSUlLs7YsXL7YkWdOmTbO3hYSEWF27dr3hPlu1amXdd99916zdsv7vfYqJibluv6z35uDBg9bp06etmJgY67333rPc3d2toKAg6/z589c95oULF1ouLi7WDz/84NA+Z84cS5L1008/WZZlWbt27bIkWX379nXo98wzz1iSrFGjRl239pCQEKtZs2aWZVnWtGnTLJvNZr3xxhsO+xo0aJDl6+trXbly5ZrHm/Xz2LBhw3XflzVr1liurq6Wq6urFRERYb3yyivW6tWrrfT0dId+R48etVxdXa3x48c7tO/du9dyc3NzaM96Dz/++GN7W1pamhUcHGy1bdvW3na9c69r165WSEiIfTkmJsaSZJUoUcJKSkqyt0dHR1uSrH/84x/W5cuX7e1PP/20VbhwYevSpUuWZVnWuXPnLH9/f6tnz54O48TFxVl+fn4O7V27drUkWWPHjnXoW6NGDatWrVpX1Xorssa63qtfv35XvQ9Z79nZs2ctSdZbb7113XHuu+8+h89WlsGDB1uSHM7rc+fOWeXLl7dCQ0OtjIwMy7Is65133rEkWcuWLbP3u3jxolWlSpWrzrPr/btx4cKFq9p69+5teXp62n9Wf93Hp59+am/77bffLEmWi4uLtXXrVnv76tWrr3keAXmJaQlAAfD29r7uUxOyrqT9+9//vumbc9zd3dW9e/cc9+/SpYvD1ZN27dqpZMmSWrFiRa7H9vf31//+9z9t374919teS+XKlVWiRAmVL19evXv3VsWKFfXtt986zAfM7pi/+OILVa1aVVWqVFFiYqL9lTWtIesKVtZxDhw40GH7wYMH56rOSZMmadCgQZo4caKGDx/usM7f31/nz5/X2rVrc7XP7DRu3FhbtmxRy5YttXv3bk2aNElRUVEqXbq0vv76a3u/r776SpmZmWrfvr3D8QcHB6tSpUpXXcHz9vZW586d7cuFCxfWgw8+qP/+97+3VO9TTz0lPz8/+3J4eLgkqXPnzg7zzcPDw5Wenq4TJ05I+vNqd1JSkp5++mmH+l1dXRUeHp7tFcg+ffo4LD/88MO3XH92ihQporVr12b7uhEPDw8VLlxYGzdu1NmzZ3M99ooVK/Tggw+qfv369jZvb2/16tVLR48e1f79+yVJq1atUunSpdWyZUuHuq/1V6Nr/bvx17/enDt3TomJiXr44Yd14cIF/fbbbw59vb291bFjR/ty5cqV5e/vr6pVq9p/7tL/nQP58bMB/oppCUABSE1NzXZeZJYOHTrogw8+UI8ePfTqq6+qUaNGatOmjdq1aycXl5z9Dlq6dOlc3TxWqVIlh2WbzaaKFSve1JzYYcOG6bvvvtODDz6oihUr6vHHH9czzzyjevXq5XpfWb788kv5+vqqUKFCKlOmjCpUqHBVn+yO+fDhwzpw4IBKlCiR7X6zbr46duyYXFxcrtpv5cqVc1zjpk2b9O2332rYsGEO82yz9O3bV4sXL1bTpk1VunRpPf7442rfvr2aNGmS4zH+qk6dOvrqq6+Unp6u3bt3a+nSpZoyZYratWunXbt2KSwsTIcPH5ZlWVf9fLP8/QawMmXKXDX/OyAgQHv27LmpGrOUK1fOYTkr6JYtWzbb9qzAd/jwYUn/N8f673x9fR2WixQpctXPOiAg4IYBMjk5WRcvXrQvFy5cWEWLFr3uNq6uroqMjLxun2txd3fXxIkTNWTIEAUFBemhhx5S8+bN1aVLFwUHB99w+2PHjjkExSxVq1a1r7///vt17NgxVahQ4aqfacWKFbPd77X+3di3b5+GDx+u9evXX/UIvuTkZIfl7M4hPz+/G/6sgfxCuAXy2f/+9z8lJydf8/9cpD+vknz//ffasGGDvv32W61atUr/+te/1LBhQ61ZsyZHd+rndp5sTlzrkVsZGRkONVWtWlUHDx7U8uXLtWrVKn355ZeaNWuWRo4cqTFjxtzU2I888oj9aQnXkt0xZ2Zmqlq1apo8eXK22/z9/3BvxX333aekpCQtXLhQvXv3Vvny5R3WBwYGateuXVq9erVWrlyplStXat68eerSpYsWLFhw0+MWLlxYderUUZ06dXTvvfeqe/fu+uKLLzRq1ChlZmbKZrNp5cqV2Z43f39W67XOLcuybrq+6+33RuNl/eVi4cKF2Ya+vz9l5GafYjFo0CCHn0GDBg3y/Ys0Bg8erBYtWmjZsmVavXq1RowYoQkTJmj9+vWqUaNGvo59Ldl9hpKSktSgQQP5+vpq7NixqlChgooUKaKdO3dq2LBhV/116WZ/1kB+IdwC+WzhwoWSpKioqOv2c3FxUaNGjdSoUSNNnjxZb775pl5//XVt2LBBkZGRef5s16wrZFksy9Lvv//u8DzegIAAJSUlXbXtsWPHdM899zi0eXl5qUOHDurQoYPS09PVpk0bjR8/XtHR0QX6SKQKFSpo9+7datSo0XXfs5CQEGVmZurIkSMOV2sPHjyY47GKFy+uJUuWqH79+mrUqJF+/PFHlSpVyqFP4cKF1aJFC7Vo0UKZmZnq27ev3nvvPY0YMeK6v/DkVNbj506dOiXpz+O3LEvly5fXvffee8v7l679S05+yLqSHhgYeNNXSXPilVdecZiOERAQkG9j/VWFChU0ZMgQDRkyRIcPH1b16tX1zjvv2J+mcq33OiQkJNtzM2uKQEhIiP1/9+/fL8uyHPb1+++/57jGjRs36o8//tBXX32lRx55xN6e9aQS4HbHnFsgH61fv15vvPGGypcvr06dOl2zX3aPQsp6WH7W46u8vLwkKduweTM+/vhjh3nAS5Ys0alTp9S0aVN7W4UKFbR161alp6fb25YvX37VI6X++OMPh+XChQsrLCxMlmXp8uXLeVJvTrVv314nTpzQ+++/f9W6ixcv6vz585JkP87p06c79Jk6dWquxitTpoy+++47Xbx4UY0bN3Z4L/7+vri4uNh/efj7Y8luZMOGDdle8cqaO5wV0Nu0aSNXV1eNGTPmqv6WZV1VU07k9bl3PVFRUfL19dWbb76Z7blz+vTpPBknLCxMkZGR9letWrXyZL/XcuHCBV26dMmhrUKFCvLx8XE4F7y8vLJ9n5944gn9/PPP2rJli73t/Pnzmjt3rkJDQxUWFibpz/fvxIkTDvOwL126lO3n4Vqyrrj+9fxJT0/XrFmzcrwPwJm4cgvkkZUrV+q3337TlStXFB8fr/Xr12vt2rUKCQnR119/fd2rl2PHjtX333+vZs2aKSQkRAkJCZo1a5bKlCljv4GkQoUK8vf315w5c+Tj4yMvLy+Fh4df9afwnCpatKjq16+v7t27Kz4+XlOnTlXFihUdbjzp0aOHlixZoiZNmqh9+/Y6cuSIPvnkk6vmqT7++OMKDg5WvXr1FBQUpAMHDujdd99Vs2bNCvyRP88++6wWL16sPn36aMOGDapXr54yMjL022+/afHixVq9erVq166t6tWr6+mnn9asWbOUnJysunXrat26dbm6wpWlYsWKWrNmjR599FFFRUVp/fr18vX1VY8ePXTmzBk1bNhQZcqU0bFjxzRjxgxVr17dPlcypwYMGKALFy7oySefVJUqVZSenq7NmzfrX//6l0JDQ+03BVWoUEHjxo1TdHS0jh49qtatW8vHx0cxMTFaunSpevXqpaFDh+Zq7Lw+967H19dXs2fP1rPPPquaNWuqY8eOKlGihI4fP65vv/1W9erV07vvvpvn4+a3Q4cOqVGjRmrfvr3CwsLk5uampUuXKj4+3uFmrFq1amn27NkaN26cKlasqMDAQDVs2FCvvvqqPvvsMzVt2lQDBw5U0aJFtWDBAsXExOjLL7+0z83v3bu33n33XT399NMaNGiQSpYsqUWLFtn//cnJVfi6desqICBAXbt21cCBA2Wz2bRw4UKmE+COQbgF8sjIkSMl/d+NKdWqVdPUqVPVvXv3Gwa8li1b6ujRo/roo4+UmJio4sWLq0GDBhozZoz9JoxChQppwYIFio6OVp8+fXTlyhXNmzfvpgPGa6+9pj179mjChAk6d+6cGjVqpFmzZjk8jSAqKkrvvPOOJk+erMGDB6t27dpavny5hgwZ4rCv3r17a9GiRZo8ebJSU1NVpkwZDRw48KqnBxQEFxcXLVu2TFOmTNHHH3+spUuXytPTU/fcc48GDRrk8Kf6jz76SCVKlNCiRYu0bNkyNWzYUN9+++1NzcutVq2aVq5cqcjISLVo0UKrVq1S586dNXfuXM2aNUtJSUkKDg5Whw4dNHr06BzfKJjl7bff1hdffKEVK1Zo7ty5Sk9PV7ly5dS3b18NHz7c4dm1r776qu69915NmTLFPue5bNmyevzxxx3uos+pvD73buSZZ55RqVKl9M9//lNvvfWW0tLSVLp0aT388MO5eiLI7aRs2bJ6+umntW7dOi1cuFBubm6qUqWKFi9erLZt29r7jRw5UseOHdOkSZN07tw5NWjQQA0bNlRQUJA2b96sYcOGacaMGbp06ZIeeOABffPNNw7PZs56Ju2AAQM0bdo0eXt7q0uXLqpbt67atm2boylCxYoVs3/Ohw8froCAAHXu3FmNGjW64fQq4HZgs/hVDAAAo02dOlUvvvii/ve//6l06dLOLgfIV4RbAAAMcvHiRYenIFy6dEk1atRQRkaGDh065MTKgILBtAQAAAzSpk0blStXTtWrV1dycrI++eQT/fbbb1q0aJGzSwMKBOEWAACDREVF6YMPPtCiRYuUkZGhsLAwff755+rQoYOzSwMKBNMSAAAAYAyecwsAAABjEG4BAABgDObc6s/vMj958qR8fHwK9GsmAQAAkDOWZencuXMqVarUdZ8VTriVdPLkyZt6aDsAAAAKVmxsrMqUKXPN9YRbyf7tUbGxsfL19XVyNQAAAPi7lJQUlS1b9obf+km41f9917avry/hFgAA4DZ2oymk3FAGAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMN2cXcLc6fvy4EhMTnV0GUCCKFy+ucuXKObsMAMBdgHDrBMePH1eVylV08dJFZ5cCFAiPIh767eBvBFwAQL4j3DpBYmKiLl66qF5Ve6mUZylnlwPkq5MXTmrugblKTEwk3AIA8h3h1olKeZZSqE+os8sAAAAwBjeUAQAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMp4bbjIwMjRgxQuXLl5eHh4cqVKigN954Q5Zl2ftYlqWRI0eqZMmS8vDwUGRkpA4fPuywnzNnzqhTp07y9fWVv7+/nn/+eaWmphb04QAAAMDJnBpuJ06cqNmzZ+vdd9/VgQMHNHHiRE2aNEkzZsyw95k0aZKmT5+uOXPmaNu2bfLy8lJUVJQuXbpk79OpUyft27dPa9eu1fLly/X999+rV69ezjgkAAAAOJGbMwffvHmzWrVqpWbNmkmSQkND9dlnn+nnn3+W9OdV26lTp2r48OFq1aqVJOnjjz9WUFCQli1bpo4dO+rAgQNatWqVtm/frtq1a0uSZsyYoSeeeEJvv/22SpUq5ZyDAwAAQIFz6pXbunXrat26dTp06JAkaffu3frxxx/VtGlTSVJMTIzi4uIUGRlp38bPz0/h4eHasmWLJGnLli3y9/e3B1tJioyMlIuLi7Zt25btuGlpaUpJSXF4AQAA4M7n1Cu3r776qlJSUlSlShW5uroqIyND48ePV6dOnSRJcXFxkqSgoCCH7YKCguzr4uLiFBgY6LDezc1NRYsWtff5uwkTJmjMmDF5fTgAAABwMqdeuV28eLEWLVqkTz/9VDt37tSCBQv09ttva8GCBfk6bnR0tJKTk+2v2NjYfB0PAAAABcOpV25ffvllvfrqq+rYsaMkqVq1ajp27JgmTJigrl27Kjg4WJIUHx+vkiVL2reLj49X9erVJUnBwcFKSEhw2O+VK1d05swZ+/Z/5+7uLnd393w4IgAAADiTU6/cXrhwQS4ujiW4uroqMzNTklS+fHkFBwdr3bp19vUpKSnatm2bIiIiJEkRERFKSkrSjh077H3Wr1+vzMxMhYeHF8BRAAAA4Hbh1Cu3LVq00Pjx41WuXDndd999+vXXXzV58mQ999xzkiSbzabBgwdr3LhxqlSpksqXL68RI0aoVKlSat26tSSpatWqatKkiXr27Kk5c+bo8uXL6t+/vzp27MiTEgAAAO4yTg23M2bM0IgRI9S3b18lJCSoVKlS6t27t0aOHGnv88orr+j8+fPq1auXkpKSVL9+fa1atUpFihSx91m0aJH69++vRo0aycXFRW3bttX06dOdcUgAAABwIpv1168Du0ulpKTIz89PycnJ8vX1zffxdu7cqVq1aml0rdEK9QnN9/EAZzp67qhG7xitHTt2qGbNms4uBwBwh8ppXnPqnFsAAAAgLxFuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGMPp4fbEiRPq3LmzihUrJg8PD1WrVk2//PKLfb1lWRo5cqRKliwpDw8PRUZG6vDhww77OHPmjDp16iRfX1/5+/vr+eefV2pqakEfCgAAAJzMqeH27NmzqlevngoVKqSVK1dq//79eueddxQQEGDvM2nSJE2fPl1z5szRtm3b5OXlpaioKF26dMnep1OnTtq3b5/Wrl2r5cuX6/vvv1evXr2ccUgAAABwIjdnDj5x4kSVLVtW8+bNs7eVL1/e/t+WZWnq1KkaPny4WrVqJUn6+OOPFRQUpGXLlqljx446cOCAVq1ape3bt6t27dqSpBkzZuiJJ57Q22+/rVKlShXsQQEAAMBpnHrl9uuvv1bt2rX11FNPKTAwUDVq1ND7779vXx8TE6O4uDhFRkba2/z8/BQeHq4tW7ZIkrZs2SJ/f397sJWkyMhIubi4aNu2bdmOm5aWppSUFIcXAAAA7nxODbf//e9/NXv2bFWqVEmrV6/WCy+8oIEDB2rBggWSpLi4OElSUFCQw3ZBQUH2dXFxcQoMDHRY7+bmpqJFi9r7/N2ECRPk5+dnf5UtWzavDw0AAABO4NRwm5mZqZo1a+rNN99UjRo11KtXL/Xs2VNz5szJ13Gjo6OVnJxsf8XGxubreAAAACgYTg23JUuWVFhYmENb1apVdfz4cUlScHCwJCk+Pt6hT3x8vH1dcHCwEhISHNZfuXJFZ86csff5O3d3d/n6+jq8AAAAcOdzaritV6+eDh486NB26NAhhYSESPrz5rLg4GCtW7fOvj4lJUXbtm1TRESEJCkiIkJJSUnasWOHvc/69euVmZmp8PDwAjgKAAAA3C6c+rSEF198UXXr1tWbb76p9u3b6+eff9bcuXM1d+5cSZLNZtPgwYM1btw4VapUSeXLl9eIESNUqlQptW7dWtKfV3qbNGlin85w+fJl9e/fXx07duRJCQAAAHcZp4bbOnXqaOnSpYqOjtbYsWNVvnx5TZ06VZ06dbL3eeWVV3T+/Hn16tVLSUlJql+/vlatWqUiRYrY+yxatEj9+/dXo0aN5OLiorZt22r69OnOOCQAAAA4kVPDrSQ1b95czZs3v+Z6m82msWPHauzYsdfsU7RoUX366af5UR4AAADuIE7/+l0AAAAgrxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYbs4uAMDd4cCBA84uASgQxYsXV7ly5ZxdBnDXItwCyFdJ6UmyyabOnTs7uxSgQHgU8dBvB38j4AJOQrgFkK8uXLkgS5a6hHbRPcXucXY5QL46eeGk5h6Yq8TERMIt4CSEWwAFItgjWKE+oc4uAwBgOG4oAwAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMZwy+0GSUlJ+vnnn5WQkKDMzEyHdV26dMmzwgAAAIDcylW4/eabb9SpUyelpqbK19dXNpvNvs5msxFuAQAA4FS5mpYwZMgQPffcc0pNTVVSUpLOnj1rf505cya/agQAAAByJFfh9sSJExo4cKA8PT3zqx4AAADgpuUq3EZFRemXX37Jr1oAAACAW3LDObdff/21/b+bNWuml19+Wfv371e1atVUqFAhh74tW7bM+woBAACAHLphuG3duvVVbWPHjr2qzWazKSMjI0+KAgAAAG7GDcPt3x/3BQAAANyu+BIHAAAAGCPXX+Jw/vx5bdq0ScePH1d6errDuoEDB+ZZYQAAAEBu5Src/vrrr3riiSd04cIFnT9/XkWLFlViYqI8PT0VGBhIuAUAAIBT5WpawosvvqgWLVro7Nmz8vDw0NatW3Xs2DHVqlVLb7/9dn7VCAAAAORIrsLtrl27NGTIELm4uMjV1VVpaWkqW7asJk2apNdeey2/agQAAAByJFfhtlChQnJx+XOTwMBAHT9+XJLk5+en2NjYvK8OAAAAyIVczbmtUaOGtm/frkqVKqlBgwYaOXKkEhMTtXDhQt1///35VSMAAACQI7m6cvvmm2+qZMmSkqTx48crICBAL7zwgk6fPq25c+fmS4EAAABATuXqym3t2rXt/x0YGKhVq1bleUEAAADAzeJLHAAAAGCMG165rVGjhmw2W452tnPnzlsuCAAAALhZNwy3rVu3LoAyAAAAgFt3w3A7atSogqgDAAAAuGW5uqHsr1JTU5WZmenQ5uvre8sFAQAAADcrVzeUxcTEqFmzZvLy8pKfn58CAgIUEBAgf39/BQQE5FeNAAAAQI7k6spt586dZVmWPvroIwUFBeX4RjMAAACgIOQq3O7evVs7duxQ5cqV86seAAAA4KblalpCnTp1FBsbm1+1AAAAALckV1duP/jgA/Xp00cnTpzQ/fffr0KFCjmsf+CBB/K0OAAAACA3chVuT58+rSNHjqh79+72NpvNJsuyZLPZlJGRkecFAgAAADmVq3D73HPPqUaNGvrss8+4oQwAAAC3nVyF22PHjunrr79WxYoV86seAAAA4Kbl6oayhg0bavfu3flVCwAAAHBLcnXltkWLFnrxxRe1d+9eVatW7aobylq2bJmnxQEAAAC5katw26dPH0nS2LFjr1rHDWUAAABwtlyF28zMzPyqAwAAALhluZpzCwAAANzOcnXlNrvpCH81cuTIWyoGAAAAuBW5CrdLly51WL58+bJiYmLk5uamChUqEG4BAADgVLkKt7/++utVbSkpKerWrZuefPLJPCsKAAAAuBm3POfW19dXY8aM0YgRI/KiHgAAAOCm5ckNZcnJyUpOTs6LXQEAAAA3LVfTEqZPn+6wbFmWTp06pYULF6pp06Z5WhgAAACQW7kKt1OmTHFYdnFxUYkSJdS1a1dFR0fnaWEAAABAbuUq3MbExORXHQAAAMAty1G4bdOmzY135Oam4OBgNW7cWC1atLjlwgAAAIDcytENZX5+fjd8eXh46PDhw+rQoQPPuwUAAIBT5OjK7bx583K8w+XLl6tv3743/DYzAAAAIK/lyaPA/qp+/fqqXbt2Xu8WAAAAuKE8D7f+/v766quv8nq3AAAAwA3lebgFAAAAnIVwCwAAAGPcNuH2n//8p2w2mwYPHmxvu3Tpkvr166dixYrJ29tbbdu2VXx8vMN2x48fV7NmzeTp6anAwEC9/PLLunLlSgFXDwAAgNvBbRFut2/frvfee08PPPCAQ/uLL76ob775Rl988YU2bdqkkydPOjxzNyMjQ82aNVN6ero2b96sBQsWaP78+TyKDAAA4C7l9HCbmpqqTp066f3331dAQIC9PTk5WR9++KEmT56shg0bqlatWpo3b542b96srVu3SpLWrFmj/fv365NPPlH16tXVtGlTvfHGG5o5c6bS09OddUgAAABwEqeH2379+qlZs2aKjIx0aN+xY4cuX77s0F6lShWVK1dOW7ZskSRt2bJF1apVU1BQkL1PVFSUUlJStG/fvmuOmZaWppSUFIcXAAAA7nw5+hKH/PL5559r586d2r59+1Xr4uLiVLhwYfn7+zu0BwUFKS4uzt7nr8E2a33WumuZMGGCxowZc4vVAwAA4HbjtCu3sbGxGjRokBYtWqQiRYoU6NjR0dFKTk62v2JjYwt0fAAAAOQPp4XbHTt2KCEhQTVr1pSbm5vc3Ny0adMmTZ8+XW5ubgoKClJ6erqSkpIctouPj1dwcLAkKTg4+KqnJ2QtZ/XJjru7u3x9fR1eAAAAuPM5bVpCo0aNtHfvXoe27t27q0qVKho2bJjKli2rQoUKad26dWrbtq0k6eDBgzp+/LgiIiIkSRERERo/frwSEhIUGBgoSVq7dq18fX0VFhZWsAcEAMD/d+DAAWeXAOS74sWLq1y5cs4u4ypOC7c+Pj66//77Hdq8vLxUrFgxe/vzzz+vl156SUWLFpWvr68GDBigiIgIPfTQQ5Kkxx9/XGFhYXr22Wc1adIkxcXFafjw4erXr5/c3d0L/JgAAHe3pPQk2WRT586dnV0KkO88injot4O/3XYB16k3lN3IlClT5OLiorZt2yotLU1RUVGaNWuWfb2rq6uWL1+uF154QREREfLy8lLXrl01duxYJ1YNALhbXbhyQZYsdQntonuK3ePscoB8c/LCSc09MFeJiYmE2+vZuHGjw3KRIkU0c+ZMzZw585rbhISEaMWKFflcGQAAORfsEaxQn1BnlwHclZz+nFsAAAAgrxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGM4NdxOmDBBderUkY+PjwIDA9W6dWsdPHjQoc+lS5fUr18/FStWTN7e3mrbtq3i4+Md+hw/flzNmjWTp6enAgMD9fLLL+vKlSsFeSgAAAC4DTg13G7atEn9+vXT1q1btXbtWl2+fFmPP/64zp8/b+/z4osv6ptvvtEXX3yhTZs26eTJk2rTpo19fUZGhpo1a6b09HRt3rxZCxYs0Pz58zVy5EhnHBIAAACcyM2Zg69atcphef78+QoMDNSOHTv0yCOPKDk5WR9++KE+/fRTNWzYUJI0b948Va1aVVu3btVDDz2kNWvWaP/+/fruu+8UFBSk6tWr64033tCwYcM0evRoFS5c2BmHBgAAACe4rebcJicnS5KKFi0qSdqxY4cuX76syMhIe58qVaqoXLly2rJliyRpy5YtqlatmoKCgux9oqKilJKSon379mU7TlpamlJSUhxeAAAAuPPdNuE2MzNTgwcPVr169XT//fdLkuLi4lS4cGH5+/s79A0KClJcXJy9z1+Dbdb6rHXZmTBhgvz8/OyvsmXL5vHRAAAAwBlum3Dbr18//ec//9Hnn3+e72NFR0crOTnZ/oqNjc33MQEAAJD/nDrnNkv//v21fPlyff/99ypTpoy9PTg4WOnp6UpKSnK4ehsfH6/g4GB7n59//tlhf1lPU8jq83fu7u5yd3fP46MAAACAszn1yq1lWerfv7+WLl2q9evXq3z58g7ra9WqpUKFCmndunX2toMHD+r48eOKiIiQJEVERGjv3r1KSEiw91m7dq18fX0VFhZWMAcCAACA24JTr9z269dPn376qf7973/Lx8fHPkfWz89PHh4e8vPz0/PPP6+XXnpJRYsWla+vrwYMGKCIiAg99NBDkqTHH39cYWFhevbZZzVp0iTFxcVp+PDh6tevH1dnAQAA7jJODbezZ8+WJD366KMO7fPmzVO3bt0kSVOmTJGLi4vatm2rtLQ0RUVFadasWfa+rq6uWr58uV544QVFRETIy8tLXbt21dixYwvqMAAAAHCbcGq4tSzrhn2KFCmimTNnaubMmdfsExISohUrVuRlaQAAALgD3TZPSwAAAABuFeEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMYwJtzNnzlRoaKiKFCmi8PBw/fzzz84uCQAAAAXMiHD7r3/9Sy+99JJGjRqlnTt36h//+IeioqKUkJDg7NIAAABQgIwIt5MnT1bPnj3VvXt3hYWFac6cOfL09NRHH33k7NIAAABQgNycXcCtSk9P144dOxQdHW1vc3FxUWRkpLZs2ZLtNmlpaUpLS7MvJycnS5JSUlLyt9j/LzU1VZJ09NxRXcq4VCBjAs5y6vwpSdLx88flkmTE79PANXG+424RdyFO0p+ZpqDyU9Y4lmVdv6N1hztx4oQlydq8ebND+8svv2w9+OCD2W4zatQoSxIvXrx48eLFixevO+wVGxt73Wx4x1+5vRnR0dF66aWX7MuZmZk6c+aMihUrJpvN5sTKkJ9SUlJUtmxZxcbGytfX19nlAPmK8x13E873u4NlWTp37pxKlSp13X53fLgtXry4XF1dFR8f79AeHx+v4ODgbLdxd3eXu7u7Q5u/v39+lYjbjK+vL//44a7B+Y67Cee7+fz8/G7Y546fEFS4cGHVqlVL69ats7dlZmZq3bp1ioiIcGJlAAAAKGh3/JVbSXrppZfUtWtX1a5dWw8++KCmTp2q8+fPq3v37s4uDQAAAAXIiHDboUMHnT59WiNHjlRcXJyqV6+uVatWKSgoyNml4Tbi7u6uUaNGXTUlBTAR5zvuJpzv+CubZd3oeQoAAADAneGOn3MLAAAAZCHcAgAAwBiEWwAAABiDcAvk0OjRo1W9evWr2oKCgmSz2bRs2TKn1AXkl27duql169bOLgPIlY0bN8pmsykpKem6/UJDQzV16lT7clxcnBo3biwvLy+efX+HI9wC2cgurA4dOtThecoHDhzQmDFj9N577+nUqVNq2rRpAVcJOMruFzDgblO3bl2dOnXK/rD/+fPnZxtWt2/frl69etmXp0yZolOnTmnXrl06dOhQQZWLfGDEo8CAguDt7S1vb2/78pEjRyRJrVq14mubcUe5fPmyChUq5OwygHxRuHDha35D6V+VKFHCYfnIkSOqVauWKlWqlF+loYBw5Ra3lUcffVQDBw7UK6+8oqJFiyo4OFijR4+2r09KSlKPHj1UokQJ+fr6qmHDhtq9e7fDPsaNG6fAwED5+PioR48eevXVVx2uZm3fvl2NGzdW8eLF5efnpwYNGmjnzp329aGhoZKkJ598Ujabzb7816tio0ePVosWLSRJLi4uhFvkiVs5/+fPn68xY8Zo9+7dstlsstlsmj9/vqQ//xIxe/ZstWzZUl5eXho/frwyMjL0/PPPq3z58vLw8FDlypU1bdo0Jxw17kaPPvqo+vfvr/79+8vPz0/FixfXiBEjlPV00rNnz6pLly4KCAiQp6enmjZtqsOHD9u3P3bsmFq0aKGAgAB5eXnpvvvu04oVKyQ5TkvYuHGjunfvruTkZPvnIusz9ddpCaGhofryyy/18ccfy2azqVu3bgX5diCPEW5x21mwYIG8vLy0bds2TZo0SWPHjtXatWslSU899ZQSEhK0cuVK7dixQzVr1lSjRo105swZSdKiRYs0fvx4TZw4UTt27FC5cuU0e/Zsh/2fO3dOXbt21Y8//qitW7eqUqVKeuKJJ3Tu3DlJf4ZfSZo3b55OnTplX/6roUOHat68eZKkU6dO6dSpU/n2fuDucrPnf4cOHTRkyBDdd9999nOyQ4cO9v2OHj1aTz75pPbu3avnnntOmZmZKlOmjL744gvt379fI0eO1GuvvabFixc769Bxl1mwYIHc3Nz0888/a9q0aZo8ebI++OADSX/O9/7ll1/09ddfa8uWLbIsS0888YQuX74sSerXr5/S0tL0/fffa+/evZo4caLDX9ay1K1bV1OnTpWvr6/9czF06NCr+m3fvl1NmjRR+/btderUKX7Ru9NZwG2kQYMGVv369R3a6tSpYw0bNsz64YcfLF9fX+vSpUsO6ytUqGC99957lmVZVnh4uNWvXz+H9fXq1bP+8Y9/XHPMjIwMy8fHx/rmm2/sbZKspUuXOvQbNWqUw36WLl1q8RFCXrrV8//v52gWSdbgwYNvOH6/fv2stm3b2pe7du1qtWrVKvcHAtxAgwYNrKpVq1qZmZn2tmHDhllVq1a1Dh06ZEmyfvrpJ/u6xMREy8PDw1q8eLFlWZZVrVo1a/To0dnue8OGDZYk6+zZs5ZlWda8efMsPz+/q/qFhIRYU6ZMsS+3atXK6tq16y0fG5yPK7e47TzwwAMOyyVLllRCQoJ2796t1NRUFStWzD7/1dvbWzExMfb5rwcPHtSDDz7osP3fl+Pj49WzZ09VqlRJfn5+8vX1VWpqqo4fP56/BwbkwK2c/9dTu3btq9pmzpypWrVqqUSJEvL29tbcuXP5HKDAPPTQQw5TuiIiInT48GHt379fbm5uCg8Pt68rVqyYKleurAMHDkiSBg4cqHHjxqlevXoaNWqU9uzZU+D14/bFDWW47fz9RhebzabMzEylpqaqZMmS2rhx41Xb5OaxLV27dtUff/yhadOmKSQkRO7u7oqIiFB6evotVg7cuvw6/728vByWP//8cw0dOlTvvPOOIiIi5OPjo7feekvbtm27lfKBAtGjRw9FRUXp22+/1Zo1azRhwgS98847GjBggLNLw22AcIs7Rs2aNRUXFyc3Nzf7TV5/V7lyZW3fvl1dunSxt/19zuxPP/2kWbNm6YknnpAkxcbGKjEx0aFPoUKFlJGRkbcHANyCnJz/hQsXzvF5+9NPP6lu3brq27evvS0nV4CBvPL3X6Sy7oEICwvTlStXtG3bNtWtW1eS9Mcff+jgwYMKCwuz9y9btqz69OmjPn36KDo6Wu+//3624TY3nwuYgWkJuGNERkYqIiJCrVu31po1a3T06FFt3rxZr7/+un755RdJ0oABA/Thhx9qwYIFOnz4sMaNG6c9e/Y4/OmrUqVKWrhwoQ4cOKBt27apU6dO8vDwcBgrNDRU69atU1xcnM6ePVugxwlkJyfnf2hoqGJiYrRr1y4lJiYqLS3tmvurVKmSfvnlF61evVqHDh3SiBEjsr15Esgvx48f10svvaSDBw/qs88+04wZMzRo0CBVqlRJrVq1Us+ePfXjjz9q9+7d6ty5s0qXLq1WrVpJkgYPHqzVq1crJiZGO3fu1IYNG1S1atVsxwkNDVVqaqrWrVunxMREXbhwoSAPE05AuMUdw2azacWKFXrkkUfUvXt33XvvverYsaOOHTumoKAgSVKnTp0UHR2toUOHqmbNmoqJiVG3bt1UpEgR+34+/PBDnT17VjVr1tSzzz6rgQMHKjAw0GGsd955R2vXrlXZsmVVo0aNAj1OIDs5Of/btm2rJk2a6LHHHlOJEiX02WefXXN/vXv3Vps2bdShQweFh4frjz/+cLiKC+S3Ll266OLFi3rwwQfVr18/DRo0yP6lCvPmzVOtWrXUvHlzRUREyLIsrVixwj5tJyMjQ/369VPVqlXVpEkT3XvvvZo1a1a249StW1d9+vRRhw4dVKJECU2aNKnAjhHOYbOs//9QOcBQjRs3VnBwsBYuXOjsUgAA+vM5t9WrV3f4+lsgrzDnFka5cOGC5syZo6ioKLm6uuqzzz7Td999Z39OKAAAMBvhFkbJ+tPt+PHjdenSJVWuXFlffvmlIiMjnV0aAAAoAExLAAAAgDG4oQwAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AGGbjxo2y2WxKSkpydikAUOAItwCQT06fPq0XXnhB5cqVk7u7u4KDgxUVFaWffvopz8Z49NFHNXjwYIe2unXr6tSpU/Lz88uzcQDgTsGXOABAPmnbtq3S09O1YMEC3XPPPYqPj9e6dev0xx9/5Ou4hQsXVnBwcL6OAQC3K67cAkA+SEpK0g8//KCJEyfqscceU0hIiB588EFFR0erZcuW9j49evRQiRIl5Ovrq4YNG2r37t32fYwePVrVq1fXwoULFRoaKj8/P3Xs2FHnzp2TJHXr1k2bNm3StGnTZLPZZLPZdPTo0aumJcyfP1/+/v5avny5KleuLE9PT7Vr104XLlzQggULFBoaqoCAAA0cOFAZGRn28dPS0jR06FCVLl1aXl5eCg8P18aNG+3rs/a7evVqVa1aVd7e3mrSpIlOnTqV/28wAFwD4RYA8oG3t7e8vb21bNkypaWlZdvnqaeeUkJCglauXKkdO3aoZs2aatSokc6cOWPvc+TIES1btkzLly/X8uXLtWnTJv3zn/+UJE2bNk0RERHq2bOnTp06pVOnTqls2bLZjnXhwgVNnz5dn3/+uVatWqWNGzfqySef1IoVK7RixQotXLhQ7733npYsWWLfpn///tqyZYs+//xz7dmzR0899ZSaNGmiw4cPO+z37bff1sKFC/X999/r+PHjGjp0aF68hQBwcywAQL5YsmSJFRAQYBUpUsSqW7euFR0dbe3evduyLMv64YcfLF9fX+vSpUsO21SoUMF67733LMuyrFGjRlmenp5WSkqKff3LL79shYeH25cbNGhgDRo0yGEfGzZssCRZZ8+etSzLsubNm2dJsn7//Xd7n969e1uenp7WuXPn7G1RUVFW7969LcuyrGPHjlmurq7WiRMnHPbdqFEjKzo6+pr7nTlzphUUFJSr9wkA8hJzbgEgn7Rt21bNmjXTDz/8oK1bt2rlypWaNGmSPvjgA50/f16pqakqVqyYwzYXL17UkSNH7MuhoaHy8fGxL5csWVIJCQm5rsXT01MVKlSwLwcFBSk0NFTe3t4ObVn73rt3rzIyMnTvvfc67CctLc2h5r/v92brA4C8QrgFgHxUpEgRNW7cWI0bN9aIESPUo0cPjRo1Sn379lXJkiUd5rBm8ff3t/93oUKFHNbZbDZlZmbmuo7s9nO9faempsrV1VU7duyQq6urQ7+/BuLs9mFZVq7rA4C8QrgFgAIUFhamZcuWqWbNmoqLi5Obm5tCQ0Nven+FCxd2uAksr9SoUUMZGRlKSEjQww8/nOf7B4D8wg1lAJAP/vjjDzVs2FCffPKJ9uzZo5iYGH3xxReaNGmSWrVqpcjISEVERKh169Zas2aNjh49qs2bN+v111/XL7/8kuNxQkNDtW3bNh09elSJiYk3dVU3O/fee686deqkLl266KuvvlJMTIx+/vlnTZgwQd9++22ejAEA+YErtwCQD7y9vRUeHq4pU6boyJEjunz5ssqWLauePXvqtddek81m04oVK/T666+re/fuOn36tIKDg/XII48oKCgox+MMHTpUXbt2VVhYmC5evKiYmJg8O4Z58+Zp3LhxGjJkiE6cOKHixYvroYceUvPmzfNsDADIazaLyVEAAAAwBNMSAAAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDH+Hyi87xnHo+zXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "# Membaca data dari file CSV\n", "data = pd.read_csv(\"combined_data.csv\")\n", "\n", "# Menghitung jumlah data dengan masing-masing sentimen\n", "sentiment_counts = data['label_text'].value_counts()\n", "\n", "# Menyiapkan data untuk visualisasi\n", "sentiments = ['netral', 'positif', 'negatif']\n", "counts = [sentiment_counts['netral'], sentiment_counts['positif'], sentiment_counts['negatif']]\n", "\n", "# Bar Chart\n", "plt.figure(figsize=(8, 6))\n", "sns.barplot(x=sentiments, y=counts, palette='viridis')\n", "plt.title('Distribusi Prediksi Sentimen - Bar Chart')\n", "plt.xlabel('Sentimen')\n", "plt.ylabel('Jumlah')\n", "plt.show()\n", "\n", "# Pie Chart\n", "plt.figure(figsize=(8, 6))\n", "plt.pie(counts, labels=sentiments, autopct='%1.1f%%', startangle=140, colors=sns.color_palette('viridis'))\n", "plt.title('Distribusi Prediksi Sentimen - Pie Chart')\n", "plt.show()\n", "\n", "# Histogram\n", "plt.figure(figsize=(8, 6))\n", "sns.histplot(data['label_text'], bins=3, kde=False, color='purple')\n", "plt.title('Distribusi Prediksi Sentimen - Histogram')\n", "plt.xlabel('Sentimen')\n", "plt.ylabel('Jumlah')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 223, "id": "f275d06e-220a-4efb-8da8-a6b3afe3d8ac", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Menggabungkan teks berdasarkan prediksi sentimen\n", "netral_text = \" \".join(data[data['label_text'] == 'netral']['full_text'])\n", "positif_text = \" \".join(data[data['label_text'] == 'positif']['full_text'])\n", "negatif_text = \" \".join(data[data['label_text'] == 'negatif']['full_text'])\n", "\n", "# Membuat fungsi untuk menampilkan word cloud dan menyimpannya sebagai file PNG\n", "def generate_wordcloud(text, title, colormap, filename):\n", " wordcloud = WordCloud(width=800, height=400, background_color='white', colormap=colormap, collocations=False).generate(text)\n", " plt.imshow(wordcloud, interpolation='bilinear')\n", " plt.axis('off')\n", " plt.title(title)\n", " plt.savefig(f\"{filename}.png\")\n", " plt.clf()\n", "\n", "# Menyimpan word cloud untuk setiap sentimen sebagai file terpisah\n", "generate_wordcloud(netral_text, 'Word Cloud untuk Sentimen Netral', 'viridis', 'wordcloud_netral')\n", "generate_wordcloud(positif_text, 'Word Cloud untuk Sentimen Positif', 'plasma', 'wordcloud_positif')\n", "generate_wordcloud(negatif_text, 'Word Cloud untuk Sentimen Negatif', 'inferno', 'wordcloud_negatif')" ] }, { "cell_type": "code", "execution_count": 190, "id": "a5a51e45-bfc3-4f8e-a9de-2b517d77916e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
created_atfull_textuser_id_strstemmed_textlabel_text
0Sat Feb 10 23:59:55 +0000 2024tahu partai nya gabener di pilih hadeh1.489140e+18tahu partai nya gabener di pilih hadehnegatif
1Sat Feb 10 23:59:51 +0000 2024bukan tahun 2000an awal orang2 Partai Keadilan...1.358430e+18bukan tahun 2000an awal orang2 partai adil sej...negatif
2Sat Feb 10 23:59:46 +0000 2024imagine invalidating someones fear and calling...1.334680e+18imagine invalidating someones fear and calling...netral
3Sat Feb 10 23:59:34 +0000 2024jangan lupa yah teman-teman 2024 pilih partai ...1.679190e+18jangan lupa yah teman 2024 pilih partai ummat ...positif
4Sat Feb 10 23:59:28 +0000 2024h3 pemilihan umum heran seakan2 jokowi dosanya...1.710507e+08h3 pilih umum heran seakan2 jokowi dosa paling...positif
..................
1812Fri Feb 09 23:11:32 +0000 2024bukan hebat culas licik angkat nol smpai berku...1.538716e+18bukan hebat culas licik angkat nol smpai kuasa...negatif
1813Fri Feb 09 23:11:21 +0000 2024kalau melalui proses pemilihan umum langsung s...1.466980e+18kalau lalu proses pilih umum langsung saya per...negatif
1814Fri Feb 09 23:10:00 +0000 2024kenalan yuk calon legislatif dewan perwakilan ...2.848309e+08kenal yuk calon legislatif dewan wakil rakyat ...positif
1815Fri Feb 09 23:09:17 +0000 2024aku tempelin sticker besar sticker partai1.742568e+18aku tempelin sticker besar sticker partainetral
1816Fri Feb 09 23:08:42 +0000 2024hebat jokowi bener2 serius buat bangsa beliyau...1.492511e+18hebat jokowi bener2 serius buat bangsa beliyau...negatif
\n", "

1817 rows × 5 columns

\n", "
" ], "text/plain": [ " created_at \\\n", "0 Sat Feb 10 23:59:55 +0000 2024 \n", "1 Sat Feb 10 23:59:51 +0000 2024 \n", "2 Sat Feb 10 23:59:46 +0000 2024 \n", "3 Sat Feb 10 23:59:34 +0000 2024 \n", "4 Sat Feb 10 23:59:28 +0000 2024 \n", "... ... \n", "1812 Fri Feb 09 23:11:32 +0000 2024 \n", "1813 Fri Feb 09 23:11:21 +0000 2024 \n", "1814 Fri Feb 09 23:10:00 +0000 2024 \n", "1815 Fri Feb 09 23:09:17 +0000 2024 \n", "1816 Fri Feb 09 23:08:42 +0000 2024 \n", "\n", " full_text user_id_str \\\n", "0 tahu partai nya gabener di pilih hadeh 1.489140e+18 \n", "1 bukan tahun 2000an awal orang2 Partai Keadilan... 1.358430e+18 \n", "2 imagine invalidating someones fear and calling... 1.334680e+18 \n", "3 jangan lupa yah teman-teman 2024 pilih partai ... 1.679190e+18 \n", "4 h3 pemilihan umum heran seakan2 jokowi dosanya... 1.710507e+08 \n", "... ... ... \n", "1812 bukan hebat culas licik angkat nol smpai berku... 1.538716e+18 \n", "1813 kalau melalui proses pemilihan umum langsung s... 1.466980e+18 \n", "1814 kenalan yuk calon legislatif dewan perwakilan ... 2.848309e+08 \n", "1815 aku tempelin sticker besar sticker partai 1.742568e+18 \n", "1816 hebat jokowi bener2 serius buat bangsa beliyau... 1.492511e+18 \n", "\n", " stemmed_text label_text \n", "0 tahu partai nya gabener di pilih hadeh negatif \n", "1 bukan tahun 2000an awal orang2 partai adil sej... negatif \n", "2 imagine invalidating someones fear and calling... netral \n", "3 jangan lupa yah teman 2024 pilih partai ummat ... positif \n", "4 h3 pilih umum heran seakan2 jokowi dosa paling... positif \n", "... ... ... \n", "1812 bukan hebat culas licik angkat nol smpai kuasa... negatif \n", "1813 kalau lalu proses pilih umum langsung saya per... negatif \n", "1814 kenal yuk calon legislatif dewan wakil rakyat ... positif \n", "1815 aku tempelin sticker besar sticker partai netral \n", "1816 hebat jokowi bener2 serius buat bangsa beliyau... negatif \n", "\n", "[1817 rows x 5 columns]" ] }, "execution_count": 190, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data" ] }, { "cell_type": "code", "execution_count": 224, "id": "b04835df-33ff-4714-bcd8-94924656c974", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Jumlah Buzzer Positif: 8\n", "Jumlah Buzzer Negatif: 9\n", "Jumlah Non Buzzer: 1800\n" ] } ], "source": [ "import pandas as pd\n", "\n", "# Membaca data dari file CSV\n", "df = pd.read_csv(\"combined_data.csv\")\n", "\n", "# Membuat variabel untuk menyimpan hasil labeling\n", "buzzer_types = []\n", "\n", "# Iterasi melalui setiap baris data\n", "for index, row in df.iterrows():\n", " # Menghitung jumlah kemunculan 'user_id_str' dan 'label_text' yang sama\n", " count = df[(df['user_id_str'] == row['user_id_str']) & (df['label_text'] == row['label_text'])].shape[0]\n", " \n", " # Menentukan buzzer type\n", " if count >= 4:\n", " if row['label_text'] == 'negatif':\n", " buzzer_type = 'buzzer negatif'\n", " elif row['label_text'] == 'positif':\n", " buzzer_type = 'buzzer positif'\n", " else:\n", " buzzer_type = 'non-buzzer'\n", " \n", " # Menambahkan buzzer type ke dalam list\n", " buzzer_types.append(buzzer_type)\n", "\n", "# Menambahkan kolom 'buzzer_type' ke DataFrame\n", "df['buzzer_type'] = buzzer_types\n", "\n", "# Menyimpan DataFrame ke file CSV\n", "df.to_csv('combined_data_with_buzzer_type.csv', index=False)\n", "\n", "# Membaca data dari file CSV yang sudah diberi labael\n", "labeled_df = pd.read_csv(\"combined_data_with_buzzer_type.csv\")\n", "\n", "# Menghitung jumlah 'buzzer positif', 'buzzer negatif', dan 'non-buzzer'\n", "buzzer_count = labeled_df['buzzer_type'].value_counts()\n", "\n", "# Menampilkan jumlah buzzer positif, negatif, dan non-buzzer\n", "print(\"Jumlah Buzzer Positif:\", buzzer_count.get('buzzer positif', 0))\n", "print(\"Jumlah Buzzer Negatif:\", buzzer_count.get('buzzer negatif', 0))\n", "print(\"Jumlah Non Buzzer:\", buzzer_count.get('non-buzzer', 0))\n" ] }, { "cell_type": "code", "execution_count": 230, "id": "89bf26f6-6197-4b4d-98e7-4ead87a0ef50", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
created_atfull_textuser_id_strstemmed_textlabel_textbuzzer_type
0Sat Feb 10 23:59:55 +0000 2024tahu partai nya gabener di pilih hadeh1.489140e+18tahu partai nya gabener di pilih hadehnegatifnon-buzzer
1Sat Feb 10 23:59:51 +0000 2024bukan tahun 2000an awal orang2 Partai Keadilan...1.358430e+18bukan tahun 2000an awal orang2 partai adil sej...negatifnon-buzzer
2Sat Feb 10 23:59:46 +0000 2024imagine invalidating someones fear and calling...1.334680e+18imagine invalidating someones fear and calling...netralnon-buzzer
3Sat Feb 10 23:59:34 +0000 2024jangan lupa yah teman-teman 2024 pilih partai ...1.679190e+18jangan lupa yah teman 2024 pilih partai ummat ...positifnon-buzzer
4Sat Feb 10 23:59:28 +0000 2024h3 pemilihan umum heran seakan2 jokowi dosanya...1.710507e+08h3 pilih umum heran seakan2 jokowi dosa paling...positifnon-buzzer
.....................
1812Fri Feb 09 23:11:32 +0000 2024bukan hebat culas licik angkat nol smpai berku...1.538716e+18bukan hebat culas licik angkat nol smpai kuasa...negatifnon-buzzer
1813Fri Feb 09 23:11:21 +0000 2024kalau melalui proses pemilihan umum langsung s...1.466980e+18kalau lalu proses pilih umum langsung saya per...negatifnon-buzzer
1814Fri Feb 09 23:10:00 +0000 2024kenalan yuk calon legislatif dewan perwakilan ...2.848309e+08kenal yuk calon legislatif dewan wakil rakyat ...positifbuzzer positif
1815Fri Feb 09 23:09:17 +0000 2024aku tempelin sticker besar sticker partai1.742568e+18aku tempelin sticker besar sticker partainetralnon-buzzer
1816Fri Feb 09 23:08:42 +0000 2024hebat jokowi bener2 serius buat bangsa beliyau...1.492511e+18hebat jokowi bener2 serius buat bangsa beliyau...negatifnon-buzzer
\n", "

1817 rows × 6 columns

\n", "
" ], "text/plain": [ " created_at \\\n", "0 Sat Feb 10 23:59:55 +0000 2024 \n", "1 Sat Feb 10 23:59:51 +0000 2024 \n", "2 Sat Feb 10 23:59:46 +0000 2024 \n", "3 Sat Feb 10 23:59:34 +0000 2024 \n", "4 Sat Feb 10 23:59:28 +0000 2024 \n", "... ... \n", "1812 Fri Feb 09 23:11:32 +0000 2024 \n", "1813 Fri Feb 09 23:11:21 +0000 2024 \n", "1814 Fri Feb 09 23:10:00 +0000 2024 \n", "1815 Fri Feb 09 23:09:17 +0000 2024 \n", "1816 Fri Feb 09 23:08:42 +0000 2024 \n", "\n", " full_text user_id_str \\\n", "0 tahu partai nya gabener di pilih hadeh 1.489140e+18 \n", "1 bukan tahun 2000an awal orang2 Partai Keadilan... 1.358430e+18 \n", "2 imagine invalidating someones fear and calling... 1.334680e+18 \n", "3 jangan lupa yah teman-teman 2024 pilih partai ... 1.679190e+18 \n", "4 h3 pemilihan umum heran seakan2 jokowi dosanya... 1.710507e+08 \n", "... ... ... \n", "1812 bukan hebat culas licik angkat nol smpai berku... 1.538716e+18 \n", "1813 kalau melalui proses pemilihan umum langsung s... 1.466980e+18 \n", "1814 kenalan yuk calon legislatif dewan perwakilan ... 2.848309e+08 \n", "1815 aku tempelin sticker besar sticker partai 1.742568e+18 \n", "1816 hebat jokowi bener2 serius buat bangsa beliyau... 1.492511e+18 \n", "\n", " stemmed_text label_text \\\n", "0 tahu partai nya gabener di pilih hadeh negatif \n", "1 bukan tahun 2000an awal orang2 partai adil sej... negatif \n", "2 imagine invalidating someones fear and calling... netral \n", "3 jangan lupa yah teman 2024 pilih partai ummat ... positif \n", "4 h3 pilih umum heran seakan2 jokowi dosa paling... positif \n", "... ... ... \n", "1812 bukan hebat culas licik angkat nol smpai kuasa... negatif \n", "1813 kalau lalu proses pilih umum langsung saya per... negatif \n", "1814 kenal yuk calon legislatif dewan wakil rakyat ... positif \n", "1815 aku tempelin sticker besar sticker partai netral \n", "1816 hebat jokowi bener2 serius buat bangsa beliyau... negatif \n", "\n", " buzzer_type \n", "0 non-buzzer \n", "1 non-buzzer \n", "2 non-buzzer \n", "3 non-buzzer \n", "4 non-buzzer \n", "... ... \n", "1812 non-buzzer \n", "1813 non-buzzer \n", "1814 buzzer positif \n", "1815 non-buzzer \n", "1816 non-buzzer \n", "\n", "[1817 rows x 6 columns]" ] }, "execution_count": 230, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 233, "id": "fd0caf23-2b67-449b-bef9-33b5d218eb37", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAAJOCAYAAACZX7sKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8d9ukk1PaKEEAoQqoBRBEaVKtyJYQHwFQVBBUGyA8tAsIChiBdEHBMXy2LBTVJqKSDGCoiiYAEJCC6SXLef9I2ZlSQIJJtmU7+e65oKdOTtzZnZnMnvuuc+xGGOMAAAAAAAAAAAAAJQ7Vm9XAAAAAAAAAAAAAMC5IdgHAAAAAAAAAAAAlFME+wAAAAAAAAAAAIByimAfAAAAAAAAAAAAUE4R7AMAAAAAAAAAAADKKYJ9AAAAAAAAAAAAQDlFsA8AAAAAAAAAAAAopwj2AQAAAAAAAAAAAOUUwT4AAAAAAAAAAACgnCLYh3PSvXt3de/evcjvi4uLk8Vi0VNPPVX8lUKxyf2cXnvttUKVt1gsmj59use8LVu26NJLL1VwcLAsFotiYmKKvZ7lQWkem/y2BQBAcRk+fLgaNmzo7Wrgb0X5PKZPny6LxeIxz+Fw6KGHHlJUVJSsVqsGDBhQ/JUsB0rz2OS3LQBAxUFbWcVGW1nxoa0MKBkE+8qx1157TRaLRVu3bvV2VUrNunXrZLFYPKZq1arpkksu0fLly71dvRKT2zCQOwUFBally5aaMmWKkpOTS6UOn3/+eaH/ONrtdt1www1KTEzUM888o9dff10NGjQo0vYaNmwoi8WicePG5VmW+z147733irTOklLax6asyf1+1qpVS+np6XmWN2zYUFdddVWp1yv3RvzUKSwsTG3bttULL7wgp9NZ6nUCUP7l3n/lTgEBAWrWrJnuvvtuHT582NvVKxO6d+/ucYxsNpuio6M1evRoHThwwNvVKzGn7rPValVkZKT69OmjdevWlcr209PTNX369EJvb/HixZo7d66uv/56LV26VBMmTCjS9nLPhYCAAB08eDDP8u7du+v8888v0jpLSmkfm7Io97v59NNP51nmzd+Vw4cP9zh3fH19FRUVpcGDB2vXrl2lXh8A5R9tZbSV0VZGW1lZQFsZvMHX2xUAzsX48eN10UUXSZKOHz+ud955R7fccotOnjypsWPHerl2JWfBggUKCQlRamqqVq9erccff1xff/21vv3222J9SrhBgwbKyMiQn5+fe97nn3+uF198Md8/1BkZGfL1/edysnfvXu3bt0+vvPKKbr/99n9Vl1deeUWTJ09WZGTkv1pPSfLWsSlrjhw5ogULFuj+++/3dlU8DBkyRFdccYUkKSkpSZ9//rnGjRunffv2ae7cuV6uHYDyaubMmYqOjlZmZqa++eYbLViwQJ9//rl+/vlnBQUFebt6JeKVV16Ry+UqVNl69epp1qxZkqTs7Gzt2rVLCxcu1KpVq/Trr79W2GPUu3dv3XrrrTLGKDY2Vi+99JIuv/xyffbZZ+rfv3+xbuv0zyM9PV0zZsyQpDxZBVOmTNGkSZM85n399deqW7eunnnmmX9Vj6ysLM2ePVvPP//8v1pPSfLWsSmL5s6dq7vuuqtMnYP+/v569dVXJeVkVe7du1cLFy7UypUrtWvXrjL9OwAAyhLaymgrK0toK8tBWxlKE8E+lEtdunTR9ddf73591113qVGjRnrzzTfL7Q1Menr6WX90X3/99apRo4Yk6c4779SgQYP0wQcf6Pvvv1enTp2KrS65T2kX1ulljxw5IkmqUqXKv6pHq1attHv3bs2ePVvPPffcv1qXt5TUsSmL2rZtq7lz52rMmDEKDAz0dnXcLrzwQt1yyy3u12PGjFHHjh315ptvltsbmLS0NAUHB3u7GkCl1r9/f3Xo0EGSdPvtt6t69eqaN2+ePvroIw0ZMiTf95TFc7codTq1YeNswsPDPa69khQdHa27775b3377rXr37l2kepYFmZmZstlssloL7hylWbNmHvt93XXXqXXr1po/f36xB/uK8nn4+vp6NKhIOfckxXE/0rZt23LR4FSQkjw2ZU3btm0VExOjhQsX6r777vN2ddx8fX3zXC8uueQSXXXVVfrss880atQoL9Xs3DkcDrlcLtlsNm9XBUAlQlsZbWXlBW1l3kdbWcVEN54VSEF9g58+nsepfYG/+OKLatSokYKCgtSnTx8dOHBAxhg9+uijqlevngIDA3XttdcqMTHxjNvOzs7W1KlT1b59e4WHhys4OFhdunTR2rVrC3zPokWL1LhxY/n7++uiiy7Sli1bznXXZbPZVLVqVY8f6mfqS/vU/przS18+dZLydtl16nT6MX/jjTfUvn17BQYGqlq1aho8eHCeLqtyuzXatm2bunbtqqCgID388MNF3u/LL79ckhQbGysp56J2//33KyoqSv7+/mrevLmeeuopGWM83rdmzRp17txZVapUUUhIiJo3b+6x/dOP3fDhw/Xiiy+6j92px+b04zl8+HB169ZNknTDDTfke4wKq2HDhrr11lv1yiuv6NChQ2ctf/DgQY0YMUK1atWSv7+/WrVqpcWLF+cpt2/fPl1zzTUKDg5WzZo1NWHCBK1atUoWi8Wje6eNGzfqhhtuUP369eXv76+oqChNmDBBGRkZ7jLeODZZWVmaMGGCIiIiFBoaqmuuuUZ//fVXvvs5ZswYNW/eXIGBgapevbpuuOEGxcXFeZTL/X5/++23uu+++xQREaHg4GBdd911Onr0aKHrNXXqVB0+fFgLFiw4a9nCflctFovuvvturVixQueff777c125cmWh63W63G4UTm/YK6gf94YNG2r48OEe5Qqa4uLi8u1CJXc6fWylL774Ql26dFFwcLBCQ0N15ZVX6pdffvEoM3z4cIWEhGjv3r264oorFBoaqqFDh57z/gMoGaf/TT7TuVvUa+Dy5cvVvHlzBQQEqH379tqwYUOe7f/444/q37+/wsLCFBISop49e+r777/3KJN7vV+/fr3GjBmjmjVrql69epKklJQU3XvvvWrYsKH8/f1Vs2ZN9e7dW9u3b3e//9+O2Ve7dm1J8rj+FrTO08c2O72rv1On3Gt3brdG+U2n/n0vzP1C7rX87bff1pQpU1S3bl0FBQUVuUuoCy64QDVq1HB/L6ScrLHca3+VKlV07bXX6tdff/V4X1E/j7i4OEVEREiSZsyYkefYnHo8c+/z1q5dq19++SXfY1QUDz/8sJxOp2bPnl2o8oW5V5bk/p0SGBioiy++WBs3bszze6cwv0G8dWy++eYbXXTRRQoICFDjxo318ssv51tuyZIluvzyy1WzZk35+/urZcuW+d5L5Xb19M033+jiiy9WQECAGjVqpGXLlhW6Tpdddpkuv/xyzZkzx+N+tiCF+a7mHr89e/Zo+PDhqlKlisLDw3Xbbbfl22VVYeV3vShozMPca1vuPe7p3bqdOuXe03U/rbvhU6dTfz+ePHlS9957r/t63aRJEz355JMeWbWn/r6eP3+++zcu3ZACZQNtZbSV0VZGW9np+0lbWV60lVUMZPZVYsuXL1d2drbGjRunxMREzZkzRzfeeKMuv/xyrVu3ThMnTtSePXv0/PPP64EHHsj3D0Gu5ORkvfrqqxoyZIhGjRqllJQU/fe//1Xfvn31ww8/qG3bth7l33zzTaWkpOiOO+6QxWLRnDlzNHDgQP3555+Feko5JSVFx44dkyQlJibqzTff1M8//6z//ve/RT4OERERev311z3m2e12TZgwwf0kZteuXfOU2bdvn6ZMmaKaNWu65z3++OP6z3/+oxtvvFG33367jh49queff15du3bVjz/+6PGEyvHjx9W/f38NHjxYt9xyi2rVqlXkuu/du1eSVL16dRljdM0112jt2rUaOXKk2rZtq1WrVunBBx/UwYMH3d0Q/fLLL7rqqqvUunVrzZw5U/7+/tqzZ4++/fbbArdzxx136NChQ1qzZk2e45Bf2bp16+qJJ55wdyFxLvuW65FHHtGyZcvO+sTS4cOHdckll7j/4EVEROiLL77QyJEjlZycrHvvvVdSzh/Oyy+/XPHx8brnnntUu3Ztvfnmm/nebL/77rtKT0/XXXfdperVq+uHH37Q888/r7/++kvvvvuu147N7bffrjfeeEM333yzLr30Un399de68sor85TbsmWLvvvuOw0ePFj16tVTXFycFixYoO7du2vXrl15no4bN26cqlatqmnTpikuLk7z58/X3XffrXfeeadQ9erSpYu7Aemuu+4q8Imlwn5Xc33zzTf64IMPNGbMGIWGhuq5557ToEGDtH//flWvXv2s9UpPT3dfL5KTk/XFF19o5cqVmjx5cqH263T5fc5TpkzRkSNHFBISohYtWuQpc/LkSd13330e14vXX39dw4YNU9++ffXkk08qPT1dCxYsUOfOnfXjjz963Ow4HA717dtXnTt31lNPPVWmut4CkOPUv8m58jt3i3oNXL9+vd555x2NHz9e/v7+eumll9SvXz/98MMP7vHQfvnlF3Xp0kVhYWF66KGH5Ofnp5dfflndu3fX+vXr1bFjR491jhkzRhEREZo6darS0tIk5TwF/d577+nuu+9Wy5Ytdfz4cX3zzTf69ddfdeGFFxb5eDidTve1126369dff9W0adPUpEkTXXbZZUVe3x133KFevXp5zFu5cqWWL1/uvrbOnz9fqampHmWeeeYZxcTEuD+Xwt4v5Hr00Udls9n0wAMPKCsrq8hZOidOnNCJEyfUpEkTSdKXX36p/v37q1GjRpo+fboyMjL0/PPP67LLLtP27dvd1/6ifh4RERFasGCB7rrrLl133XUaOHCgJKl169b5ln399df1+OOPKzU11d3daosWLYq0b7mio6PdDU6TJk06Y3ZfYe+VFyxYoLvvvltdunTRhAkTFBcXpwEDBqhq1aruALVUuN8g3jg2O3fuVJ8+fRQREaHp06fL4XBo2rRp+d73LViwQK1atdI111wjX19fffLJJxozZoxcLleeLIw9e/bo+uuv18iRIzVs2DAtXrxYw4cPV/v27dWqVatC1W369Onq2rWrFixYcMbsvsJ+V3PdeOONio6O1qxZs7R9+3a9+uqrqlmzpp588slC1Sv3euF0OvXnn39q4sSJql69+jmNZTNw4ED3OZdr27Ztmj9/vvt68cgjj+TpJuyNN97QqlWr3GXS09PVrVs3HTx4UHfccYfq16+v7777TpMnT1Z8fLzmz5/v8f4lS5YoMzNTo0ePlr+/v6pVq1bkugPwPtrKctBWRlsZbWU5aCsrHNrKygiDcmvJkiVGktmyZYsxxphu3bqZbt265Sk3bNgw06BBA/fr2NhYI8lERESYkydPuudPnjzZSDJt2rQxdrvdPX/IkCHGZrOZzMxM97zTt+VwOExWVpbHdk+cOGFq1aplRowYkWfb1atXN4mJie75H330kZFkPvnkkzPu89q1a42kPJPVajWPP/64R9ncbS1ZsiTPeiSZadOmFbidMWPGGB8fH/P111/nuzwjI8O0b9/eREZGmvj4eGOMMXFxccbHxydPPXbu3Gl8fX095nfr1s1IMgsXLjzj/uaaNm2akWR2795tjh49amJjY83LL79s/P39Ta1atUxaWppZsWKFkWQee+wxj/def/31xmKxmD179hhjjHnmmWeMJHP06NECt5ffsRs7dqwp6JJx+vHM/ZzefffdQu1ffho0aGCuvPJKY4wxt912mwkICDCHDh0qcP0jR440derUMceOHfNYz+DBg014eLhJT083xhjz9NNPG0lmxYoV7jIZGRnmvPPOM5LM2rVr3fNz33OqWbNmGYvFYvbt2+eeV5rHJiYmxkgyY8aM8Zh/880359lWfvXftGmTkWSWLVvmnpd7LenVq5dxuVzu+RMmTDA+Pj4e14n85H4/jx49atavX28kmXnz5rmXn/pZGmMK/V01Juf42Ww2j3k//fSTkWSef/75M9Yr93uc33TXXXd57GvutvK7LjRo0MAMGzaswO3MmTMnzzE9lcvlMldddZUJCQkxv/zyizHGmJSUFFOlShUzatQoj7IJCQkmPDzcY/6wYcOMJDNp0qQz7i+A0pF7zfzyyy/N0aNHzYEDB8zbb79tqlevbgIDA81ff/1ljCn43C3qNVCS2bp1q3vevn37TEBAgLnuuuvc8wYMGGBsNpvZu3eve96hQ4dMaGio6dq1a566d+7c2TgcDo/th4eHm7Fjx55x30+/pyxI7n3O6VOLFi3Mn3/+Wah15v5tKcgff/xhwsPDTe/evfPsS67//e9/RpKZOXOme15h7xdy/143atQo37+n+ZFkRo4caY4ePWqOHDliNm/ebHr27GkkmaefftoYY0zbtm1NzZo1zfHjx93v++mnn4zVajW33nqre965fB5Hjx4t8G9ZfsezW7duplWrVoXat/yc+ltk7969xtfX14wfP77A9Rf2XjkrK8tUr17dXHTRRR6/SV577TUj6Zx+g5T2sRkwYIAJCAjwuF/ctWuX8fHxybOt/L5fffv2NY0aNfKY16BBAyPJbNiwwT3vyJEjxt/f39x///1nrZMk93eqR48epnbt2u5tn/670pjCf1dzj9+px9sYY6677jpTvXr1s9Yr91p5+lS3bl2zbds2j7IFXRdy6x8bG5vvNo4ePWrq169vLrjgApOamppvmW+//db4+fl57Mejjz5qgoODze+//+5RdtKkScbHx8fs37/fGPPPPWdYWJg5cuTIWfcZQMmirYy2MtrKaCvLRVtZXrSVVWx041mJ3XDDDQoPD3e/zn3q+5ZbbvFI2e3YsaOys7N18ODBAtfl4+PjfrLH5XIpMTFRDodDHTp08OhuKNdNN92kqlWrul936dJFkvTnn38Wqu5Tp07VmjVrtGbNGr3zzjsaMmSIHnnkET377LOFev+ZLFu2TC+99JLmzJmjHj165FtmzJgx2rlzp95//313FzMffPCBXC6XbrzxRh07dsw91a5dW02bNs3zNIy/v79uu+22ItWtefPmioiIUHR0tO644w41adJEn332mYKCgvT555/Lx8dH48eP93jP/fffL2OMvvjiC0n/9H/90UcfeXQ/U5ZNmTJFDoejwO6hjDF6//33dfXVV8sY43H8+/btq6SkJPf3cOXKlapbt66uueYa9/sDAgLyHQvk1Kdt0tLSdOzYMV166aUyxujHH38s5r0snM8//1yS8nzOp2ciSJ71t9vtOn78uJo0aaIqVarke16OHj3ao1uFLl26yOl0at++fYWuX9euXdWjR48zdg9V2O9qrl69eqlx48bu161bt1ZYWFihrxejR492Xy/ef/99jR07Vi+//HKxjFWzdu1aTZ48WePGjdP//d//5Vvm0Ucf1aeffqrXXntNLVu2lJTTPcjJkyc1ZMgQj++rj4+POnbsmO/Tc3fddde/ri+A4tOrVy9FREQoKipKgwcPVkhIiD788EPVrVvXo9zp525Rr4GdOnVS+/bt3a/r16+va6+9VqtWrZLT6ZTT6dTq1as1YMAANWrUyF2uTp06uvnmm/XNN9/k6Xpy1KhR8vHx8ZhXpUoVbd68uVBdARVGw4YN3dfeL774QvPnz1dSUpL69+9fpG5v8pOWlqbrrrtOVatW1VtvvZVnXyRp165dGjFihK699lpNmTJFUtHuF3INGzasSGNr/Pe//1VERIRq1qypjh07urv9uffeexUfH6+YmBgNHz7cI+OndevW6t27t/tvvFT8n0dJa9Sokf7v//5PixYtUnx8fL5lCnuvvHXrVh0/flyjRo3y+E0ydOhQj98PUtF/g5QGp9OpVatWacCAAapfv757fosWLdS3b9885U/9fiUlJenYsWPq1q2b/vzzTyUlJXmUbdmypft3k5STddG8efNC3xPlmj59uhISErRw4cJ8lxflu5rrzjvv9HjdpUsXHT9+vFBd3wYEBLivF6tWrdLLL7+skJAQXXHFFfr999+LtG+nczqdGjJkiFJSUvThhx/mO45LQkKCrr/+erVt21YvvfSSe/67776rLl26qGrVqh7f2V69esnpdObpUnnQoEHuLmMBlF+0leWPtrKyh7ayf9BWRlsZctCNZyV26o9PSe6bmaioqHznnzhx4ozrW7p0qZ5++mn99ttvstvt7vnR0dFn3XbuzczZtpHrggsu8OjK6cYbb1RSUpImTZqkm2+++Zx/ZMXExOjOO+/UkCFDCry4vfzyy1qyZIlefvllXXLJJe75f/zxh4wxatq0ab7vO73Lhbp16xa5K6j3339fYWFh8vPzU7169Twu6vv27VNkZKRCQ0M93pPb7VDuH6GbbrpJr776qm6//XZNmjRJPXv21MCBA3X99dfLai2b8f9TG5AmTZqUZ/nRo0d18uRJLVq0SIsWLcp3HbmD/e7bt0+NGzfOM97H6V39SNL+/fs1depUffzxx3m+m6c3vpSWffv2yWq1enz2Us7N7ekyMjI0a9YsLVmyRAcPHvTo4zu/+v/b8zLX9OnT1a1bNy1cuFATJkzIdx8K810tqF65dcutV3Z2dp6xEk69BjRt2tTjejFw4EBZLBbNnz9fI0aM0AUXXFCk/cv1119/6aabbtJll12mefPm5Vtm5cqVmjFjhiZPnqxBgwa55//xxx+S/hlL4HRhYWEer319fT26LQPgfS+++KKaNWsmX19f1apVS82bN8/zdzS/c7eo18D87iuaNWum9PR0d9AsPT09378DLVq0kMvl0oEDBzy6+Mvv3mzOnDkaNmyYoqKi1L59e11xxRW69dZbPQKIRREcHOxx7e3Xr586d+6sDh06aPbs2Xr66afPab1STrBy7969+u677/LtoiY5OVkDBw5U3bp1tWzZMvff/KLcL+TK71idybXXXqu7775bFotFoaGhatWqlTu4kPvZFvRZrVq1yj2ofHF/HqVhypQpev311zV79ux8GxULe6+ce5xOvzfz9fXNd3zHovwGKQ1Hjx5VRkZGvvvZvHnzPIGyb7/9VtOmTdOmTZvyjHGXlJTk0eB8tnuiwjq1wen0IJ1UtO9qQXU79T4yLCxMiYmJys7Odi8PDAx075uPj0+ebnqvuOIKNW3aVJMnT9b7779fpP071ZQpU/T111/rs88+y3P/LOV0/3TjjTfK6XTqgw8+kL+/v3vZH3/8oR07dhT42/LfXi8AlE20leVFWxltZaeirYy2sjOhrcy7CPZVIBaLJc+AnVLO04z5ye8p6DPNz2/dud544w0NHz5cAwYM0IMPPqiaNWvKx8dHs2bNcveV/W+3cTY9e/bUp59+qh9++EFXXnllvoO3SwUfjxMnTmjQoEFq1qyZXn311XzL/PDDD7rnnnt0++23a/To0R7LXC6XLBaLvvjii3z3LyQkxON1UZ4Sz9W1a1fVqFGjyO87fbsbNmzQ2rVr9dlnn2nlypV65513dPnll2v16tUFfjbe9sgjj+j111/Xk08+qQEDBngsy33q6pZbbtGwYcPyfX9+47KcidPpVO/evZWYmKiJEyfqvPPOU3BwsA4ePKjhw4eXiye9xo0bpyVLlujee+9Vp06dFB4eLovFosGDB+db/+I6L7t27aru3bsX2IBUVGer13fffZfnycLcgbgL0rNnT73wwgvasGHDWW9g8rtmZGdn6/rrr5e/v7/+97//5RnAOLcOQ4cOVe/evfXYY495LMs9/q+//rr7icdTnb4+f3//MvsDA6isLr74YnXo0OGMZcrquZvfPciNN96oLl266MMPP9Tq1as1d+5cPfnkk/rggw/Uv3//Ytlu+/btFR4e7pENU9T7tWeffVZvvfWW3njjjTzj3OQaPny4Dh06pB9++MHjB+G53C8U9X6tXr16eYIW56I0Po/i1qhRI91yyy0FNjgV9V65MIr6G6Ss2bt3r3r27KnzzjtP8+bNU1RUlGw2mz7//HM988wzee7XivM31LRp09S9e3e9/PLLHmMlnauz1W3gwIFav369e/6wYcP02muvFbi+evXqqXnz5v/qerFixQo9+eSTevTRR9WvX798yzz44IPatGmTvvzyyzyNRS6XS71799ZDDz2U73ubNWvm8fpcft8BKHm0ldFWVhi0lRUObWX/oK2MtrKyiGBfBVK1atV8U3WLklZ8rt577z01atRIH3zwgceNw7Rp00p827kcDockKTU1VdI/T1qcPHnSo1x+x8Plcmno0KE6efKkvvzyy3wH9Dx69Ki7e5cXX3wxz/LGjRvLGKPo6Og8P/xKQ4MGDfTll18qJSXF4ymQ3377zb08l9VqVc+ePdWzZ0/NmzdPTzzxhB555BGtXbu2wAaqgm4IS0vjxo11yy236OWXX3Z3o5ErIiJCoaGhcjqdZ21ga9CggXbt2iVjjMc+7dmzx6Pczp079fvvv2vp0qW69dZb3fPXrFmTZ52leWwaNGggl8ulvXv3ejyhtHv37jxl33vvPQ0bNswjeyIzMzPPOVESpk+f7m5AOl1RvquF0aZNmzyfS+3atZWQkFDge06/Xkg514zTj012dna+3ZGNHz9eMTEx2rBhQ74DR2dkZGjgwIGqUqWK3nrrrTw3H7lPm9WsWbNYGoUBlB9FvQbmPt14qt9//11BQUHuJzODgoLy/Tvw22+/yWq15nkSvSB16tTRmDFjNGbMGB05ckQXXnihHn/88WINLjmdzrNee6X879c2btyoBx54QPfee6+GDh2a7/pnz56tFStW6IMPPtB5553nsawo9wslIfezLeizqlGjhkemVFE/D2/fq0k5WVRvvPGGnnzyyTzLCnuvnHuc9uzZ49FA4XA4FBcX59EoVdjfIKV5bCIiIhQYGJjvuXv6Z//JJ58oKytLH3/8scfT2fl1UVTcunXrpu7du+vJJ5/U1KlTPZYV9btaGE8//bTHE/CRkZFnfY/D4chzvZByft+dGqDM73rx+++/a9iwYRowYIAefvjhfNf/9ttva/78+Zo/f766deuWZ3njxo2VmprKvRpQztFWRlsZbWW0lZ2KtjLayioyQp8VSOPGjfXbb795jIPy008/6dtvvy3xbec+TXDqUw2bN2/Wpk2bSnzbuT799FNJORczKSe1t0aNGnnGUjh1HIZcM2bM0KpVq/TWW2/l25WC0+nU4MGDlZ2drffffz/fLgUGDhwoHx8fzZgxI8/THcYYHT9+/Jz3rTCuuOIKOZ1OvfDCCx7zn3nmGVksFnfD0Okp3JLcT8ZnZWUVuP7cH/Sl8cevIFOmTJHdbtecOXM85vv4+GjQoEF6//339fPPP+d536nnRN++fXXw4EF9/PHH7nmZmZl65ZVX8qxT8vxOG2Py7ZaqNI9N7uf43HPPecyfP39+nrI+Pj55vovPP/98gU/sFadTG5AyMzM9lhX2u1pYVatWVa9evTymgICAM77nk08+kfTP9ULKuYaefr1YtGhRnuOV2zXJiy++qIsvvjjf9d955536/fff9eGHH+YZX0jK+R6GhYXpiSee8OjKJde/Hc8KQNlV1Gvgpk2bPMaOOHDggD766CP16dNHPj4+8vHxUZ8+ffTRRx8pLi7OXe7w4cN688031blz5zzdnZzO6XTm6bKmZs2aioyMPOO9QVGtXbtWqampea69SUlJ2rFjh3tefHy8PvzwQ4/3xsfH68Ybb1Tnzp01d+7cfNf/5ZdfasqUKXrkkUfyPNksFe1+oSTUqVNHbdu21dKlSz3uGX7++WetXr1aV1xxhaRz/zxyG+C8ea92aoPT6Q0Jhb1X7tChg6pXr65XXnnF3eAgScuXL8/TXVJhf4OU5rHx8fFR3759tWLFCu3fv989/9dff9WqVavylJWUp/uoJUuWlHg9pX/G7ju9a6/CfleLon379h73arljsxTk999/1+7du/NcLyR53K+lpaVp6dKlHu9NTU3Vddddp7p162rp0qX5Njb+/PPPuv3223XLLbfonnvuybcON954ozZt2pTnc5Nyvkunfj8BlF20ldFWRlsZbWWnoq2sYLSVlX9k9lUgI0aM0Lx589S3b1+NHDlSR44c0cKFC9WqVatCDYz+b1x11VX64IMPdN111+nKK69UbGysFi5cqJYtW3o8DVBcNm7c6L4oJiYm6uOPP9b69es1ePBgj6e4b7/9ds2ePVu33367OnTooA0bNuQZ5H3nzp169NFH1bVrVx05ckRvvPGGx/JbbrlFCxcu1Ndff60777wzz5O2tWrVUu/evdW4cWM99thjmjx5suLi4jRgwACFhoYqNjZWH374oUaPHq0HHnig2I9Frquvvlo9evTQI488ori4OLVp00arV6/WRx99pHvvvdf943jmzJnasGGDrrzySjVo0EBHjhzRSy+9pHr16qlz584Frr99+/aScp7S6Nu3r3x8fDR48OAi1TEuLk7R0dFn7banILkNSKf/oJdynuRfu3atOnbsqFGjRqlly5ZKTEzU9u3b9eWXX7pv3O644w698MILGjJkiO655x7VqVNHy5cvd//By20MOO+889S4cWM98MADOnjwoMLCwvT+++/n2yd3aR6btm3basiQIXrppZeUlJSkSy+9VF999VWep62knPPy9ddfV3h4uFq2bOnuoii/8Y1KwrRp0/IduLuw39Xisn37dvd5nZKSoq+++krvv/++Lr30UvXp08dd7vbbb9edd96pQYMGqXfv3vrpp5+0atUqj+5Ajh07pjFjxqhly5by9/fPc7247rrrtG7dOi1btkyDBg3Sjh07PBqwQ0JCNGDAAIWFhWnBggX6v//7P1144YUaPHiwIiIitH//fn322We67LLL8tzgAagYinoNPP/889W3b1+NHz9e/v7+7oaYGTNmuMs89thjWrNmjTp37qwxY8bI19dXL7/8srKysvL86M9PSkqK6tWrp+uvv15t2rRRSEiIvvzyS23ZsuWcx9ZLSkpyXyMdDod2796tBQsWKDAw0KOLx8GDB2vixIm67rrrNH78eKWnp2vBggVq1qyZR5Bz/PjxOnr0qB566CG9/fbbHttq3bq1WrdurSFDhigiIkJNmzbNc33u3bu3atWqVej7hZIyd+5c9e/fX506ddLIkSOVkZGh559/XuHh4Zo+fbqkc/88AgMD1bJlS73zzjtq1qyZqlWrpvPPP1/nn39+keo4fPhwLV26VLGxsfmOkXc2ud1J7d6922OsyMLeK9tsNk2fPl3jxo3T5ZdfrhtvvFFxcXF67bXX8owlU9jfIKV9bGbMmKGVK1eqS5cuGjNmjBwOh55//nm1atXK476gT58+stlsuvrqq3XHHXcoNTVVr7zyimrWrJnv09LFrVu3burWrZtH95q5CvNdLS4Oh8N9zrpcLsXFxWnhwoVyuVwe2S99+vRR/fr1NXLkSD344IPy8fHR4sWL3fdQuWbMmKFdu3ZpypQp+uijjzy21bhxY3Xq1Em33XabpJwutU6/Xlx66aVq1KiRHnzwQX388ce66qqrNHz4cLVv315paWnauXOn3nvvPcXFxf3rbuMAlDzaymgro62MtrJT0VaWg7ayCsqg3Fq8eLGRZLZv3+6e98Ybb5hGjRoZm81m2rZta1atWmWGDRtmGjRo4C4TGxtrJJm5c+d6rG/t2rVGknn33Xc95i9ZssRIMlu2bHHP69atm+nWrZv7tcvlMk888YRp0KCB8ff3N+3atTOffvppobdtjDGSzLRp0864z7l1PHWy2WzmvPPOM48//rjJzs72KJ+enm5GjhxpwsPDTWhoqLnxxhvNkSNHPLaV3zpPnYwxZtq0aQUuP/U4GGPM+++/bzp37myCg4NNcHCwOe+888zYsWPN7t27PY5fq1atzrivp8rd/tGjR89YLiUlxUyYMMFERkYaPz8/07RpUzN37lzjcrncZb766itz7bXXmsjISGOz2UxkZKQZMmSI+f33391lcj+nJUuWuOc5HA4zbtw4ExERYSwWizn18nH6Z1fQd2nnzp1Gkpk0adJZ97lBgwbmyiuvzDP/jz/+MD4+Pvmu//Dhw2bs2LEmKirK+Pn5mdq1a5uePXuaRYsWeZT7888/zZVXXmkCAwNNRESEuf/++837779vJJnvv//eXW7Xrl2mV69eJiQkxNSoUcOMGjXK/PTTT14/NhkZGWb8+PGmevXqJjg42Fx99dXmwIEDebZ14sQJc9ttt5kaNWqYkJAQ07dvX/Pbb7+ZBg0amGHDhrnL5XeOn1rXtWvXnrE+Z/p+duvWzUjK81kW5rtqTM7xGzt2bJ71nr4P+cn9Hp86+fr6mkaNGpkHH3zQpKSkeJR3Op1m4sSJpkaNGiYoKMj07dvX7Nmzx2Nb+a3z1Ck2NtZ9PPObTr0eGpNzjPv27WvCw8NNQECAady4sRk+fLjZunWru8ywYcNMcHDwGfcVQOkp6Jp5ujOdu0W9Br7xxhumadOm7nus/K7L27dvN3379jUhISEmKCjI9OjRw3z33XeFqntWVpZ58MEHTZs2bUxoaKgJDg42bdq0MS+99FKefTr9Opaf3Gt/7mSxWEy1atXMNddcY7Zt25an/OrVq835559vbDabad68uXnjjTfcf1sKWuepU+7fvjNdn089ZoW5Xyjo7/WZFPQ363Rffvmlueyyy0xgYKAJCwszV199tdm1a5d7+b/5PL777jvTvn17Y7PZPI7N6cfTmILvRwcNGmQCAwPNiRMnzrgfZzoXhg0bZiTlu/7C3CsbY8xzzz3n/m1x8cUXm2+//da0b9/e9OvXz12msL9BSvvYGGPM+vXr3dtr1KiRWbhwYb7b+vjjj03r1q1NQECAadiwoXnyySfdv/NiY2Pd5Qq6Nz79d1lBCvp+nvpb6PTP8mzfVWMKvg/M/X6cug/5yf2unDqFhYWZnj17mi+//DJP+W3btpmOHTsam81m6tevb+bNm5dnW/mtM3fKvadr0KBBgWVOvc9PSUkxkydPNk2aNDE2m83UqFHDXHrppeapp55y//Y8029cAKWPtjLayk5HWxltZbSV/YO2sorNYsy/GOUVXvXcc8/pnnvu0Z49e4o9ug+UhJdeekkPPfSQ9u7dm2/fzd40f/58TZgwQX/99Zfq1q1b6tsvy8cGAOAdFotFY8eO5elFlKpatWrp1ltvLbC7VG9xuVyKiIjQwIED83QpVVrK6rEBAPyDtjKUN2W5PYi2MqB8Ycy+cmzLli0KDg4u8gCdgLesXbtW48eP9/of6IyMDI/XmZmZevnll9W0aVOv3LxIZefYAACAyuuXX35RRkaGJk6c6NV6ZGZm5hlLZdmyZUpMTFT37t29UqeycmwAAGdGWxnKm7LSHkRbGVD+MWZfOfT+++9r3bp1Wr58uW6//Xb5+vIxonx49913vV0FSTkDRNevX19t27Z1jyn022+/afny5V6rU1k5NgAAoPIqjfGLCuP777/XhAkTdMMNN6h69eravn27/vvf/+r888/XDTfc4JU6lZVjAwDIH21lKK/KSnsQbWVA+cdfvnLogQceUEpKikaOHKlnnnnG29UByp2+ffvq1Vdf1fLly+V0OtWyZUu9/fbbuummm7xdNQAAgEqvYcOGioqK0nPPPafExERVq1ZNt956q2bPni2bzebt6gEAyiDayoB/h7YyoPxjzD4AAAAAAAAAAACgnGLMPgAAAAAAAAAAAKCcItgHAAAAAAAAAAAAlFOM2VcILpdLhw4dUmhoqCwWi7erAwBAmWGMUUpKiiIjI2W18gwRAAAAUFnQXgYAQP680V5GsK8QDh06pKioKG9XAwCAMuvAgQOqV6+et6sBAAAAoJTQXgYAwJmVZnsZwb5CCA0NlZTzwYSFhXm5NgAAlB3JycmKiopy/60EAAAAUDmURHuZ3W7X6tWr1adPH/n5+RXLOoHKgvMHODclce54o72MYF8h5HZFEBYWRrAPAIB80G0PAAAAULmURHuZ3W5XUFCQwsLCCFYARcT5A5ybkjx3SrO9jMF1AAAAAAAAAAAAgHKKYB8AAAAAAAAAAABQThHsAwAAAAAAAAAAAMopgn0AAAAAAAAAAABAOUWwDwAAAAAAAAAAACinCPYBAAAAAAAAAAAA5RTBPgAAAAAAAAAAAKCcItgHAAAAAAAAAAAAlFME+wAAAAAAAAAAAIByimAfAAAAAAAAAAAAUE4R7AMAAAAAAAAAAADKKYJ9AAAAAAAAAAAAQDlFsA8AAAAAAAAAAACVissY7U+yK8mvuvYn2eUyxttVOme+3q4AAAAAAAAAAAAAUFp+O5apNXtSlZLtkkKa6Z1dqQq1pat3kxCdVyPA29UrMjL7AAAAAAAAAAAAUCn8dixTH+xKzgn0nSIl26UPdiXrt2OZXqrZuSPYBwAAAAAAAAAAgArPZYzW7Ek9Y5kv96aWuy49CfYBAAAAAAAAAACgwjuQZM+T0Xe65CyXDiTZS6lGxYNgHwAAAAAAAAAAACq81LME+oparqzw9XYFAABl069Hs7xdBZSAFhH+3q4CAAAAAAAA4BUhtsLlwBW2XFlRvmoLAAAAAAAAAAAAnIOocD+FniWQF+ZvVVS4XynVqHgQ7AMAAAAAAAAAAECFZ7VY1LtJyBnL9GocIqvFUko1Kh504wkAAAAAAAAAAIBKIcAn/zy4MH+rejUO0Xk1Akq5Rv8ewT4AAAAAAAAAAABUeMYYrYtLlSS1rxOgJlV99e0P23XZxRcqunpgucvoy0WwDwAAAAAAAAAAABXeH4nZOpTikJ9VuqxBsPwtLv1sP6764X7lNtAnMWYfAAAAAAAAUGZs2LBBV199tSIjI2WxWLRixQqP5RaLJd9p7ty57jINGzbMs3z27Nke69mxY4e6dOmigIAARUVFac6cOaWxewAAeI0xRutjc7L6LqobpBCbj5drVHy8Guzj5gUAAAAAAAD4R1pamtq0aaMXX3wx3+Xx8fEe0+LFi2WxWDRo0CCPcjNnzvQoN27cOPey5ORk9enTRw0aNNC2bds0d+5cTZ8+XYsWLSrRfQMAwJt2Hc3S0XSn/H0s6lgvyNvVKVZe7cYz9+ZlxIgRGjhwYJ7l8fHxHq+/+OILjRw5Mt+bl1GjRrlfh4aGuv+fe/PSq1cvLVy4UDt37tSIESNUpUoVjR49upj3CAAAAAAAADh3/fv3V//+/QtcXrt2bY/XH330kXr06KFGjRp5zA8NDc1TNtfy5cuVnZ2txYsXy2azqVWrVoqJidG8efNoLwMAVEhOl9GGuDRJ0iVRQQr0q1gdX3o12MfNCwAAAAAAAHBuDh8+rM8++0xLly7Ns2z27Nl69NFHVb9+fd18882aMGGCfH1zmgI3bdqkrl27ymazucv37dtXTz75pE6cOKGqVavmWV9WVpaysrLcr5OTkyVJdrtddru9WPYndz3FtT6gMuH8Ac4s5nCWTmQ6FeRnUduafnnOmeI8d7xxHno12FcUpXnzAgAAAAAAAJR1S5cuVWhoaJ4es8aPH68LL7xQ1apV03fffafJkycrPj5e8+bNkyQlJCQoOjra4z21atVyL8uvvWzWrFmaMWNGnvmrV69WUFDxdoW2Zs2aYl0fUJlw/gB5uWTVH+HtJKtNYUl/6stVCXnKFOe5k56eXmzrKqxyE+wrzZuXgp5UAgAAAAAAAMqKxYsXa+jQoQoICPCYf99997n/37p1a9lsNt1xxx2aNWuW/P39z2lbkydP9lhvcnKyoqKi1KdPH4WFhZ3bDpzGbrdrzZo16t27t/z8/IplnUBlwfkDFGzLoUz9ui9DYTarhnRsJ1+rxb2sJM4db8SUyk2wrzRvXgp6UgkAAAAAAAAoCzZu3Kjdu3frnXfeOWvZjh07yuFwKC4uTs2bN1ft2rV1+PBhjzK5rwsaKsff3z/ftjY/P79iDyyUxDqByoLzB/CU5XBp88FMSVKXhsEK9LflW644zx1vnIPlYgTC3JuX22+//axlT715kXRONy+TJ09WUlKSezpw4MC/2wEAAAAAAACgGP33v/9V+/bt1aZNm7OWjYmJkdVqVc2aNSVJnTp10oYNGzzGFFqzZo2aN2/OkDcAgArlh4MZynAYVQv00QW1As7+hnKqXAT7Svvmxd/fX2FhYR4TAAAAAAAAUNJSU1MVExOjmJgYSVJsbKxiYmK0f/9+d5nk5GS9++67+T4Yv2nTJs2fP18//fST/vzzTy1fvlwTJkzQLbfc4m4Lu/nmm2Wz2TRy5Ej98ssveuedd/Tss8969KAFAEB5l253afNfOePndWsYLKvFcpZ3lF9e7cYzNTVVe/bscb/OvXmpVq2a6tevL+mfm5enn346z/s3bdqkzZs3q0ePHgoNDdWmTZvyvXmZMWOGRo4cqYkTJ+rnn3/Ws88+q2eeeaZ0dhIAAAAAAAAopK1bt6pHjx7u17kBuGHDhum1116TJL399tsyxmjIkCF53u/v76+3335b06dPV1ZWlqKjozVhwgSPQF54eLhWr16tsWPHqn379qpRo4amTp2q0aNHl+zOAQBQijYdSFO206h2iK/Oq3Fuw76VF14N9nHzAgAAAAAAAPyje/fuMsacsczo0aMLbNu68MIL9f333591O61bt9bGjRvPqY4AAJR1yVlObT2YISknq89SgbP6JC8H+7h5AQAAAAAAAAAAQHH6dn+anEaKCvNTo6o2b1enxJWLMfsAAAAAAAAAAACAs0nMcOinhExJUrfoip/VJxHsAwAAAAAAAAAAQAWxcV+aXEZqXNWm+uEVP6tPItgHAAAAAAAAAACACuBImkO/HMmSlJPVV1kQ7AMAAAAAAAAAAEC5tz4uVZLUIsJftUP8vFyb0uPr7QoAAAAAAMoHY4xMPvNPHwGjMoyJAQAAAKBsOZhs1x/Hs2WR1LVB5cnqkwj2AQAAAEClYoyR00gOl5HDlftvzv+dLiOny8hl9PeU83+jnNeFZZFktfw9WS2yWiQfi8U9z8dika+PRb5WyddqkZ815/8ECQEAAACcq3V/Z/W1rhWg6kGVK/xVufYWAAAAACoBp8so2/nPZM/9v8vI6Sr57RtJTpMz/RMlPHu00Mfyd/DPJ2ey+Vjk//e/BAMBAAAAFCT2RLb2nbTLxyJ1rmRZfRLBPgAAAAAot1zGKNORO7mU7cgJ6jmLkIVXljiN5HQaZeWzAxZJNt9/gn/+vhYF+Fpl8yEACAAAAFRmxhj3WH3t6gQqPMDHyzUqfQT7AAAAAKAccLqMMhxGWQ6XO8CXXV6jeufASMpyGGU5PPfZxyIF/B34C/CzKNDXKj8CgAAAAECl8fvxbB1KccjPatGl9StfVp9EsA8AAAAAyiS70yjd7vp7qlyBvaJwGinNbpRmd0oZOfN8LFKgn1VBfhYF+VkV4GuhC1AAAACgAnKdktV3Ud1AhdisXq6RdxDsAwAAAIAywO40SssN7mW7ZC+FsfUqKqeRUrNdSs2WJKesFinIz6pgP4uCbFb5+xD8AwAAACqCXUeydCzdqQBfiy6JCvJ2dbyGYB8AAAAAeIExRul283dQykXmXglynRr8S3PK5+/gX4i/VSE2q3ytBP4AAACA8sbpMtqwLyer75J6QQrwrZxZfRLBPgAAAAAoNQ6XUdrfwb3UbJdcxPe8wmmklGyXUrJz0icDfS0K8bcq1GaVfyVuIAAAAADKk58SMnUy06VgP6s61K28WX0SwT4AAAAAKFF2p1FKllPJWS5lOIjulUUZDqMMh1NH05yy+VgUYssJ/AX60d0nAAAAUBbZnUbf7E+TJF1WP0g2n8p9306wDwAAAACKmdNllJzlUnKWU+l2AnzlSbbTKDHDqcQMp3ytUpi/j8L8rQr0I+MPAAAAKCu2HUpXarZL4f5Wta0T6O3qeB3BPgAAAAAoBi5jlJLlUnKWS2nZLhHiK/8cLrkDfzYfi8L9rQoP8JFfJX9qGAAAAPCmTIdLmw6kS5K6NAhmDG4R7AMAAACAfyXD7tLJzJxuOhmDr+LKdhodTXfqaLpTQX4WhQfkZPxZ6eYTAAAAKFU//JWuDIdR9SAfnV8rwNvVKRMI9gEAAABAEbmMUVJmTpAvk3H4Kp10u1G63aHDqVKVAB9VDfSp9GOEAAAAAKUhLdulHw5mSJK6NQjm4bu/EewDAAAAgELKdLh0MsOpJLL4IMll/unmM9jPoqqBPgqxWWWhwQEAAAAoEZsOpCnbaVQ7xFfNa/h7uzplBsE+AAAAADgDY4xSsl1KTHcqgyw+FCDNbpRmd8jPmpPtVyXQh7FDAAAAgGKUnOXUtkM5WX3dGwbzkN0pCPYBAAAAQD5cxuhkpkuJ6Q7ZXd6uDcoLu0s6mu7UsXSnwgOsqh7kSxefAAAAQDH4Zl+anEaKCvdTdFWbt6tTphDsAwAAAIBTOF1GiRlOnchwykkiH86RkXQy06WTmdkK87eqRpCP/H2t3q4WAAAAUC4lZjj0U0KmJLL68kOwDwAAAAAk2Z05Qb6TmU7G40OxSs5yKTnLpRBbTtAv0I+gHwAAAFAUG+LSZCQ1qWZTVDhZfacj2AcAAACgUnO4jI6n52TyEeNDSUrNdik126UgP4tqBPkq2EbQDwAAADibw6l27TqaJUnq1jDYy7Upmwj2AQAAAKiUcrvrTMwgkw+lK91utD/JrmA/i2qG+CqA7j0BAACAAm2IS5MktYjwV60QPy/Xpmwi2AcAAACgUnEZoxMZTh1PZ0w+eFea3Sj2hF1h/lZFBPvK5sO4IwAAAMCp/kq264/EbFkkdW1AVl9BCPYBAAAAqBSMMTqZ6dKxdIccLm/XBvhHzph+2aoaYFWNYF/5Wgn6AQAAAMYYrYtNlSS1rh2g6kGEtArCkQEAAABQ4aVlu5SQ6lA2qXwow05kupSUla1qgT6qHuQjq4WgHwAAACqvuJN27U+yy8cidalPVt+ZEOwDAAAAUGFlO42OpDqUkk0qH8oHl5GOpTuVlOlUzRBfhfn7eLtKAAAAQKk7NavvwshAhQVwX3wmBPsAAAAAVDguY3Q8PWdcPnL5UB7ZXdLBZIdO+jlVO8RXNl+rt6sEAAAAlJrfj2crPtUhP6tFl0aR1Xc2BPsAAAAAVCjJWU4dTmVcPlQMaXajP0/YVS3IRzXo2hMAAACVgMsYrY/Lyeq7uF6ggm08+HY2BPsAAAAAVAh2p1F8il1pdnL5ULEYScf/7tqzFl17AgAAoIL75UimjqU7FeBrUcd6Qd6uTrlAsA8AAABAuWaM0YlMl46mOeQizocKzPF3157JNpdqh/rK10qWHwAAACoWp8to4740SVKnqCAF0J19oRDsAwAAAFBuZTtcik91KJ1sPlQiKdkupSdmq1aIr8IDyPIDAABAxRGTkKGTmS4F26zqEElWX2ER7AMAAABQ7hhjlJjh1NE0pwjzoTJyGulQikMpWWT5AQAAoGKwO42+2Z8uSepcP0h+PtzjFhbBPgAAAADlSpbDpUMpDmU6CPMBZPkBAACgoth6KF1p2S6F+1vVtnagt6tTrhDsAwAAAFBunMhw6nCqg2w+4BRk+QEAAKC8y3S4tOlATlZf14bB8uGetkgI9gEAAAAo85wuo/gUh1KyXd6uClBmpWS7lHEiW3VD/RRks3q7OgAAAEChbf4rXZkOoxpBPmpVM8Db1Sl3uPsHAAAAUKalZ7v054lsAn1AIThc0r4ku46mOWQMObAAAAAo+9KyXfrhrwxJUreGIbJayOorKjL7AAAAAJRJxhgdS3fqWLrT21UByp1j6U6l212KDPWTnw+NJQAAACi7vjuQJrvLqE6Ir5pVt3m7OuUSmX0AAAAAyhy702jfSTuBPuBfSLcbxZ7IVipZsQAAACijkjKd2n4oJ6uve3SILGT1nROCfQAAAADKlPRsl2JPZCvDQReEwL/lNNKBJLuOpNKtJwAAAMqeb/enyWmk+uF+aljFz9vVKbfoxhMAAABAmZGY4dThVIe3qwFUOMcznMp0uFQ3zE8+Vp6WBgAAgPcdT3fop4RMSVL3hmT1/Rtk9gEAAADwOpcxOpRiJ9AHlKA0u1HcSbuyHHTrCZRlGzZs0NVXX63IyEhZLBatWLHCY/nw4cNlsVg8pn79+nmUSUxM1NChQxUWFqYqVapo5MiRSk1N9SizY8cOdenSRQEBAYqKitKcOXNKetcAAPCwYV+ajKQm1WyqF05W379BsA8AAACAV+WOz5eUSQACKGnZzpyAX0oW42ECZVVaWpratGmjF198scAy/fr1U3x8vHt66623PJYPHTpUv/zyi9asWaNPP/1UGzZs0OjRo93Lk5OT1adPHzVo0EDbtm3T3LlzNX36dC1atKjE9gsAgFMdTrXr16NZknKy+vDv0I0nAAAAAK9Jt7v0V5JdToYSA0qNy0h/JTsUEWxUI4hmAaCs6d+/v/r373/GMv7+/qpdu3a+y3799VetXLlSW7ZsUYcOHSRJzz//vK644go99dRTioyM1PLly5Wdna3FixfLZrOpVatWiomJ0bx58zyCggAAlJT1cWmSpJYR/qoZwj3pv0VmHwAAAACvSMp0av9JAn2AtxxNc+pgsl0uw0kIlDfr1q1TzZo11bx5c9111106fvy4e9mmTZtUpUoVd6BPknr16iWr1arNmze7y3Tt2lU2m81dpm/fvtq9e7dOnDhRejsCAKiUDiRla09itiySujYM9nZ1KgSvhks3bNiguXPnatu2bYqPj9eHH36oAQMGuJcPHz5cS5cu9XhP3759tXLlSvfrxMREjRs3Tp988omsVqsGDRqkZ599ViEh/6R97tixQ2PHjtWWLVsUERGhcePG6aGHHirx/QMAAACQv+PpDh1JoxtBwNuSs1zKdtoVFe4nX6vF29UBUAj9+vXTwIEDFR0drb179+rhhx9W//79tWnTJvn4+CghIUE1a9b0eI+vr6+qVaumhIQESVJCQoKio6M9ytSqVcu9rGrVqnm2m5WVpaysLPfr5ORkSZLdbpfdbi+WfctdT3GtD6hMOH9QXhhjtPbPnHFkL6hpU6iv8er3tiTOHW/sj1eDfbl9kI8YMUIDBw7Mt0y/fv20ZMkS92t/f3+P5UOHDlV8fLzWrFkju92u2267TaNHj9abb74p6Z8+yHv16qWFCxdq586dGjFihKpUqUK3BAAAAEApM8bocKpDJxifDygzMh0542ZGhfvJ5kPADyjrBg8e7P7/BRdcoNatW6tx48Zat26devbsWWLbnTVrlmbMmJFn/urVqxUUFFSs21qzZk2xrg+oTDh/UNal+obrr9CWshiXMn/fpM93Z3u7SpKK99xJT08vtnUVlleDffRBDgAAAFQeLmN0KNmhlGwCfUBZk+00ijuRrahwPwX6MeIHUJ40atRINWrU0J49e9SzZ0/Vrl1bR44c8SjjcDiUmJjobmOrXbu2Dh8+7FEm93VB7XCTJ0/Wfffd536dnJysqKgo9enTR2FhYcWyL3a7XWvWrFHv3r3l5+dXLOsEKgvOH5QHxhi9vjNFSnPqwshAXX5pL29XqUTOndzs99JU5kc9zO2DvGrVqrr88sv12GOPqXr16pLO3gf5ddddV2Af5E8++aROnDhRpG4JAAAAAJwbh8voryS7MhyMDQaUVU4j7U+yq16Yn4JtBPyA8uKvv/7S8ePHVadOHUlSp06ddPLkSW3btk3t27eXJH399ddyuVzq2LGju8wjjzwiu93ubthcs2aNmjdvnm9bmZTzQP7pPW5Jkp+fX7EHFkpinUBlwfmDsuy3o5k6nOaUzceizg1C5VeGHjIrznPHG+dg2TmS+ejXr5+WLVumr776Sk8++aTWr1+v/v37y+nMGdujsH2Q5/Y5nuvUPsjzM2vWLIWHh7unqKio4t41AAAAoNKwO3O6CCTQB5R9LiMdSLIrOZMxNQFvSU1NVUxMjGJiYiRJsbGxiomJ0f79+5WamqoHH3xQ33//veLi4vTVV1/p2muvVZMmTdS3b19JUosWLdSvXz+NGjVKP/zwg7799lvdfffdGjx4sCIjIyVJN998s2w2m0aOHKlffvlF77zzjp599lmPzD0AAIqTyxitj0uTJF1cN5CHy4pZmc7s81Yf5AV1SwAAAACgaLKdRvtPZstOz51AuWEkHUxxyGmkqoE+3q4OUOls3bpVPXr0cL/ObaMaNmyYFixYoB07dmjp0qU6efKkIiMj1adPHz366KMeWXfLly/X3XffrZ49e8pqtWrQoEF67rnn3MvDw8O1evVqjR07Vu3bt1eNGjU0depUhrwBAJSYnw9n6niGU4G+Fl1cr3jHekUZD/adrrT6IC+oWwIAAAAAhZftcGlfkl0OAn1AuZSQ6pAxRtWCylXTAVDude/eXcYUnA2/atWqs66jWrVqevPNN89YpnXr1tq4cWOR6wcAQFE5XEYb9+Vk9XWKClKAL1l9xa1cHdEz9UGeK78+yDds2CC73e4uc7Y+yAEAAAD8O1kE+oAK4XCaU4npDm9XAwAAAOVYTEKGkrJcCrFZ1T6SrL6S4NVgH32QAwAAABVPpsOlfScJ9AEVxeE0p44T8AMAAMA5yHYafbsvXZJ0Wf0g+flYvFyjismrwb6tW7eqXbt2ateunaScPsjbtWunqVOnysfHRzt27NA111yjZs2aaeTIkWrfvr02btyYpw/y8847Tz179tQVV1yhzp07a9GiRe7luX2Qx8bGqn379rr//vvpgxwAAAAoIZkOl/aftMtZcO9jAMqhIwT8AAAAcA62HkxXmt2lKgFWta0d6O3qVFhe7XifPsgBAACAiiPT7tL+JAJ9QEV1JM0pSarOGH4AAAAohEyHS9//lZPV17VBiHysZPWVlHI1Zh8AAACAsinLQaAPqAzI8AMAAEBhfX8gXZkOoxpBPmpZ0//sb8A5I9gHAAAA4F/JdhoCfUAlciTNqZMZTm9XAwAAAGVYarZLWw5mSJK6NQyR1UJWX0ki2AcAAADgnNmdRvtPZsvh8nZNAJSm+FSHUrII+AEAACB/mw6kye4yqhPqq2bVbd6uToVHsA8AAADAOXG6jA4k2WUn0AdUSgeTHUrP5gIAAAAAT0mZTm0/lJPV171hiCxk9ZU4gn0AAAAAisxlcgJ9WfTdCVRaRtKBZLsySe0FAADAKb7ZlyankRpU8VN0VbL6SgPBPgAAAABFYozRwWSHMhwE+oDKzmWkA0l2ZRP4BwAAgKTj6Q7tOJwpKSerD6WDYB8AAACAIjmc6lAqXfcB+JvDlRPwc7gI+AEAAFR2G/alyUhqWt2mumF+3q5OpUGwDwAAAEChJWY4dSKTQB8AT9lOo7+S7HIZAn4AAACVVUKqXb8ezZIkdWtAVl9pItgHAAAAoFBSs106nOrwdjUAlFEZDqOEFK4RAAAAldX6uDRJUqsIf9UM8fVybSoXgn0AAAAAzirL4dLBZLu3qwGgjEvKcul4OgE/AACAyuZAUrb2JmbLapG6NAz2dnUqHYJ9AAAAAM7I4TI6kGQXw3EBKIwjaU6lZDm9XQ0AAACUEmOM1sbmZPW1qR2gaoFk9ZU2gn0AAAAACmSM0V/JdtkZpg9AERxKcSjLwYUDAACgMvjzRLb+SrbLxyJ1rk9WnzcQ7AMAAABQoIRUhzLspPQBKBqXkQ4k2eUgJRgAAKBCM8Zo3d9j9XWoG6hQfx8v16hyItgHAAAAIF8nM506mUlmDoBzY3dJB5PtMoaAHwAAQEX127EsHU51yOZjUacosvq8hWAfAAAAgDwyHS4lpDi8XQ0A5Vy63ehoOuP3AQAAVEQuY7Th76y+i+sGKsiPkJO3cOQBAAAAeHC6jA4mO0QuDoDicDzdqdRssoQBAAAqmp2HM3U8w6lAX4s61gvydnUqNYJ9AAAAADwkpDqU7STUB6D4HEq2y851BQAAoMJwuIw27svJ6ru0frD8fQk3eRNHHwAAAIBbYoZTyVlk4AAoXk4jHUph/D4AAICK4sf4DCVnuRRis+rCOoHerk6lR7APAAAAgCQpw+7SkVTG6QNQMhi/DwAAoGLIdhp9uz8nq69z/WD5+Vi8XCMQ7AMAAAAglzE6mGxnnD4AJYrx+wAAAMq/rQfTlW43qhJgVZvaAd6uDkSwDwAAAICkw6kO2Wl/B1AKDiXb5XDxaAEAAEB5lGF36fu/0iVJXRuEyMdKVl9ZQLAPAAAAqORSs5w6mUmkD0DpcBopIYUugwEAAMqjzX+lK9NhFBHso1Y1/b1dHfyNYB8AAABQiTldRvGM0weglKVku5Scyfh9AAAA5UlqtlNbDuZk9XVrGCKLhay+soJgHwAAAFCJxac65CCpD4AXJKQ66M4TAACgHPluf7rsLiky1FdNq9m8XR2cgmAfAAAAUEklZTqVkkWkD4B3OI0UT3eeAAAA5UJSplPb4zMkSd3J6itzCPYBAAAAlZDdaZRA950AvCw126UkuvMEAAAo8zbuS5PLSA2r+KlhVbL6yhqCfQAAAEAllJDqEL3nASgLElIdsju5IAEAAJRVx9Id2nk4U1LOWH0oewj2AQAAAJVMSpZTqdl03wmgbHAZkWkMAABQhm2IS5OR1Ky6TXXD/LxdHeSDYB8AAABQibgM3XcCKHtSs11KyaI7TwAAgLImPsWu345lSZK6ktVXZhHsAwAAACqRo2lOOUjqA1AGHU51yGXozhMAAKAsWR+XJkk6v6a/agb7erk2KAjBPgAAAKCSyHS4lJhB5gyAssnuko6lc40CAAAoK/afzNafJ7JltUhdGgR7uzo4A4J9AAAAQCVgjFFCCt13AijbEtOdyiL9GAAAwOuMMVr3d1Zfm9qBqhpIVl9ZRrAPAAAAqAROZrqU4aB7PABlm1FOd54AAADwrr0nsvVXsl2+Vqlz/SBvVwdnQbAPAAAAqOCcLqOjaTSeAygf0uxGyZl05wkAAOAtxhitj83J6usQGaRQfx8v1whnQ7APAAAAqOCOpTvlJKkPQDlyOM0hl+HCBQAA4A2/HsvS4TSHbD4WXRJFVl95QLAPAAAAqMCynUYnMsiQAVC+OFzS8XSuXQAAAKXNZYw2/D1WX8d6QQryI4xUHvApAQAAABXY0TSHyI0BUB4lZjjlcHEFAwAAKE07D2cqMcOpQD+LLq4b6O3qoJAI9gEAAAAVVIbdpeQsl7erAQDnxGWkY4w3CgAAUGocLqON+3Ky+i6NCpa/LyGk8oJPCgAAAKigDqfSSA6gfDuR6VI2g44CAACUiu3xGUrOcinUZtWFdcjqK08I9gEAAAAVUHKWUxkOGsgBlH9HyO4DAAAocdlOl77bn5PV17lBsPx8LF6uEYqCYB8AAABQwRhjdDTN6e1qAECxSMlyKcNOl8SoPDZs2KCrr75akZGRslgsWrFihXuZ3W7XxIkTdcEFFyg4OFiRkZG69dZbdejQIY91NGzYUBaLxWOaPXu2R5kdO3aoS5cuCggIUFRUlObMmVMauwcAKKO2HMxQut2oaoCPWtcK8HZ1UEQE+wAAAIAKJimLbu8AVCxk96EySUtLU5s2bfTiiy/mWZaenq7t27frP//5j7Zv364PPvhAu3fv1jXXXJOn7MyZMxUfH++exo0b516WnJysPn36qEGDBtq2bZvmzp2r6dOna9GiRSW6bwCAsinD7tL3B9IlSV0bBsvHSlZfeePr7QoAAAAAKD7GGB1PJ6sPQMWSbjdKy3Yp2MYzy6j4+vfvr/79++e7LDw8XGvWrPGY98ILL+jiiy/W/v37Vb9+fff80NBQ1a5dO9/1LF++XNnZ2Vq8eLFsNptatWqlmJgYzZs3T6NHjy6+nQEAlAvf/5WuLKdRRLCPWkb4e7s6OAfcJQMAAAAVSDJZfQAqqGPpZPcB+UlKSpLFYlGVKlU85s+ePVvVq1dXu3btNHfuXDkc/5xDmzZtUteuXWWz2dzz+vbtq927d+vEiROlVXUAQBmQmu3UloM5WX3dG4bIYiGrrzwisw8AAACoIIwxOkZWH4AKKt1ulJ7tUhDZfYBbZmamJk6cqCFDhigsLMw9f/z48brwwgtVrVo1fffdd5o8ebLi4+M1b948SVJCQoKio6M91lWrVi33sqpVq+bZVlZWlrKystyvk5OTJeWMI2i324tlf3LXU1zrAyoTzh+cq42x6XK4pMgQHzUItVS671BJnDveOIYE+wAAAIAKIoWsPgAV3LF0h+qfkokEVGZ2u1033nijjDFasGCBx7L77rvP/f/WrVvLZrPpjjvu0KxZs+Tvf27ds82aNUszZszIM3/16tUKCgo6p3UW5PSuSgEUHucPiiLb6q89YW0li1W2+B364kCyt6vkNcV57qSnpxfbugrLq8G+DRs2aO7cudq2bZvi4+P14YcfasCAAZJyblimTJmizz//XH/++afCw8PVq1cvzZ49W5GRke51NGzYUPv27fNY76xZszRp0iT36x07dmjs2LHasmWLIiIiNG7cOD300EOlso8AAABAaSCrD0BlkGY3yrC7FOhHdh8qt9xA3759+/T11197ZPXlp2PHjnI4HIqLi1Pz5s1Vu3ZtHT582KNM7uuCxvmbPHmyRxAxOTlZUVFR6tOnz1m3X1h2u11r1qxR79695efnVyzrBCoLzh+ci8/3pMkczVaDcF/d0Kmzt6vjFSVx7uRmv5cmrwb70tLS1KZNG40YMUIDBw70WJaenq7t27frP//5j9q0aaMTJ07onnvu0TXXXKOtW7d6lJ05c6ZGjRrlfh0aGur+f3Jysvr06aNevXpp4cKF2rlzp0aMGKEqVaow4DAAAAAqjJRsl7LI6gNQCRxPd6peOME+VF65gb4//vhDa9euVfXq1c/6npiYGFmtVtWsWVOS1KlTJz3yyCOy2+3uhs01a9aoefPm+XbhKUn+/v75ZgX6+fkVe2ChJNYJVBacPyiso2kO7TqaLUnq0Si00n9vivPc8cax9Gqwr3///urfv3++y8LDw/OkTb7wwgu6+OKLtX//ftWvX989PzQ0tMCnjpYvX67s7GwtXrxYNptNrVq1UkxMjObNm0ewDwAAABXGcbL6AFQSKdkuZTlc8vcl4IeKKTU1VXv27HG/jo2NVUxMjKpVq6Y6dero+uuv1/bt2/Xpp5/K6XQqISFBklStWjXZbDZt2rRJmzdvVo8ePRQaGqpNmzZpwoQJuuWWW9yBvJtvvlkzZszQyJEjNXHiRP3888969tln9cwzz3hlnwEApW/DvjQZSc2q+ysytHIH+iqCcnVnnJSUJIvFoipVqnjMnz17tqpXr6527dpp7ty5cjgc7mWbNm1S165dZTulT/++fftq9+7dOnHiRGlVHQAAACgx6XaXMh1k9QGoPI5n8IADKq6tW7eqXbt2ateunaSc8ffatWunqVOn6uDBg/r444/1119/qW3btqpTp457+u677yTlZOC9/fbb6tatm1q1aqXHH39cEyZM0KJFi9zbCA8P1+rVqxUbG6v27dvr/vvv19SpU3kwHgAqifgUu3Yfy5IkdWsY7OXaoDh4NbOvKDIzMzVx4kQNGTLEox/w8ePH68ILL1S1atX03XffafLkyYqPj9e8efMkSQkJCYqOjvZYV61atdzL8uuaICsrS1lZWe7X3uhfFQAAACisRBq9AVQyyZku1Qw28rVavF0VoNh1795dxhT8EM+ZlknShRdeqO+///6s22ndurU2btxY5PoBAMq/dXFpkqQLagYoIrjchIlwBuXiU8zti9wYowULFngsO3Vg4NatW8tms+mOO+7QrFmz8u1HvDBmzZqlGTNm/Ks6AwAAAKXB7jRKyXJ5uxoAUKqMpJOZTtUIKhfNGgAAAGXGvpPZij2RLatF6tKArL6Kosx345kb6Nu3b5/WrFnjkdWXn44dO8rhcCguLk6SVLt2bR0+fNijTO7rgsb5mzx5spKSktzTgQMH/v2OAAAAACXgBFl9ACqpkxnOs2Y4AQAA4B/GGK3/O6uvbe1AVQn08XKNUFzKdLAvN9D3xx9/6Msvv1T16tXP+p6YmBhZrVbVrFlTktSpUydt2LBBdrvdXWbNmjVq3rx5vl14Sjl9m4eFhXlMAAAAQFnjMkYnMwn2Aaic7C4pNZvMZgAAgMLam5itv5Lt8rVKnesHebs6KEZe7e8iNTVVe/bscb+OjY1VTEyMqlWrpjp16uj666/X9u3b9emnn8rpdCohIUGSVK1aNdlsNm3atEmbN29Wjx49FBoaqk2bNmnChAm65ZZb3IG8m2++WTNmzNDIkSM1ceJE/fzzz3r22Wf1zDPPeGWfAQAAgOKSlOmSk6QWAJVYYoZTof48kQ4AAHA2xhj3WH0dIoMUwj1UheLVYN/WrVvVo0cP9+vc8feGDRum6dOn6+OPP5YktW3b1uN9a9euVffu3eXv76+3335b06dPV1ZWlqKjozVhwgSPcfzCw8O1evVqjR07Vu3bt1eNGjU0depUjR49uuR3EAAAAChBdOEJoLJLtxtlOVzy9y3THRcBAAB43a6jWTqS5pC/j0WXRJHVV9F4NdjXvXv3M/avf7a+9y+88EJ9//33Z91O69attXHjxiLXDwAAACir0u0uZZHWBwA6keFU7VCCfQAAAAVxuow2/J3V17FekIL8uHeqaPhEAQAAgHKIsfoAIEdSlkuuszwsDAAAUJntPJypE5lOBflZdFHdQG9XByWAYB8AAABQzjhdRsmZLm9XAwDKBJeRkrO4JgIAAOTH4TLauC8nq+/SqGC6P6+g+FQBAACAciYlyyVyWADgH8lkOwMAAORr+6EMpWS7FGqz6sJIsvoqKoJ9AAAAQDlDF54A4CnNbmRnHFMAAAAPWQ6XvjuQk9XXpUGwfK0WL9cIJYVgHwAAAFCOZDuNMhw0aAPA6ZKzeBACAADgVFsOZijdblQt0Eetawd4uzooQQT7AAAAgHIkiaw+AMhXEmOZAgAAuKXbXdr8V7okqWuDYFktZPVVZAT7AAAAgHKEYB8A5C/LaZRpJ+AHAAAgSd8fSFeW06hmsK9aRPh7uzooYQT7AAAAgHIiw+4S7dgAULCkLC6SAAAAKVlObT2Uk9XXvWGwLGT1VXgE+wAAAIByIoVGbAA4o6RMp4xhXFMAAFC5fbs/XQ6XVC/MT42r2bxdHZQCgn0AAABAOZGSTbAPAM7EaaQMB8E+AABQeZ3IcComIUOS1I2svkqDYB8AAABQDmQ5XMp20oANAGdDFjQAAKjMNu5Lk8tI0VVtalCFrL7KgmAfAAAAUA4k03gNAIVCFjQAAKisjqY59PORTEk5Y/Wh8iDYBwAAAJQDZKoAQOHYnUZZDq6ZAACg8lkflyZJal7DX3VC/bxcG5Qmgn0AAABAGZftNMqiC08AKDQekAAAAJXNoRS7fj+eJYukrg3I6qtsCPYBAAAAZVxKltPbVQCAcoWuPAEAQGWzPjZVknR+rQBFBPt6uTYobQT7AAAAgDIulUZrACiSTIeRnYxoAABQScSdzFbsSbusFqlLfbL6KiOCfQAAAEAZ5jJGGXYarAGgqHhQAgAAVAbGGHdWX7s6gaoS6OPlGsEbCPYBAAAAZVh6tkuE+gCg6NII9gEAgEpgT2K2DqY45GuVLqsf5O3qwEsI9gEAAABlWBpZfQBwTtLtLhnDNRQAAFRcxhiti8vJ6ruobpBCbGT1VVYE+wAAAIAyjMwUADg3TiNlOQj2AQCAimvX0SwdTXPK38eiS+qR1VeZEewDAAAAyii70yjLSUM1AJyrNDsPTAAAgIrJ6TLaEJcmSbokKkiBfoR7KjM+fQAAAKCMSqeRGgD+FbpCBgAAFdWOw5k6kelUkJ9FF9UN9HZ14GUE+wAAAIAyii48AeDfyWDcPgAAUAHZnUbf7MvJ6ru0frBsPoR6Kju+AQAAAEAZRfdzAPDvuIyUwbh9AACggtken6GUbJfC/K26sA5ZfSDYBwAAAJRJdqeRg1gfAPxr6WRJAwCACiTL4dJ3+3Oy+ro0CJav1eLlGqEsINgHAAAAlEEZRPoAoFiQ2QcAACqSHw5mKMNhVC3QRxfUCvB2dVBGEOwDAAAAyqBMO43TAFAcMugSGQAAVBDpdpc2/5UuSeraMFhWC1l9yEGwDwAAACiDyOwDgOLhNDldIwMAAJR33x9IV7bTqFawr1rU8Pd2dVCGEOwDAAAAyhhjjDLI7AOAYsMDFAAAoLxLyXJq66GcrL7u0cGykNWHUxDsAwAAAMqYLKcRoT4AKD50jQwAAMq7b/any+GS6oX5qVFVm7ergzKGYB8AAABQxpDVBwDFi8w+AABQnp3IcOinhAxJZPUhfwT7AAAAgDKGRmkAKF6ZDiNjeJACAACUTxv3pcllpEZVbaofTlYf8iLYBwAAAJQxWQ4apAGgOLmMlO3k2goAAMqfI2kO/XwkS5LUrWGwl2uDsopgHwAAAFCGGGNokAaAEpDJgxQAAKAc2hCXKkk6r4a/6oT6ebk2KKsI9gEAAABliMOVk4ECAChePEgBAADKm4PJdv1+PFsWSV3J6sMZEOwDAAAAypAsxusDgBKRRbAPAACUM+v/zuq7oFaAagT5erk2KMsI9gEAAABlCI3RAFAysunGEwAAlCOxJ7IVd9Iuq0Xq0oCsPpwZwT4AAACgDMmiMRoASkS208gYrrEAAKDsM8a4s/ourBOo8AAfL9cIZR3BPgAAAKAMIbMPAEqGkWSnp2QAAFAO/JGYrUMpDvlZpUvrB3m7OigHCPYBAAAAZUg2wT4AKDHZjIuKcmDDhg26+uqrFRkZKYvFohUrVngsN8Zo6tSpqlOnjgIDA9WrVy/98ccfHmUSExM1dOhQhYWFqUqVKho5cqRSU1M9yuzYsUNdunRRQECAoqKiNGfOnJLeNQBAIbiM0frYnGv2RXWDFGIjqw9nR7APAAAAKCMcLiMXsT4AKDFkT6M8SEtLU5s2bfTiiy/mu3zOnDl67rnntHDhQm3evFnBwcHq27evMjMz3WWGDh2qX375RWvWrNGnn36qDRs2aPTo0e7lycnJ6tOnjxo0aKBt27Zp7ty5mj59uhYtWlTi+wcAOLNdR7J0NN2pAF+LOtYjqw+F4+vtCgAAAADIYacRGgBKFNnTKA/69++v/v3757vMGKP58+drypQpuvbaayVJy5YtU61atbRixQoNHjxYv/76q1auXKktW7aoQ4cOkqTnn39eV1xxhZ566ilFRkZq+fLlys7O1uLFi2Wz2dSqVSvFxMRo3rx5HkFBAEDpcrqMNuzLyeq7pF6QAv3I10LhFDnYd/LkSf3www86cuSIXC7P7i9uvfXWYqsYAAAAUNnYSesDgBJFL54oKaXVXhYbG6uEhAT16tXLPS88PFwdO3bUpk2bNHjwYG3atElVqlRxB/okqVevXrJardq8ebOuu+46bdq0SV27dpXNZnOX6du3r5588kmdOHFCVatWzbPtrKwsZWVluV8nJydLkux2u+x2e7HsX+56imt9QGXC+VMxxBzO0slMl4L8LGpT04/PsxSUxLnjjc+tSMG+Tz75REOHDlVqaqrCwsJksVjcyywWC8E+AAAA4F8gsw8AShbXWZSE0mwvS0hIkCTVqlXLY36tWrXcyxISElSzZk2P5b6+vqpWrZpHmejo6DzryF2WX7Bv1qxZmjFjRp75q1evVlBQ8XYzt2bNmmJdH1CZcP6UXy5Z9Ud4O8lqU1jSn/pyVYK3q1SpFOe5k56eXmzrKqwiBfvuv/9+jRgxQk888USx/xEHAAAAKjsyTgCgZDnIoEYJqCztZZMnT9Z9993nfp2cnKyoqCj16dNHYWFhxbINu92uNWvWqHfv3vLz8yuWdQKVBedP+bflUKZ+3ZehMJtVQzq2k6/VcvY34V8riXMnN/u9NBUp2Hfw4EGNHz++Qt+4AAAAAN5CxgkAlCynkVzGyGqh8QzFpzTby2rXri1JOnz4sOrUqeOef/jwYbVt29Zd5siRIx7vczgcSkxMdL+/du3aOnz4sEeZ3Ne5ZU7n7+8vf3//PPP9/PyKPbBQEusEKgvOn/Ipy+HS5oOZkqQuDYMV6G87yztQ3Irz3PHGOVik0R379u2rrVu3llRdAAAAgEqNMfsAoOSRRY3iVprtZdHR0apdu7a++uor97zk5GRt3rxZnTp1kiR16tRJJ0+e1LZt29xlvv76a7lcLnXs2NFdZsOGDR5jCq1Zs0bNmzfPtwtPAEDJ2vxXujIcRtUDfXRBrQBvVwfl0Fkz+z7++GP3/6+88ko9+OCD2rVrly644II80clrrrmmSBvfsGGD5s6dq23btik+Pl4ffvihBgwY4F5ujNG0adP0yiuv6OTJk7rsssu0YMECNW3a1F0mMTFR48aN0yeffCKr1apBgwbp2WefVUhIiLvMjh07NHbsWG3ZskUREREaN26cHnrooSLVFQAAAChpZPYBQMlzOI1sPmT24d8pyfay1NRU7dmzx/06NjZWMTExqlatmurXr697771Xjz32mJo2baro6Gj95z//UWRkpLtNrUWLFurXr59GjRqlhQsXym636+6779bgwYMVGRkpSbr55ps1Y8YMjRw5UhMnTtTPP/+sZ599Vs8888w5HhEAwLlKt7v0w8EMSVLXhsH0QIBzctZg36nBt1wzZ87MM89iscjpdBZp42lpaWrTpo1GjBihgQMH5lk+Z84cPffcc1q6dKn75qVv377atWuXAgJyottDhw5VfHy81qxZI7vdrttuu02jR4/Wm2++KSnn6aY+ffqoV69eWrhwoXbu3KkRI0aoSpUqGj16dJHqCwAAAJQUY4yI9QFAySOLGsWhJNvLtm7dqh49erhf546TN2zYML322mt66KGHlJaWptGjR+vkyZPq3LmzVq5c6W4rk6Tly5fr7rvvVs+ePd0Pxz/33HPu5eHh4Vq9erXGjh2r9u3bq0aNGpo6dSptZQDgBZsOpCnbaVQ7xFfn1cjbXTJQGGcN9rlcJde/Rf/+/dW/f/98lxljNH/+fE2ZMkXXXnutJGnZsmWqVauWVqxYocGDB+vXX3/VypUrtWXLFnXo0EGS9Pzzz+uKK67QU089pcjISC1fvlzZ2dlavHixbDabWrVqpZiYGM2bN48bGAAAAJQZBPoAoHQ4CPaVa3FxcYqOjtaPP/7oHqPu22+/1Z133qnffvtNV155pVasWFHi9SjJ9rLu3bvLmIK/pxaLRTNnzsw3uJirWrVq7gfhC9K6dWtt3LjxnOsJAPj3krOc2vp3Vl+3hsGykNWHc1SkMftKU2xsrBISEtSrVy/3vPDwcHXs2FGbNm2SJG3atElVqlRxB/okqVevXrJardq8ebO7TNeuXWWz/TOgZd++fbV7926dOHGilPYGAAAAODMnjc8AUCqKc8y+4cOHy2KxuKfq1aurX79+2rFjR/FtpBQ1bNhQFotF33//vcf8e++9V927dy/1+gwfPjxPBl1UVJTi4+N1/vnnu+fdd999atu2rWJjY/Xaa6+VbiUBAPgXvt2fJqeRosL81Kiq7exvAApw1sy+06WlpWn9+vXav3+/srOzPZaNHz++2CqWkJAgSapVq5bH/Fq1armXJSQkqGbNmh7LfX19Va1aNY8y0dHRedaRuyy/QYezsrKUlZXlfp2cnPwv9wYAAAA4M2J9AFA6nGfImDoX/fr105IlSyTltDNMmTJFV111lfbv31+s2ylOdrs9z7hyuQICAjRx4kStX7++lGtVOD4+Pqpdu7bHvL179+rOO+9UvXr1vFSr0msvAwBUHIkZDv2UkClJ6h5NVh/+nSJl9v34449q0qSJhgwZorvvvluPPfaY7r33Xj388MOaP39+CVWx9M2aNUvh4eHuKSoqyttVAgAAQAVHZh8AlI7i7n3R399ftWvXVu3atdW2bVtNmjRJBw4c0NGjRyVJ69atk8Vi0cmTJ93viYmJkcViUVxcnKScbhtPzRDMneLi4vTaa6/lu2z69Onu9b366qtq0aKFAgICdN555+mll15yL4uLi5PFYtE777yjbt26KSAgQMuXLy9wf0aPHq3vv/9en3/++Rn3+0zblKTvvvtObdu2VUBAgDp06KAVK1bIYrEoJiZGkuR0OjVy5EhFR0crMDBQzZs317PPPut+//Tp07V06VJ99NFH7n1et26de39iYmLc/z9+/LhGjBghi8Xilcy+ytJeBgAoXhvj0uQyUuNqNkWFk9WHf6dIwb4JEybo6quv1okTJxQYGKjvv/9e+/btU/v27fXUU08Va8Vyn9I6fPiwx/zDhw+7l9WuXVtHjhzxWO5wOJSYmOhRJr91nLqN002ePFlJSUnu6cCBA/9+hwAAAIAzYMw+ACgdxZ3Zd6rU1FS98cYbatKkiapXr17o933wwQeKj493TwMHDlTz5s1Vq1Yt3XTTTR7L3nrrLfn6+uqyyy6TJC1fvlxTp07V448/rl9//VVPPPGE/vOf/2jp0qUe25g0aZLuuece/frrr+rbt2+BdYmOjtadd96pyZMnFzgu3dm2mZycrKuvvloXXHCBtm/frkcffVQTJ070WIfL5VK9evX07rvvateuXZo6daoefvhh/e9//5MkPfDAA7rxxhvVr18/975feumlHuvI7dIzLCxM8+fPV3x8vG666aZCH/fiUprtZQCAiuFIqkO/HM3pXbBbw2Av1wYVQZGCfTExMbr//vtltVrl4+OjrKwsRUVFac6cOXr44YeLtWLR0dGqXbu2vvrqK/e85ORkbd68WZ06dZIkderUSSdPntS2bdvcZb7++mu5XC517NjRXWbDhg2y2+3uMmvWrFHz5s3z7cJTynkqLywszGMCAAAAShLBPgBn8uZ/F6pX+2ZqGxWum/p10Y7tWwos++Hby9SyZoDH1DYq3KPM4hefUeeWUercMkpLXprvseynbT/o+l6d5HA4SmJXio3VIvlZjPwtLgXKqWCTrVBXpsLtaaqalaRq6cdVIzlBNRMPqNbhvarz1y5Fxv6oGn8W73h6n376qUJCQhQSEqLQ0FB9/PHHeuedd2S1Fr7JpVq1au7swLfeektff/21Pv74YwUGBiowMNC9LC0tTWPHjtUTTzyh3r17S5KmTZump59+WgMHDlR0dLQGDhyoCRMm6OWXX/bYxr333usuU6dOnTPWZ8qUKYqNjS0wA/Bs23zzzTdlsVj0yiuvqGXLlurfv78efPBBj3X4+flpxowZ6tChg6KjozV06FDddttt7mBfSEiIAgMDPTInbTbPrIfcLj0tFovCw8NVu3ZtBQYGFvq4F5fSbC8DAFQM6/elSpJaRPirdkj+XWsDRVGkMfv8/PzcN6s1a9bU/v371aJFC4WHh59T9ltqaqr27Nnjfh0bG6uYmBhVq1ZN9evX17333qvHHntMTZs2VXR0tP7zn/8oMjLSPThzixYt1K9fP40aNUoLFy6U3W7X3XffrcGDBysyMlKSdPPNN2vGjBkaOXKkJk6cqJ9//lnPPvusnnnmmSLXFwAAACgpdOMJoCBfrHhXT057SNPmPq/WF16s1xc9r9E3Xa3Pvtuh6hE1831PSGiYPvvun6DWqWPA7P5lp16YM1MvvfGBjDEac8tAXda9l5q1PF8Oh0MzHhynGU+/KF/fIjUZFInVIvnIyCojqzGyGqesxiWr0ymryyGL0yGrwy6rwy6LPVtWe5Ys9ixZszJlyc6U1Z599o0UwBIYVIx7IvXo0UMLFiyQJJ04cUIvvfSS+vfvrx9++EENGjQo0rq++OILTZo0SZ988omaNWvmsSwpKUlXXXWVrrzySnfgLC0tTXv37tXIkSM1atQod1mHw6HwcM8Ab4cOHQpdj4iICD3wwAOaOnVqnky5wmxz9+7dat26tQICAtzLL774YknSTTfdpN27d0uSXnzxRS1evFj79+9XRkaGsrOz1aJFC1ksFv3444/u93777be688479dtvv6lHjx6F3o/SUtztZQCAiu1gsl1/HM+WRVLXBmT1oXgU6c69Xbt22rJli5o2bapu3bpp6tSpOnbsmF5//XWdf/75Rd741q1bPW7S7rvvPknSsGHD9Nprr+mhhx5SWlqaRo8erZMnT6pz585auXKlx83i8uXLdffdd6tnz56yWq0aNGiQnnvuOffy8PBwrV69WmPHjlX79u1Vo0YNTZ06VaNHjy5yfQEAAICSQqwPQEFeW/icbrhlhAYOGSZJmjb3Ba1fs1IfvLVUo8Y/mO97LBaLImrlP3TFn3t2q1nLC3RJl5zf481aXvD3vPO1+MV56tCpsy5oV3BgyJuBuuJgnMWbsbh79241bdrU/bpq1apKTk7W448/rkWLFrmDQOaU7kNP7X0o165duzR48GDNnj1bffr08VjmdDp10003KSwsTIsWLXLPT03NyQp45ZVX3D0c5fLx8fF4HRxcuMbEmTNnasKECe7XjRo1Ups2bc5pm/nJzf57++23dc8996hVq1ZavXq1QkNDNXfuXG3evFnx8fGqUaOG+z333Xef2rZtqy+++EKJiYke9SkLiru9DABQsa2Ly/lb2rpWgKoHldzDVahcivRNeuKJJ5SSkiJJevzxx3XrrbfqrrvuUtOmTbV48eIib7x79+4eN7uns1gsmjlzpmbOnFlgmWrVqunNN98843Zat26tjRs3Frl+AAAAQGlxleAYUgDKr+zsbO36abvOa3mBerVvpmNHDqt5q9Y67/zWitm6ucD3paelqueFTZWelqakE4m6+LLueu3DlbJapBYtW+n3X3bq0uZ1JCNlZmbowibRStr9kz5+c4nmznxcg7u315rlb8pmnDmBuuxMWbJygnaWArdaTjidxb7Kfv36acmSJZKkQ4cOqWPHjnrrrbe0aNEiRURESJLi4+Pdw4nExMR4vP/YsWO6+uqrNWjQII9AW64JEyZo586d2rp1q8cD0LVq1VJkZKT+/PNPDR06tEh1ttvt8vPLv9uwmTNnatSoUVqwYIHmzJmjzz//XO3atSv0Nps3b6433nhDWVlZ8vf3lyRt2ZLT9WyVKlUk5WTrRUREKDo62r3uvXv3SpJq184JVNtsNjmdTu3du1d33nmn6tWrVya7ly3u9jIAQMUVeyJb+07a5WOROpPVh2JUpDH7OnTo4M7Eq1mzplauXKnk5GRt27atzD1VBQAAAJQnhPoA5Odk4jE5nU598PYyjX3gEa34apNatjpf329YqyMHD+Q7Rt2FEVX03MxHNf+hB+XrcqpqWKi2f79RPiuXK2rrKlX7aYOcjmwF+1gV7GuVw25X4K4tmjxulB69+UZNuP9epSQeU+9BA/TDlyvll3hEPqnJORl63j4gxaGYg30ul8v9IPOJEyf03//+V06nU6mpqTp69KiaNGmimjVrqlWrVtq2bZs+++wzPf3005Kk6OhoxcXFadCgQTp8+LCWLFkii8XiMc2dO1cvvviiDh06pMjISI9l06dP14wZMzRr1iwNGTJEjRs3ls1mU506dTRo0CCPerZr107vvPOOunXrpoCAgALH45Ok0NBQ1a5dW1OmTFHdunUl5QQkJWnnzp0KDQ3V1KlTFRwcrBtvvFGbN2/WkiVLNG/ePK1bt06vvPKKjh07ptDQULVr107Lli3TU089JUnubkH37NmjhIQEffTRR+79+f7775WdnS2LxaKYmBiFh4fr008/1fHjxzVixAhZLBa99957xfr5FQfaywAAhWGMcWf1XRgZqPCAs2fEA4VVpGAfAAAAgBJCtA+o0KwWyddi5G9xKVBOBZvsfAN1NRMPqNbhvarz1y5Fxv6oOnu3SZKu6niR7m1WW91SDujVwdfIz2rRyfi/VO3H9aqy4xuF/fy9Qn/dquA/flLXKv76vzbn6ZmFL+nR2/5P/Tq0l83XV4u/WCVJ+v3AX2rbuLF+f32xfn99sdo2aaT/fr5KoYGB+nHPXiUkJmrFY9M1e/QIDZs9V1nZebuc9CqrVfL1lfxsMv4BMoFBcgUHyxUSKmdYuBxVqshetZqyq9dQZkSEMmrWVFqt2kqpU0fJkZE6UbeunC5XsVXn4MGDWrVqlerUqaOOHTtq8+bN6tWrl5o0aaLq1avLz89PU6ZMkSR17txZTz75pB577DGPdWzYsEFpaWl51t2oUSPt2LFDrnzqa7FYdNlll+n222/Xbbfdpvfee0/79+9XUFCQqlWrptWrV2vp0qUe75k0aZLuuece/frrr+rbt+9Z983Pz0+PPvqopJwGyrS0NPXt21etWrXS7NmzFRkZqXfffVddu3bVa6+9pvr162vAgAG6/PLL9b///U+NGjXSzz//rKeeekpTp05111uS3njjDTVs2FC+vr4KDw/XsGHDNGbMGI/t33///eratav79fvvv6+rrrrqrPUGAKAs+v14tuJTHPKzWtQpiqw+FK+zduPZrl07j4G8z2T79u3/ukIAAABAZUSsDyi7rBbJKpMzTt2pY9S5nLI6zzBGXTF0fVnFldNlYZPIyH/qY7WqZpUqSs/KLPB9s958RxHh4RrWt7e+/XmXwoODtfdQvCSpVcMG2nPwkA4cOSpjjH7/66DijyfqtYkP6NZZc9WyYQM1qRupJnUj5XA49Ud8vM5v3EiyWmUs1px/rVbJapGx5Pzf/P1/1yn/uix/T1arXBbJZbHI+fc8p8Uix9//d1glpyxyWCSnRXJYLHJKslty5tktkkOSXRY5i+mR5cHFsxq99tprknICVwEBAXK5XNq2bZvq1KmjTz/91D1e3wUXXCAppyvP3G4sf/zxR3f3lacPcfLMM89o5syZ+uKLL9SsWTO9/vrr7mV79+7VxRdfrEmTJql3796SpFWrVmnZsmUaMmSIu9xjjz2ml19+WcOGDVNsbKyio6N17733auDAgQXuT1xcnBo2bOh+nZ2drbi4OEnSwoUL9eabbyozM1PLli1TcHCwJk6cqM8//1xXX321/ve//8nPz09JSUm66qqr1K1bN91www3udS1fvlxWq1U2m02SVL16dXXr1k0nT57UihUr3OXGjBmj6OhoSTndea5fv15VqlTR/Pnz3XU//XidPHmywH0qKbSXAQCKwmWM1v+d1XdR3UCF2MjDQvE6a7BvwIABpVANAAAAoHKrKEP2paWm6LnZM/Tl5x8p8dhRtTi/rSY//pQuaNdBknTsyGHNe/QRfbvuK6Ukn1SHSzrr4VnPqGGjJgWu84/fdumFJ2fqlx3bdejAfk16dK5uvWOcR5lP3ntLzzw2Relpabpu8K2a+Ogc97KD++N0+41X6d013ykkNKxkdhxlljcDdedeaat7Sk7Nyfbac+SoXKFhMn8Hwo4kJ6lKSKgyIyLyBNe+j/lJS75aq8/ff0sJ1aopLThYSZmZCopuqD2NG8nStJHueGiC+kx/TEZSZJPG6nnd1XpwxUe69KbrtPGTlTrvnvtl9fNVqtOhNdF19XuLRqV9FEqUq5gfsejRo4cWLFggKacrz5deekn9+/fXDz/8oAYNGhRpXV988YUmTZqkTz75RM2aNfNYlhtIu/LKK/Xggw9KktLS0rR3716NHDlSo0aNcpd1OBwKDw/3eH+HDh0KVYeJEydqypQpyszMVEhIiGbPnq0rr7xS9913n9q0aaPg4H+yES677DK5XC7t3r1bXbt21fDhw9W3b1+1aNFCXbt21c0336z4+HhNnDhRrVq1cgdAyzvaywAARbHrSJaOpTsV4GvRJVFB3q4OKqCzBvumTZtWGvUAAAAAKrUKEuvTfybcpT9++0VPvrhYEbUi9cl7b2rk9Vfok29+VM3akRo37Eb5+vnqhWXvKiQ0TK8teFYjr++vTzbGKCg4/65sMjPSVa9BtPpeM1Cz//NQnuUnjh/T1Pvu0hPPvaJ6DaJ119Dr1LFLd3Xvc4UkaebEe3TflMcI9JVDpRKos1gkyz/BNXfGmtUqBfjLFRTgzl5zZ61ZLDJ5MtdystXcmWtWi5wWySnlZLFZc4J0jr+z1f7JXpPskhzWnH9dp2UKnUjIaQz69LtNun/L92rU9gKtenWZshxO+URU1+e1q2rhPRNVtXYt3TT5PmWkpunecRN0xR0jtNbiVPq+vfpm+3ZlZGaq5a03akdQTjNAqxE36/ERN2vnhm/13pznlB0aLJ+QYLW99gq9v+C/Gjlnpg7+8af279qtGvXqFu8HWwYU9wMWwcHBatLkn4cWXn31VYWHh+uVV17RY4895g5wnZqRZrfn7R51165dGjx4sGbPnq0+ffp4LHM6nbrpppsUFhamRYsWueenpuZkCbzyyivq2LGjx3t8fDzHAgou4Dp7ugcffFDDhw9XSEiIatWqVegMNklasmSJxo8fr4cfflgvv/yynnvuOdWpU0c33XSTgoKC9NlnnxV6XWUZ7WUAgMJyuow27Mv5e31JvSAF+FaMB19Qtpw12FeQ1NTUPH3Gh4Xx4xkAAAA4FxUh2JeZkaE1n36oF5a9pw6dukiS7n7oP1q3+nO9/doiXXvjLfpp22Z9tGG7mp7XUpI0be7z6np+A33+4Tu6/pYR+a73gnYd3JmB8x6bkmf5gX2xCgkNV/8BOd3FXXxZN+39/Td173OFPvvgHfn6+an3VQNKYI9xJgUF6iwup6wupywupyxOhywuh+R0yOq0y+JwyOK0y+KwSy6HdFpgzVgscv4dWHOc0h2k02qR0yY5/X3ltPjJqRA5rX93CymL7JacgJtdksNi5JBF9r+Da6YIQQxvCK1WRVYfH3W54Vq9/9RzSjp6TPVbtlCryzrKx89PknT8YLwsfweTjuzbr/TkFL0391m9N/dZj3U93HuA5qz/XLUa1pckZWdkatmUx3Tb7Ol69YEpmvLe64r7eZdq1Kur9+Y+J1+bnwKCg5V4KEHB4RXr974p4auuxWKR1WpVRkaGJCkiIkJSTjeeVatWlSTFxMR4vOfYsWO6+uqrNWjQIE2YMCHPOidMmKCdO3dq69atCggIcM+vVauWIiMj9eeff2ro0KHFUv8aNWp4BC9ztWjRQq+99prS0tLcgcNvv/1WVqtVzZs3d5dr166dvvjiC0lSp06ddNFFF+mZZ57R9OnTPdZns9nkdDqLpc5lBe1lAIDTxSRk6GSmS8E2qzrUJasPJaNIwb7Y2FjdfffdWrdunTIz/xkbwBgji8VS4W7QAAAAKpvhw4dr6dKlmjVrliZNmuSev2LFCl133XV5xsgpiW3nqlatmi666CLNmTNHrVu3LrHtlhkVoB9Pp9Mhp9Mpm7+/x/yAgABt3/yd+l+bE4zzP2V57vhN2zd/V2Cw72waNGqizIx07doZo8h69fXzj1s1cMgwJZ08oedmz9BrH646953CWVkkWS3GHdyzGJdyw9fGYpGR5LAoJztOPpL8SqQePn9PFU6gdH6bdqoXVEMv79gjSXK5XOreurluuf0OXRxYXx99ts5dvM35NdXmmx88VjH/8ZlKS03RI7PmqmHjpu4x0xQord/yix68c6TuuOte9Wt8sdb8mqCIqtW1Yt0mSdJFjeqqpV+EWgTWL5XdLS0+xdw5a1ZWlhISEiTldOP5wgsvKDU1VVdffbUkqUmTJoqKitL06dP1+OOP6/fff9fTTz/tsY5BgwYpKChI06dPd69LygkULlu2TC+99JI+/PBDWSwW9/KQkBCFhIRoxowZGj9+vMLDw9WvXz9lZWVp69atOnHihO67775i28+hQ4dq2rRpGjZsmKZPn66jR49q3Lhx+r//+z/VqlVLsbGxWrRoka655hpFRkZq9+7d+uOPP3Trrbfmu76GDRtq1apV2r17t6pXr56n29HygvYyAEBB7E6jb/enS5Iuqx8km0/ZftAM5VeRgn233HKLjDFavHhxkbtxAAAAQPkQEBCgJ598UnfccYc7+6C09OvXT0uWLJEkJSQkaMqUKbrqqqu0f//+Uq1HUdjtdvn5lUzworwJDglV2w6XaOG8WWrc7DxVj6ilzz54RzFbN6t+dGNFN22uOvWi9MzjUzX9qRcUGBSsZQufU8Khgzp6OOHsGyhAeJWqmvX8q5p890hlZmTomhuHqvPlvTXl3js0dORdOrg/TmP/73o5HHaNfXCK+l49sBj3GkaS01jkNNLfoT/PhfjXht15jyaPu10tW7fXBRdepGUvP6+M9HRde9NwOZ0+mjR2hGrWidR9Ux6Tr1+wGjfzfEAiNKyKjLG4558ad/hu3ZeK3btXTzy/WE6nVS3bXKQ///hda1d/qYSDB2T18VH96BZyOitWKNViKd7us1auXKk6depIkkJDQ3Xeeefp3XffVffu3SVJfn5+euutt3TXXXepdevWuuiii/TYY4/phhtucK9jw4YNkpRnjL/Y2FitX79eTqdT11xzjceyadOmafr06br99tsVFBSkuXPn6sEHH1RwcLAuuOAC3XvvvcW6n0FBQVq1apXuueceXXTRRQoKCtKgQYM0b9489/LffvtNS5cu1fHjx1WnTh2NHTtWd9xxR77rGzVqlNatW6cOHTooNTVVa9euVcOGDYu1zqWB9jIAQEG2HUpXarZL4f5Wtasd6O3q/D97dx5nY93/cfx9nW3OzJmNMRvGjKwpGkWaFG5ZQotSKcVIcVfaSDfKMijcJH4VLZJSVESbVJaibCklWwnZMybbjJkx67l+f0xzbtPYG3Nmzryej8d5mGv/XONcZ67z/Vyf7xc+7JySfT///LPWrl1bpGsGAAAA+JY2bdpo27ZtGjNmjMaNG3fSdebOnathw4Zp27Ztio6O1iOPPKInnnjCszwuLk59+vTRtm3bNGfOHFWqVElDhgxRnz59TntsPz8/RUVFSZKioqI0aNAgXXvttfrzzz8VHh6upUuX6l//+peOHDmi0NBQSQXdoDVu3Fg7duxQXFycWrVqpWXLlhXb944dO7R06VLde++9xZYVNpZKBeMsTZgwwbO/Rx99VA899JAkaefOnapZs6bee+89TZkyRd99951eeeUV9ezZ80y/1jMzDPlCZmTs5Gka8vi/1arRRbJarWrQqLE63nKHNq//SXa7XS9Mf19DHn9ACXWjZbValdCita69rv0/rhpt0+lmtel0s2f6+5Xf6LfNG/X06Im6vtkleu7Vt1QlIkpd21+jJlddo7DwiH96qkCp6dD5dh0+dFAvjhupgykHVP/Sy/Tqe5+oSkSkJGn/vj2eMeHORdbx43pmcD9NeO0dz/ZRVavr6dHP6+lH+8jh59CYF1+X09/3GqZKMhXz5ptv6s033zzjes2bN9f69euLzDvxs+90n4Nnc4xu3bqpW7duJ10WFxd31p+zO3fuPO3yhg0b6quvvjrpssjISH344Yen3DYpKalIV57h4eFauHBhsfX+HuvRo0dPG5O30V4GADiZrDy3Vu0pqOq7NtYlq4WHQXDhnFOyr2nTptqzZw83LwAAAD7MarVq9OjR6tatmx599FFVr169yPK1a9fqjjvuUFJSkrp27aqVK1fqoYceUlhYWJGk14QJEzRq1Cg99dRT+uCDD/Tggw+qZcuWZ30vmZ6ernfeeUe1a9dWWFjYWcc/b9485eTkeKb79u2rTZs2KTIyUl27dtX111/vWbZ06VJ1795dzZs3lyTNnDlTw4YN00svvaTGjRvrp59+Uu/eveVyuZSYmOjZbtCgQZowYYIaN25cZNykf8JXvvbVqFlLMz5erMyMDGWkpyk8Mlr9e9+j6rE1JUmXXHa5Pvx6jY6lpSo3J0eVq4Sr6/XX6tLLLi+xGHKyszVy4GP67+Q3tHvHduXn56np1S0kSXG16mj9j9/rX+07ldjxgNJw930P6u77Hjzpsrc+WnTabUe/+PpJ5zv9/bVg1YZi82+7p9d5d6sLVES0lwEATmbN3kwdzzMVFmDVpZEl870ROJVzSva9/vrreuCBB7Rv3z5deumlxborqhBjqQAAAFQAt9xyi+Lj4zV8+HBNmzatyLLnn39e1113nYYOHSpJqlu3rjZv3qzx48cXSfZ17NjRUxE3cOBATZw4UV9//fVpG8Lmz5+vwMBASVJGRoaio6M1f/78c6pYqVy5sufniRMn6quvvtJ3330n/78qUwr/3b59u/r27avRo0erbdu2kgoq/CZMmKBbby3o5rFmzZravHmzXn311SLJvscff9yzTknxlWRfoQCXSwEul1KPHtGKrxfpiWHPFlkeFFwwLtPO37dp07q1enTgsBI79isTx+iaf7VTg0aNtXnDOuXl5XmW5ebmMnYSANHLIkoS7WUAgL/LyHFrzb7jkqSWsS5ZuPnABXZOyb4///xT27dvL9L1kWEYDDgMAADgg/773/+qdevWGjBgQJH5v/zyi26++eYi85o3b65JkyYpPz9fVmvBuE4nNmwZhqGoqCilpKRIkjp06KBvv/1WUsHYRJs2bZIk/etf/9LLL78sSTpy5IimTJmiDh06aM2aNcXGMDqTzz//XIMGDdKnn36qunXrFlmWmpqqG264QZ06ddKTTz4pqSC5uH37dt13333q3bu3Z928vDyFhIQU2b5JkybnFMvZ8JXvfsu/WiRTpmrWqqPdO7Zr/IinVLNOPd1yV0Gy9ItP5qpyWBVFV4vRb79s0pghT+i6Djep+b/aevZx4vhjkpSTk6PtW36RJOXm5OrA/j/0y4afFeAKVOxFtYocf9uWX/T5Rx9o7pLvJEkX1a4ni8WiuTOnq0pElHZs26KGja8ojV8FgDLMRz5yUUbQXgYA+LtVezKUk28qKtCmelX8vB0OKoBzSvb16tVLjRs31rvvvsuAwwAAAD6uRYsWat++vQYPHnxeY9L9/al2wzDkdrslFTwBf/z48WLruVwu1a5d2zP9+uuvKyQkRFOnTtUzzzzjqfA7cSyf3NzcYsfevHmz7rzzTo0dO1bt2rUrsiw/P19du3ZVcHCwXnvtNc/89PR0SdLUqVPVrFmzItsUJjBPjLOk+cqt9bFjqZr0zFAl79+nkNDKandDZz321AjP//OfB5I1bth/dPDPFIVHRunmO+7WA/2fKrKPv48/9mfyH+py3f/+T6ZPmajpUyaq6dXXFum+0DRNJT3xkAaOHKeAv/6PnP7+Gv3CVI0a9JhysnM0ZMxERUZXu5C/AgBlnCHRnoESRXsZAOBEaVn5WvtHwffdVnEu/i6gVJxTsm/Xrl365JNPijTAAAAAwHeNHTtW8fHxRbrevPjii7VixYoi661YsUJ169YtlhQ7lWrVzi7ZYhiGLBaLJzEYHh4uSdq/f78qVaokSVq3bl2RbQ4ePKgbb7xRXbp0Ub9+/Yrts1+/ftqwYYN++OGHIuPtRUZGqmrVqvr999919913n1V8JensOyot2zrcfJs63HzbKZd3791X3Xv3Pe0+/j7+WLUacdqcknXGYxuGoXfmf11sfqt2HdWqXcczbg+gYrDQ3oYSRnsZAOBEy3dnKN+UaoTYVbOSw9vhoII4p2Rf69at9fPPP3PzAgAAUEE0bNhQd999t1544QXPvCeeeEJNmzbVqFGj1LVrV61atUovvfSSpkyZ8o+Pl52dreTkZEkF3Xi+9NJLSk9P14033ihJql27tmJiYpSUlKRnn31Wv/32myZMmFBkH126dFFAQICSkpI8+5IKEoUzZszQlClT9OGHH8owDM/ywMBABQYGasSIEXr00UcVEhKi66+/XtnZ2frhhx905MgR9e/f/x+f3+kwhgMAlA6SfShptJcBAAodPp6nn5MLHlRsSVUfStE5JftuvPFGz5PQDRs2LNY100033VSiwQEAAMD7Ro4cqffff98zffnll2v27NkaNmyYRo0apejoaI0cOfK8uvr8uy+++ELR0dGSpKCgINWvX19z5sxRq1atJBV0+fnuu+/qwQcfVKNGjdS0aVM988wzuv322z37+OabbySp2Bh/O3bs0LJly5Sfn1/svnX48OFKSkrS/fffr4CAAI0fP15PPvmkXC6XGjZsqMcff/wfn9uZ8B0QAEoHD1egpNFeBgAo9M3ODJmSald2KCaEqj6UHsM8ccCTMzhx3IxiO/LhAYfT0tIUEhKi1NRUBQcHezscACgVv/yZ7e0QcAFcHF6yg0LzNxIoOYcz83QgwzfvpwGgLPG3GYqjSy2UINrLSu67QG5urhYsWKCOHTsWS5oCOD2uH+87kJ6raT8ekSTdd3klRQby/1AeXIhrxxvtZedU2ed2uy9UHAAAAECFZqVfOQAoFXzcoqTRXgYAkKRlOzMkSQ3C/Uj0odSd+tEjAAAAAKWGZB8AlA4Ln7cAAKCE7U3N1bbDOTIkXRvr8nY4qIDOqbJv5MiRp10+bNiwfxQMAAAAUFHZaHsGgFJh5fMWJYz2MgCo2EzT1NKd6ZKky6KcCgs4p7QLUCLO6V334YcfFpnOzc3Vjh07ZLPZVKtWLW5eAAAAgPNEZR8AlA4bn7coYbSXAUDFtvNornan5spqSNfUoKoP3nFOyb6ffvqp2Ly0tDT17NlTt9xyS4kFBQAAAFQ0VjrYB4BSQbIPJY32MgCouEzT1NIdBVV9l1f1V7DT6uWIUFH94yaF4OBgjRgxQkOHDi2JeAAAAIAKyWIYovkZAC48Gw9XoBTQXgYAFcOWQ9nan54nu8XQ1TFU9cF7SuQWNzU1VampqSWxKwAAAKDCoroPAC48KvtQWmgvAwDf5jZNLduZIUm6srq/XA6+0MF7zqkbzxdeeKHItGma2r9/v95++2116NChRAMDAAAAKhqbxVCe2/R2GADg00j2oaTRXgYAFdOmlCwdysyX02aoWfUAb4eDCu6ckn0TJ04sMm2xWBQeHq7ExEQNHjy4RAMDAAAAKhqH1VBWHsk+ALiQ6MYTJY32MgCoePLdpr75q6ovISZATm4w4GXnlOzbsWPHhYoDAAAAqPDsVJsAwAVlNSTD4LMWJYv2MgCoeNYlH1dqtlsuh0VNqlLVB+87q2TfrbfeeuYd2WyKiopS27ZtdeONN/7jwAAAAICKxm6lARoALiQbn7MoQbSXAUDFlJtvavnuTEnSNTUC+B6HMuGsaktDQkLO+PL399fWrVvVtWtXDRs27ELHDQAAAPgcviQCwIXloIIaJYj2MgComH74I1MZOW6FOi2Kj/L3djiApLOs7Js+ffpZ73D+/Pl66KGHNHLkyPMOCgAAAKiI7AzzAAAXlMNGsg8lh/YyAKh4svLcWrWnoKrv2liXrDxIhDKixJsTrrnmGjVp0qSkdwsAAAD4PCr7AODCcvA5Cy+hvQwAfMN3ezOVlWeqSoBVl0Q4vR0O4FHiyb7Q0FDNmzevpHcLAAAA+DyLYchGdR8AXDAk++AttJcBQPmXkePWmr3HJUkt4wJlMbivQNlBUwIAAABQhtjpBgYALhiSfQAA4Hyt3JOhXLep6ECb6oY5vB0OUATJPgAAAKAM8WM8KQC4ICyGZOOBCgAAcB5Ss/L14x8FVX2tagbKoKoPZQzJPgAAAKAM8aMfTwC4IKjqAwAA52v57gzlm1KNELviQu3eDgcohpYEAAAAoAxx0hgNABcEyT4AAHA+DmXmaX1yliSq+lB2kewDAAAAyhC68QSAC8PJ5yt8RFxcnAzDKPbq27evJKlVq1bFlj3wwANF9rF792516tRJAQEBioiI0JNPPqm8vDxvnA4AlHnf7MqQKalOZYeqB1PVh7LJ5u0AAAAAAPyP1WLIZpHy3N6OBAB8i5NukuEjvv/+e+Xn53umN27cqLZt2+r222/3zOvdu7dGjhzpmQ4ICPD8nJ+fr06dOikqKkorV67U/v371aNHD9ntdo0ePbp0TgIAyokD6bn65c9sSVLLuEAvRwOcGsk+AAAAoIxx2ixKzyHbBwAlico++Irw8PAi02PHjlWtWrXUsmVLz7yAgABFRUWddPuFCxdq8+bNWrx4sSIjIxUfH69Ro0Zp4MCBSkpKksPhuKDxA0B5smxnhiSpQbifIgJJp6Ds4t0JAAAAlDF+VkPp3g4CAHyI3VJQOQ34mpycHL3zzjvq379/kTGkZs6cqXfeeUdRUVG68cYbNXToUE9136pVq9SwYUNFRkZ61m/fvr0efPBBbdq0SY0bNz7psbKzs5Wdne2ZTktLkyTl5uYqNze3RM6ncD8ltT+gIuH6KXl70/K07XCODElXV/Pjd+ujLsS14433Csk+AAAAoIxh3D4AKFl04Qlf9dFHH+no0aPq2bOnZ163bt0UGxurqlWrav369Ro4cKC2bNmiefPmSZKSk5OLJPokeaaTk5NPeawxY8ZoxIgRxeYvXLiwSDehJWHRokUluj+gIuH6KRmmpJ2Bl0j2YIVmH9Cqr1d5OyRcYCV57WRmZpbYvs4WyT4AAACgjPEn2QcAJcpp53MVvmnatGnq0KGDqlat6pnXp08fz88NGzZUdHS0rrvuOm3fvl21atU672MNHjxY/fv390ynpaUpJiZG7dq1U3Bw8Hnv90S5ublatGiR2rZtK7vdXiL7BCoKrp+SteNorjb/ki6rIXVNqKsgv/reDgkXyIW4dgqr30sTyT4AAACgjHHYLLIaUr7p7UgAwDdQ2QdftGvXLi1evNhTsXcqzZo1kyRt27ZNtWrVUlRUlNasWVNknQMHDkjSKcf5kyQ/Pz/5+fkVm2+320s8sXAh9glUFFw//5xpmlq+55gk6Yqq/qocWPyzD76nJK8db1yD3O0CAAAAZZC/nVt1ACgpTiqm4YOmT5+uiIgIderU6bTrrVu3TpIUHR0tSUpISNCGDRuUkpLiWWfRokUKDg5WgwYNLli8AFBebDmYreT0PDmshhJiXN4OBzgrVPYBAAAAZVCA3VB6jrejAIDyz26RbBaSffAtbrdb06dPV2Jiomy2/zXvbd++XbNmzVLHjh0VFham9evXq1+/fmrRooUaNWokSWrXrp0aNGig7t27a9y4cUpOTtaQIUPUt2/fk1buAUBF4jZNLduZIUm6spq/XA4ewkT5QLIPAAAAKIMKKvvyvR0GAJR7ATTSwQctXrxYu3fvVq9evYrMdzgcWrx4sSZNmqSMjAzFxMSoS5cuGjJkiGcdq9Wq+fPn68EHH1RCQoJcLpcSExM1cuTI0j4NAChzNh7I0qHj+fK3GbqyeoC3wwHOGsk+AAAAoAxy2gwZkhi2DwD+mQC6RYYPateunUyz+F1CTEyMli1bdsbtY2NjtWDBggsRGgCUW3luU9/uKqjqS4hxMeYvypUy/26Ni4uTYRjFXn379pUktWrVqtiyBx54oMg+du/erU6dOikgIEARERF68sknlZeX543TAQAAAM6KxTAYYwoASoCLZB8AADgL6/YfV2q2W4EOi66o6u/tcIBzUuYr+77//nvl5/+v+6KNGzeqbdu2uv322z3zevfuXaSrgYCA/5XX5ufnq1OnToqKitLKlSu1f/9+9ejRQ3a7XaNHjy6dkwAAAADOg7/douN5dOUJAOfLbpHsVh6cAAAAp5eTb2rF7kxJ0jU1XNw/oNwp88m+8PDwItNjx45VrVq11LJlS8+8gIAARUVFnXT7hQsXavPmzVq8eLEiIyMVHx+vUaNGaeDAgUpKSpLD4big8QMAAADnK8Bu6PBxb0cBAOUXXXgCAICz8cO+TGXkuhXqtOiyKKe3wwHOWbm6683JydE777yjXr16yTD+l1mfOXOmqlSpoksvvVSDBw9WZmamZ9mqVavUsGFDRUZGeua1b99eaWlp2rRp00mPk52drbS0tCIvAAAAoLTRSA0A/0yAg89RAABwell5bq3eW5BTaBEbKKuFqj6UP2W+su9EH330kY4ePaqePXt65nXr1k2xsbGqWrWq1q9fr4EDB2rLli2aN2+eJCk5OblIok+SZzo5OfmkxxkzZoxGjBhxYU4CAAAAOEtWi6EAu6HMXNPboQBAucRDEwAA4ExW78lUVp6pKgFWNYjw83Y4wHkpV8m+adOmqUOHDqpatapnXp8+fTw/N2zYUNHR0bruuuu0fft21apV67yOM3jwYPXv398znZaWppiYmPMPHAAAADhPLodFmbmM2wcA58pukRyMtwMAAE4jPcet7/cVVPW1iguUxeDeAeVTuXnEbdeuXVq8eLHuv//+067XrFkzSdK2bdskSVFRUTpw4ECRdQqnTzXOn5+fn4KDg4u8AAAAAG8IpCoFAM5LIF14AgCAM1i5O0O5bqlqkE11whzeDgc4b+Xmznf69OmKiIhQp06dTrveunXrJEnR0dGSpISEBG3YsEEpKSmedRYtWqTg4GA1aNDggsULAAAAlAQ/myEKUwDg3AX6Wb0dAgAAKMNSs/L10/7jkqSWcYEyqOpDOVYuuvF0u92aPn26EhMTZbP9L+Tt27dr1qxZ6tixo8LCwrR+/Xr169dPLVq0UKNGjSRJ7dq1U4MGDdS9e3eNGzdOycnJGjJkiPr27Ss/P/rfBQAAQNlmGIYCHRalZru9HQoAlBsWQwqw02AHAABObfmuDOWbUmyoXTUrUdWH8q1cVPYtXrxYu3fvVq9evYrMdzgcWrx4sdq1a6f69evriSeeUJcuXfTpp5961rFarZo/f76sVqsSEhJ0zz33qEePHho5cmRpnwYAAABwXlx0RQcA58RltzDmDgAAOKVDmXlafyBLUsFYfUB5Vy4q+9q1ayfTNIvNj4mJ0bJly864fWxsrBYsWHAhQgMAAAAuOJJ9AHBuAv343AQAAKe2bGeGTEl1whyqFmz3djjAP8bdLwAAAFDG2SyGXHRHBwBnLZCHJAAAwCkkH8vVrwezJRWM1Qf4Au5+AQAAgHIgyM/q7RAAoFzwtxmyWXhAAgAAnNyynRmSpEsi/BThKhedHwJnRLIPAAAAKAeC6JIOAM4KXXgCAIBT2Z2ao+1HcmQxpGtjXd4OBygx3AEDAAAA5YDNYiiArjwB4IyCqYQGAAAnYZqmlu4oqOq7LMqpyv5U9cF3kOwDAAAAygkasAHg9PxthhxWHowAAADF/X4kR3vTcmU1pGtqUNUH30KyDwAAACgn6MoTAE4v2MlDEQAAoDjTNLX0r7H6mlTzZ0x0+BxaCwAAAIBygq48AeD0gnkoAgAAnMSvB7N1ID1PDquhhBiq+uB7uAsGAAAAyhG68gSAk3M5LLJZeCACAAAU5TZNLfurqq9Z9QAF2EmLwPfwrgYAAADKkWA/i2jKBoDiQqjqAwAAJ7HhQJYOH8+Xv83QldX8vR0OcEFwJwwAAACUI1aLQTd1APA3hhjXFAAAFJfnNvXtroKqvqtruORn434Bvol3NgAAAFDOhPrTlScAnCjIzyKLQd0zAAAo6qf9x5WW7Vagw6LLo6nqg+8i2QcAAACUMwF2ixxWGrUBoFCok4cgAABAUTn5bq3YXVDVd00Nl+x8h4IPI9kHAAAAlEOhTm7lAUCSHFZDLgefiQAAoKjv9x1XZq6pSk6rLotyejsc4ILibhgAAAAoh0KoYgEASTz8AAAAijue69bqPZmSpBZxLlktVPXBt3FHDAAAAJRDNouhQCpZAFRwhnj4AQAAFPfd3kxl55sKd1nVINzP2+EAFxytAwAAAEA5VcmfBm4AFVuwn0U2ntQHAAAnSM/J1/f7Cqr6WsYFyjC4V4DvI9kHAAAAlFMuuyEHg8wDqMB46AEAAPzdyt2ZynVL1YJsqlPZ4e1wgFJBsg8AAAAopwzDoKEbQIXltBnyt9OsAQAA/udoVr5+3H9cktSyJlV9qDi4KwYAAADKsVCnRfRgB6AiqszDDgAA4G+W78qQ25TiQu2KC6WqDxUHyT4AAACgHLMYhkKdNHgDqFhsloLx+gAAAAodzMzThgNZkqRWcYFejgYoXdwZAwAAAOUc1S0AKpowfyvdcgEAgCK+2ZkhU1LdMIeqBtu9HQ5Qqkj2AQAAAOWc3WoohAoXABWE1ZBCecgBAACcYP+xXP16MFuS1IKqPlRAtAgAAAAAPqByAA3fACqGSv5WWajqAwAAJ1i2M0OSdGmEnyJcNi9HA5Q+kn0AAACAD3DaLAp0cHsPwLcZoutiAABQ1O6jOfr9SI4shnRtLFV9qJhoDQAAAAB8RBWq+wD4uEr+VlktVPUBAIACpmlq6V9VffFR/qrEQ0GooEj2AQAAAD7C3051HwDfRlUfAAA40fYjOdqbliubRWpeI8Db4QBeQ0sAAAAA4EPCqe4D4KNCnRbZrVT1AQCAAqZpatmOgqq+JlUDFOTHdyFUXCT7AAAAAB/ipLoPgA8yJFUJsHk7DAAAUIb8cjBbBzLy5LAauiqGqj5UbLQCAAAAAD4m3MUTrQB8SyV/K1V9AADAw22a+uavsfqaVQ9QgJ1UByo2rgAAAADAxzhtFgVR3QfAR1gMqQpdFAMAgBOsT87S4eP58rcburKav7fDAbyOFgAAAADAB1Whug+Ajwjzt8pqoaoPAAAUyHObWr67oKqveYxLfjbSHABXAQAAAOCDnDaLQpzc7gMo36yGVJmqPgAAcIIf9x9XWrZbQQ6LLq9KVR8gkewDAAAAfFaEyyaKYQCUZ1VcNlkMPsgAAECBnHy3Vv5V1XdNrEs2vvAAkkj2AQAAAD7LZjEU5k9FDIDyyW6RKlGhDBSTlJQkwzCKvOrXr+9ZnpWVpb59+yosLEyBgYHq0qWLDhw4UGQfu3fvVqdOnRQQEKCIiAg9+eSTysvLK+1TAYBz9v2+48rMNVXJaVWjSKe3wwHKDJu3AwAAAABw4VQOsOpIVr7y3N6OBADOTWSgTQZVfcBJXXLJJVq8eLFn2mb7XxNfv3799Nlnn2nOnDkKCQnRww8/rFtvvVUrVqyQJOXn56tTp06KiorSypUrtX//fvXo0UN2u12jR48u9XMBgLN1PNet1XsyJUkt4lyM6QucgGQfAAAA4MMshqEIl01/HONpfQDlh8tuKMiPymTgVGw2m6KioorNT01N1bRp0zRr1iy1bt1akjR9+nRdfPHFWr16ta666iotXLhQmzdv1uLFixUZGan4+HiNGjVKAwcOVFJSkhwOR2mfDgCcldV7M5WdbyrCZVODcD9vhwOUKfSHAQAAAPi4EKdV/jaeegVQPhgqqOoDcGpbt25V1apVddFFF+nuu+/W7t27JUlr165Vbm6u2rRp41m3fv36qlGjhlatWiVJWrVqlRo2bKjIyEjPOu3bt1daWpo2bdpUuicCAGcpPTtf3+8rqOprGeei+h/4G+6eAQAAgAogMtCmnUdzvR0GAJxRZX+r/Gw8mwycSrNmzfTmm2+qXr162r9/v0aMGKFrr71WGzduVHJyshwOh0JDQ4tsExkZqeTkZElScnJykURf4fLCZaeSnZ2t7Oxsz3RaWpokKTc3V7m5JXOPUbifktofUJH4+vXz7c5M5bmlqoFWxQYZPnueKH0X4trxxvuTZB8AAABQAfjbLQpxWpSaxeB9AMoum0Wq4qL7TuB0OnTo4Pm5UaNGatasmWJjYzV79mz5+/tfsOOOGTNGI0aMKDZ/4cKFCggIKNFjLVq0qET3B1Qkvnj95Fj8tC04XjIscuxfr8/3pHk7JPigkrx2MjMzS2xfZ4tkHwAAAFBBRLpsSs/OUb7p7UgA4OQiXDZZ6JYLOCehoaGqW7eutm3bprZt2yonJ0dHjx4tUt134MABzxh/UVFRWrNmTZF9HDhwwLPsVAYPHqz+/ft7ptPS0hQTE6N27dopODi4RM4lNzdXixYtUtu2bWW320tkn0BF4cvXz4JtGTL/zFFsiE23J1zj7XDgYy7EtVNY/V6aSPYBAAAAFYTVYigy0KY/juV5OxQAKCbAbijESVUfcK7S09O1fft2de/eXVdccYXsdruWLFmiLl26SJK2bNmi3bt3KyEhQZKUkJCgZ599VikpKYqIiJBUUM0QHBysBg0anPI4fn5+8vPzKzbfbreXeGLhQuwTqCh87fr5MyNPm//MkST966Ignzo3lC0lee14431Ksg8AAACoQEKcVqVm5Ssjl/I+AGWHISkqkCYK4GwMGDBAN954o2JjY/XHH39o+PDhslqtuuuuuxQSEqL77rtP/fv3V+XKlRUcHKxHHnlECQkJuuqqqyRJ7dq1U4MGDdS9e3eNGzdOycnJGjJkiPr27XvSZB4AeNM3uzJkSqpXxU9Vg0j0AafCnTQAAABQwUQF2fX74RyR7gNQVoS7rPKzWbwdBlAu7N27V3fddZcOHTqk8PBwXXPNNVq9erXCw8MlSRMnTpTFYlGXLl2UnZ2t9u3ba8qUKZ7trVar5s+frwcffFAJCQlyuVxKTEzUyJEjvXVKAHBSfxzL1ZaD2ZKkFrEuL0cDlG0k+wAAAIAKxmE1FO6yKiUj39uhAICcNkOV/em+Ezhb77333mmXO51OTZ48WZMnTz7lOrGxsVqwYEFJhwYAJWrZzgxJUsMIp8JdpDKA0+GxOQAAAKACquxvldNmeDsMABWcIalqkE2GwecRAAD4n11Hc7TjSI4shnQtVX3AGZHsAwAAACogwzAUHWQTzesAvKlKAN13AgCAokzT9FT1xUf5K5QeAIAzKtN31ElJSTIMo8irfv36nuVZWVnq27evwsLCFBgYqC5duujAgQNF9rF792516tRJAQEBioiI0JNPPqm8vLzSPhUAAACgzHHaLAp38cUZgHc4bYbCAvgMAgAARW07nKO9abmyWaRragR4OxygXCjzHd1ecsklWrx4sWfaZvtfyP369dNnn32mOXPmKCQkRA8//LBuvfVWrVixQpKUn5+vTp06KSoqSitXrtT+/fvVo0cP2e12jR49utTPBQAAAChrKvtblZ7jVmau6e1QAFQw0XTfCQAA/ubEqr6m1QIU6MeDQcDZKPPJPpvNpqioqGLzU1NTNW3aNM2aNUutW7eWJE2fPl0XX3yxVq9erauuukoLFy7U5s2btXjxYkVGRio+Pl6jRo3SwIEDlZSUJIfDUdqnAwAAAJQphmGoapBdvx/JkZt8H4BSEuGyykn3nQAA4G82/5mtlIw8+VkNXVWdqj7gbJX5O+utW7eqatWquuiii3T33Xdr9+7dkqS1a9cqNzdXbdq08axbv3591ahRQ6tWrZIkrVq1Sg0bNlRkZKRnnfbt2ystLU2bNm0q3RMBAAAAyii71VBUYJl/DhCAj3DZDVVm7B0AAPA3+W5T3/xV1deseoD87WU+fQGUGWX6G32zZs305ptvql69etq/f79GjBiha6+9Vhs3blRycrIcDodCQ0OLbBMZGank5GRJUnJycpFEX+HywmWnkp2drezsbM90WlpaCZ0RAAAAUDaFOAu680zLdns7FAA+zGqRqgbb6b4TAAAUs+FAlo5k5SvAbqhpNX9vhwOUK2U62dehQwfPz40aNVKzZs0UGxur2bNny9//wl3sY8aM0YgRIy7Y/gEAAICyKCrQpszcHOWR7wNwgVQLsstmIdEHAACKynOb+nZXQVXf1TEu+dHdN3BOytUVExoaqrp162rbtm2KiopSTk6Ojh49WmSdAwcOeMb4i4qK0oEDB4otL1x2KoMHD1ZqaqrntWfPnpI9EQAAAKAMsloMVQu2ezsMAD4qzN8ql6NcNUMAAIBS8uMfx3Usx61gP4sur0pVH3CuytVddnp6urZv367o6GhdccUVstvtWrJkiWf5li1btHv3biUkJEiSEhIStGHDBqWkpHjWWbRokYKDg9WgQYNTHsfPz0/BwcFFXgAAAEBFEGC3KNLFWFoASpa/zVA4ny0AAOAksvPcWrGnoKrvmhouegEAzkOZ7sZzwIABuvHGGxUbG6s//vhDw4cPl9Vq1V133aWQkBDdd9996t+/vypXrqzg4GA98sgjSkhI0FVXXSVJateunRo0aKDu3btr3LhxSk5O1pAhQ9S3b1/5+fl5+ewAAACAsqlygE3H80zG7wNQIiwG4/QBAIBT+37fcR3PNVXZ36pGUU5vhwOUS2U62bd3717dddddOnTokMLDw3XNNddo9erVCg8PlyRNnDhRFotFXbp0UXZ2ttq3b68pU6Z4trdarZo/f74efPBBJSQkyOVyKTExUSNHjvTWKQEAAADlQnSQTdl5ucrON70dCoByrlqQTQ4riT4AAFBcZq5b3+3NlCS1iHXJwsNBwHkp08m+995777TLnU6nJk+erMmTJ59yndjYWC1YsKCkQwMAAAB8msUwVC3Ypp1Hc+Um3wfgPIW7rAr0o/tOAABwcqv3ZCo731SEy6aLw+mNDzhf5WrMPgAAAAClx89mUXRQmX4+EEAZFuxnUZUAPkMAAMDJHcvO1w9/FFT1tYpz0eU38A+Q7AMAAABwSsF+VoX5U5UD4Nw4bQYPCwAAgNNasTtTeW6perBdtSo7vB0OUK6R7AMAAABwWuEuqwIdfHUAcHasRkGjHWPuAACAUzlyPF/rko9LoqoPKAl8YwcAAABwWsZf4/c5bXwBB3Bm1YPtslv5vAAAAKf27a4MuU3pokoO1Qilqg/4p0j2AQAAADgji2GoerBdNr5BADiNqECbAqgEBgAAp/FnRp42pmRJklrGubwcDeAbuAMHAAAAcFbsVkMxIXZZKNgBcBJVAqyqxBifAADgDJbtzJAk1avip+ggu5ejAXwDyT4AAAAAZ81ps6haMF/IARQV4rQo3GXzdhgAAKCM+yMtV78dypYhqvqAkkSyDwAAAMA5CXRYFBVIoz6AAoEOi6L5TAAAAGdh6c50SVLDSKeqBHD/AJQUkn0AAAAAzlklf6vCAuiuD6jonDZD1YJtMgz69wUAAKe380iOdh7NlcWQromlqg8oSST7AAAAAJyXCJeN8bmACszhGceTRB8AADg90zS17K+qvsbR/gp18j0CKEkk+wAAAACct0iXVSFOvlYAFY3VIsWE2GWzkOgDAABntu1wjvYdy5PNIjWvEeDtcACfw7dyAAAAAOfNMAxFB9oU5MdXC6CisBpSbIhdDiuJPgAAcGamaXrG6mtaLUCBDqr6gJLGN3IAAAAA/4hhGKoWZJPLwdcLwNdZDKlGqF1+Nq53AABwdjb/ma0/M/LlZzV0VXWq+oALgbtzAAAAAP+YYRiqHmxTgJ1KH8BXWQypRohdThJ9AADgLOW7TX2zM0OSdFVMgPzt3EcAFwJXFgAAAIASYTEMxYTY5W8j4Qf4msJEHw10AADgXKw/kKUjWfkKsBtqWs3f2+EAPou7dAAAAAAlxmIYqhFqp8IP8CEk+gAAwPnIzTe1fFdBVV/zGi45rNxLABcKVxcAAACAElVY4eci4QeUeyT6AADA+fpx/3Edy3Er2M+ixtFU9QEXEnfrAAAAAEqcxTBUPcSuQAdfOYDyymqRYkNJ9AEAgHOXnefWyt0FVX3Xxrpks/AgIHAhcccOAAAA4IKwGIaqB9sU7MfXDqC8sVukuFCHnDauXwAAcO7W7Duu43mmKvtb1TDS6e1wAJ/HXTsAAACAC8YwDFUNsinUyVcPoLzwsxqKq+SQw8oT+AAA4Nxl5rr13d5MSVLLOJcsBvcUwIXGN24AAAAAF5RhGIoOsisswOrtUACcgb/NUGyona62AADAeVu1J1M5+aYiA22qX8XP2+EAFQLJPgAAAAClIsJlU1SgzdthADgFl8OiGqF2WUn0AQCA83QsO19r/yio6msV55JBVR9QKkj2AQAAACg1lfytigmxi1wCULaE+FkUE2yjmy0AAPCPLN+dqTy3VD3YrosqObwdDlBhkOwDAAAAUKoCHZa/ugn0diQAJCncZVXVYDtP3gMAgH/kyPE8/Zx8XJLUqiZVfUBp4us1AAAAgFLntFkUF+qQn40GAMBbLIZUPdimKgF0rwsAAP65b3ZlyG1KF1VyqEYIVX1AaSLZBwAAAMAr7FZDcaF2uRx8LQFKm80ixYbaFeRn9XYoAADAB6Rk5GlTSrakgrH6AJQuvlUDAAAA8BqLYSgm2KawABIOQGnxtxmqWckhJ33pAgCAEvLNznRJUv0qfooKsns5GqDioa8OAAAAAF5lGIYiXDb52wz9cSxPbtPbEQG+K8TPoqggmyyMoQMAAErIvrRc/XYoR4akFlT1AV7BY3wAAAAAyoQgP6viQu3ys5KEAEqaISky0KaqwXYSfQAAoEQt+6uqr2Gkk7GAAS8h2QcAAACgzPCzWRRXya4gP76qACXF/tf4fJX96S4XAACUrB1HcrTzaK6shnRtLFV9gLfwDRoAAABAmWIxDFUPtivCRWIC+KcCHRbVrOSQv52v/wAAoGSZpump6msc7a8QJ/fvgLdwtw8AAACgTAoLsCk21C5yFMD5iXRZFRNil9VCt52ALxkzZoyaNm2qoKAgRUREqHPnztqyZUuRdVq1aiXDMIq8HnjggSLr7N69W506dVJAQIAiIiL05JNPKi8vrzRPBUA5t/VQjv44lie7Rbq6BlV9gDfRgS4AAACAMivAXlCVlJyep7Rst7fDAcoFm0WqHmynmg/wUcuWLVPfvn3VtGlT5eXl6amnnlK7du20efNmuVz/a2zv3bu3Ro4c6ZkOCAjw/Jyfn69OnTopKipKK1eu1P79+9WjRw/Z7XaNHj26VM8HQPnkPqGqr2m1AAU6uO8AvIlkHwAAAIAyzWoxVC3YrsCsfCWn58ltejsioOwK9rMoKtBGNR/gw7744osi02+++aYiIiK0du1atWjRwjM/ICBAUVFRJ93HwoULtXnzZi1evFiRkZGKj4/XqFGjNHDgQCUlJcnhcFzQcwBQ/m1Oydafmfly2gw1qx5w5g0AXFCk2wEAAACUCyFOqy6q5JC/nSQG8HdWQ6oWbFO1YLrtBCqa1NRUSVLlypWLzJ85c6aqVKmiSy+9VIMHD1ZmZqZn2apVq9SwYUNFRkZ65rVv315paWnatGlT6QQOoNzKd5v6ZldBVd9V1QPoTQAoA6jsAwAAAFBu2K2GYkPsOpSZrz8z870dDlAmBDosig6yyUaSD6hw3G63Hn/8cTVv3lyXXnqpZ363bt0UGxurqlWrav369Ro4cKC2bNmiefPmSZKSk5OLJPokeaaTk5NPeqzs7GxlZ2d7ptPS0iRJubm5ys3NLZHzKdxPSe0PqEhK8/pZdyBbR7PcCrAbuizCzjWLcu1CXDveuCZI9gEAAAAoVwzDUBWXTYF+Fu0/lqesPPr1RMVkMaTIQJtCnVZvhwLAS/r27auNGzdq+fLlReb36dPH83PDhg0VHR2t6667Ttu3b1etWrXO61hjxozRiBEjis1fuHBhkfEAS8KiRYtKdH9ARXKhrx+3LNoa0liyOBSc+rsWf3nyBwSA8qYkr50Tq+lLC8k+AAAAAOWS02ZRXKhdh4/n68+MfJHyQ0XishuKDrLLbqWaD6ioHn74Yc2fP1/ffPONqlevftp1mzVrJknatm2batWqpaioKK1Zs6bIOgcOHJCkU47zN3jwYPXv398znZaWppiYGLVr107BwcH/5FQ8cnNztWjRIrVt21Z2u71E9glUFKV1/az5I0u/7DquYD+L7mrWmJ4FUO5diGunsPq9NJHsAwAAAFBuGYahsACbgvysSj6Wq4xcUn7wbVaLFOmyKYRqPqDCMk1TjzzyiD788EMtXbpUNWvWPOM269atkyRFR0dLkhISEvTss88qJSVFERERkgoqGoKDg9WgQYOT7sPPz09+fn7F5tvt9hJPLFyIfQIVxYW8frLz3FqzL0uS1CLWJX8/xwU5DuANJXnteONvGMk+AAAAAOWew2qoRqhDqVn5OpCep3xyfvBBlZwWhbtssvIEPVCh9e3bV7NmzdLHH3+soKAgzxh7ISEh8vf31/bt2zVr1ix17NhRYWFhWr9+vfr166cWLVqoUaNGkqR27dqpQYMG6t69u8aNG6fk5GQNGTJEffv2PWlCDwAk6bu9mTqeZyrM36pLI53eDgfACUj2AQAAAPAZIU6rXA6LUtLzlJrt9nY4QIlw2gxFBdrkb7d4OxQAZcDLL78sSWrVqlWR+dOnT1fPnj3lcDi0ePFiTZo0SRkZGYqJiVGXLl00ZMgQz7pWq1Xz58/Xgw8+qISEBLlcLiUmJmrkyJGleSoAypHMXLfW7DsuSWoR55LF4OEjoCwh2QcAAADAp9gshqoG21Up160D6Xk6nkeZH8oniyGFu2yq5LTIoEENwF9M8/R/12JiYrRs2bIz7ic2NlYLFiwoqbAA+LiVuzOUk28qKtCm+lWoAAbKGpJ9AAAAAHySv92iuEoFXXumZOQpj0I/lCOhf3XZaaPLTgAA4GVp2fla+0dBVV+rOBcPIQFlEMk+AAAAAD4txGlVkJ9FhzLzdSgzX9T5oSwLdFgU4bLKz0aXnQAAoGxYvitD+aYUE2JXzUoOb4cD4CRI9gEAAADweRbDULjLplCnVSkZeUpjPD+UMU6boUiXTQEOknwAAKDsOHw8Tz8nZ0miqg8oy0j2AQAAAKgw7FZD1YLtCstz62BGvo7lkPSDd9ktUkSgTcF+Vm+HAgAAUMy3OzNkSqpV2aGYEKr6gLKKZB8AAACACsdps6h6iEVZeW79mZGvdJJ+KGU2ixQWYFMlp4Un5AEAQJmUkp6nTX9mS5Jaxrm8HA2A0ynT/YOMGTNGTZs2VVBQkCIiItS5c2dt2bKlyDqtWrWSYRhFXg888ECRdXbv3q1OnTopICBAERERevLJJ5WXl1eapwIAAACgDHLaLIoJsSsu1C4X3SeiFNgtUnSgTbUrO1TZ30qiDwAAlFnLdqZLki4O91NUoN3L0QA4nTJd2bds2TL17dtXTZs2VV5enp566im1a9dOmzdvlsv1vycJevfurZEjR3qmAwICPD/n5+erU6dOioqK0sqVK7V//3716NFDdrtdo0ePLtXzAQAAAFA2+dstqhFiUWauWwcz8pSRa3o7JPgYh9VQlQCrgv2o5AMAAGXf3rRcbT2cI0NSi1iq+oCyrkwn+7744osi02+++aYiIiK0du1atWjRwjM/ICBAUVFRJ93HwoULtXnzZi1evFiRkZGKj4/XqFGjNHDgQCUlJcnhoJ9hAAAAAAUC7BbVCHUoO8+tQ8fzlZblFmk//BN+VkNVXFYFOUjyAQCA8sE0TS3dUVDV1yjKqbCAMp1GAKAy3o3n36WmpkqSKleuXGT+zJkzVaVKFV166aUaPHiwMjMzPctWrVqlhg0bKjIy0jOvffv2SktL06ZNm0oncAAAAADlip/NoqpBdtUOcygswCorORqcI5ejoIvYmpXsCvaju04AAFB+7Dyaq92pubIa0jU1qOoDyoNyk5J3u916/PHH1bx5c1166aWe+d26dVNsbKyqVq2q9evXa+DAgdqyZYvmzZsnSUpOTi6S6JPkmU5OTj7psbKzs5Wdne2ZTktLK+nTAQAAAFAO2CyGIlw2VQmw6miWW4eP5ys3n1o/nJzFkIL9LKrsb5WfrVw9WwsAACDpr6q+v8bqu7yqv0KcVi9HBOBslJtkX9++fbVx40YtX768yPw+ffp4fm7YsKGio6N13XXXafv27apVq9Z5HWvMmDEaMWLEP4oXAAAAgO+wGIYq+1tVyWlRRo5bR7LcSs9xezsslBEOq6FK/laF+FlktVDBBwAAyq/fDuVo/7E82S2GEmKo6gPKi3LxqOHDDz+s+fPn6+uvv1b16tVPu26zZs0kSdu2bZMkRUVF6cCBA0XWKZw+1Th/gwcPVmpqque1Z8+ef3oKAAAAAHyAYRgK9LMqJsSu2pUdqhJgFQVcFZOhgiq+GiF21arsUGV/K4k+AABQrrlNU8v+quprWs1fgQ5udIHyokxfraZp6uGHH9aHH36or776SjVr1jzjNuvWrZMkRUdHS5ISEhK0YcMGpaSkeNZZtGiRgoOD1aBBg5Puw8/PT8HBwUVeAAAAAHAiu9VQuMum2pUdigmxK9jPIlI9vi/Abig60KY6YQ5VC7bLRSMYAADwEZtSsnQwM19Om6GrYgK8HQ6Ac1Cmu/Hs27evZs2apY8//lhBQUGeMfZCQkLk7++v7du3a9asWerYsaPCwsK0fv169evXTy1atFCjRo0kSe3atVODBg3UvXt3jRs3TsnJyRoyZIj69u0rPz8/b54eAAAAAB9gGIYCHYYCHRblu02lZbt1LDtfGbmM7ecr7BYpxGlViNMqh5WULgAA8D35blPf7sqQJCXEBMhJ9xVAuVKmk30vv/yyJKlVq1ZF5k+fPl09e/aUw+HQ4sWLNWnSJGVkZCgmJkZdunTRkCFDPOtarVbNnz9fDz74oBISEuRyuZSYmKiRI0eW5qkAAAAAqACsloKx2yr5W5XnNnUs26207Hxlkvgrd2wWKcjPqmCHRf52Q4ZBkg8AAPiudcnHdTTLLZfDoiuqUtUHlDdlOtlnmqf/QhwTE6Nly5adcT+xsbFasGBBSYUFAAAAAGdk+1viL+2vxN9xEn9llp/VUKCfRUEOi/ztPM0OAAAqhtx8Uyt2Z0qSmtcIoCcDoBwq08k+AAAAAPAFNouhyv5WVf4r8ZeR41Z6jlsZOW7lk/vzKn+boaC/EnwOuqsCAAAV0No/MpWe41aIn0WNo/y9HQ6A80CyDwAAAABKkc1ieMZ/M01TWXmmJ/F3PI/M34XmsBoKsBtyOSxy2S2yWnhyHQAAVFxZeW6t2lNQ1XdtrIt7I6CcItkHAAAAAF5iGIb87Yb87RaFu6R8t6mMXLeO55rKzHUri+TfP2azSAF2iye5Z6dbKgAAAI/v9mbqeJ6psACrLo10ejscAOeJZB8AAAAAlBFWi6FgP6uC/Qqm3aap47mmjue6lZlX8K+b/N8pGZKcNkNOu0X+toIkKmPOAAAAnFxGjltr9h6XJLWMc8licN8ElFck+wAAAACgjLIYhlyOgi4nJck0TeXkF3T9mZ1nKivPrex8U3luLwfqBYYKuuR0/pXUc9oKfjZopAIAADgrq/ZkKNdtKirQpnphft4OB8A/QLIPAAAAAMoJwzDkZzPk97dvcnnuE5J/eQUJwVy3byQBDangnK2GHIX//vUisQcAAHB+0rLytfaPgqq+VnEu7quAco5kHwAAAACUczaLIdsJFYCF3Kap3PyCV45bBf/mm8pzF7zy3ZK3ewW1GpLdashmMWS3SDarIbvlr5fVkM0iGp8AAABK2PLdGco3pRohdtWs5PB2OAD+IZJ9AAAAAOCjLKeoBDyR2yyoAMwvTACaBT+7Tck0JbcKug/9388F25yoMBVnGIYMSYZRMM9iMWQ1ChJ6hT9bDENWi2T961/GhgEAAChdhzLz9HNyliSpVVwgD1YBPoBkHwAAAABUYBbDkMOqgowcAAAAfN63uzJkSqpd2aHqIXZvhwOgBFjOvAoAAAAAAAAAACjvDqTnavOf2ZKklnEuL0cDoKSQ7AMAAAAAAAAAoAJYtjNDktQg3E+RgVT1Ab6CZB8AAAAAAAAAAD5ub2quth3OkSHp2liq+gBfQrIPAAAAAAAAAAAfZpqmlu5MlyRdFuVUWIDNyxEBKEkk+wAAAAAAAAAA8GE7juRod2qurIZ0TQ2q+gBfQ7IPAAAAAAAAAAAfVVDVVzBW3xVV/RXstHo5IgAljWQfAAAAAAAAAAA+asuhbCWn58lhNZQQQ1Uf4ItI9gEAAAAAAAAA4IPcpqllf1X1Na3mL5eDlADgi7iyAQAAAAAAAADwQZtSsnQoM19Om6Fm1QO8HQ6AC4RkHwAAAAAAAAAAPibfbeqbv6r6EmIC5LSRDgB8FVc3AAAAAAAAAAA+5qfk40rNdivQYVGTqlT1Ab6MZB8AAAAAAAAAAD4kJ9/Uil2ZkqTmNQJktxpejgjAhUSyDwAAAAAAAAAAH7L2j0xl5LoV6rQoPsrf2+EAuMBI9gEAAAAAAAAA4COy8txataegqu/aWJesFqr6AF9Hsg8AAAAAAAAAAB/x3d5MZeWZqhJg1SURTm+HA6AUkOwDAAAAAAAAAMAHZOS4tWbvcUlSy7hAWQyq+oCKgGQfAAAAAAAAAAA+4Lt9Wcp1m4oOsqlumMPb4QAoJTZvBwAAAAAAAAAAAM6P2zS1OzVXhxyRSknOliS1iguUQVUfUGGQ7AMAAAAAAADgVYXJilR7mHan5qpmmI3uB4Gz8OvBLC3alq5jOW7JdZEkyWpI2XluL0cGoDSR7AMAAAAAAADgNUWSFYF19f7mdAU5MtW2dqDqV3F6OzygzPr1YJbmbU4rNj/flOb9kqZbDXENARUEY/YBAAAAAAAAFdTkyZMVFxcnp9OpZs2aac2aNaV6/MJkxbGcolVIx3Lcmrc5Tb8ezCrVeIDywm2aWrQt/bTrLN6eLrdpllJEALyJyj4AAAAAAACgAnr//ffVv39/vfLKK2rWrJkmTZqk9u3ba8uWLYqIiLjgxz+bZMX8Lce0Py1XOk2XnqfLZRRfVHTOuW17dtv9k21PF++55GyKrWqeYflZbnvG32dJHfPEZSX6uz712ud23qfZ9h/9rs1TL/ub47nuYknyv0vLdmtPaq5iQx1n2BuA8o5kHwAAAAAAAFABPf/88+rdu7fuvfdeSdIrr7yizz77TG+88YYGDRp0wY+/JzX3jMmKnHxTq/Yev+CxAL4q/QzXGADfQLIPAAAAAAAAqGBycnK0du1aDR482DPPYrGoTZs2WrVqVbH1s7OzlZ2d7ZlOSysYJyw3N1e5ubnnFUPq8bPbrmaITZX9rdKpi/tOt6j4MuMMy4ssO/XKp9vujMvPKYZTzzinGIod80xbl0YM53DMc4rBOPVUCcVwmmLTM277z2IomHMoM1+r/zhzN7dOi/u8r1GgIii8PkryOvHGNUeyDwAAAAAAAKhgDh48qPz8fEVGRhaZHxkZqV9//bXY+mPGjNGIESOKzV+4cKECAgLOK4YMW7AUdMkZ1zP3/qysvLTzOgbgq0xJtpDLlWc4Tp55NE3ZzBxtWLFKG0s9OqD8WbRoUYntKzMzs8T2dbZI9gEAAAAAAAA4rcGDB6t///6e6bS0NMXExKhdu3YKDg4+r326TVOv/piq9JxTj04W5DDUpW1zWc5URgVUQHUO5ejj3zJOvtAw1KleZdUN61i6QQHlTG5urhYtWqS2bdvKbreXyD4Lq99LE8k+AAAAAAAAoIKpUqWKrFarDhw4UGT+gQMHFBUVVWx9Pz8/+fn5FZtvt9v/UeNou9pBmrf51I2ibWsHyc/hOO/9A77skii7rDarFm1LLzL+ZbCfRW1qBap+FacXowPKl3/69+zv+yptllI/IgAAAAAAAACvcjgcuuKKK7RkyRLPPLfbrSVLlighIaHU4qhfxalbGwQryFG0mTLYz6JbGwSTrADOoH4Vp/o2C1PXBoGqnv6bujYI1ENXhnHtABUMlX0AAAAAAABABdS/f38lJiaqSZMmuvLKKzVp0iRlZGTo3nvvLdU46ldxqm6Yn3YcOq4Va35U8ysvV80wf7ruBM6SxTBUI8SujbmHVCPEzrUDVEAk+wAAAAAAAIAKqGvXrvrzzz81bNgwJScnKz4+Xl988YUiIyNLPRaSFQAAnD+SfQAAAAAAAEAF9fDDD+vhhx/2dhgAAOAfYMw+AAAAAAAAAAAAoJwi2QcAAAAAAAAAAACUUyT7AAAAAAAAAAAAgHKKZB8AAAAAAAAAAABQTpHsAwAAAAAAAAAAAMopkn0AAAAAAAAAAABAOUWyDwAAAAAAAAAAACinKlSyb/LkyYqLi5PT6VSzZs20Zs0ab4cEAAAAAAAAAAAAnLcKk+x7//331b9/fw0fPlw//vijLrvsMrVv314pKSneDg0AAAAAAAAAAAA4LzZvB1Bann/+efXu3Vv33nuvJOmVV17RZ599pjfeeEODBg3ySkzv7PvVK8fFhXdPtfqlfszMLz4p9WOidARcf5O3QwAAAAAAAAAAlFEVItmXk5OjtWvXavDgwZ55FotFbdq00apVq4qtn52drezsbM90amqqJCktLa1E4zp+LL1E94eyo6TfK2cjMyOz1I+J0pHnhfeTJKUfyz7zSih30vz8SnZ/f70/TdMs0f0CAAAAKNsKvwOUZBtIbm6uMjMzlZaWJrvdXmL7BSoCrh/g/FyIa8cb7WUVItl38OBB5efnKzIyssj8yMhI/fpr8eq6MWPGaMSIEcXmx8TEXLAY4Vv6eDsAAChlx44dU0hIiLfDAAAAAFBKjh07Jon2MgAATqU028sqRLLvXA0ePFj9+/f3TLvdbh0+fFhhYWEyDMOLkZVPaWlpiomJ0Z49exQcHOztcOADeE+hJPF++mdM09SxY8dUtWpVb4cCAAAAoBRVrVpVe/bsUVBQUIm1l/H9DDh/XD/A+bkQ14432ssqRLKvSpUqslqtOnDgQJH5Bw4cUFRUVLH1/fz85Pe3bs5CQ0MvZIgVQnBwMH9oUKJ4T6Ek8X46f1T0AQAAABWPxWJR9erVL8i++X4GnD+uH+D8lPS1U9rtZZZSPZqXOBwOXXHFFVqyZIlnntvt1pIlS5SQkODFyAAAAAAAAAAAAIDzVyEq+ySpf//+SkxMVJMmTXTllVdq0qRJysjI0L333uvt0AAAAAAAAAAAAIDzUmGSfV27dtWff/6pYcOGKTk5WfHx8friiy8UGRnp7dB8np+fn4YPH16sa1TgfPGeQkni/QQAAAAAZQPfz4Dzx/UDnB9fuXYM0zRNbwcBAAAAAAAAAAAA4NxViDH7AAAAAAAAAAAAAF9Esg8AAAAAAAAAAAAop0j2AcA52r9/v7dDAAAAAAAAAABAEsk++KD/+7//09dff+3tMOCj2rZtq0mTJonhTgEAAAAA8A1JSUmKj48/7To7d+6UYRhat26dZ96KFSvUsGFD2e12de7c+YLGCPgSrieg5JHsg08ZNmyYnn32WcXFxXk7FPigQYMGadu2bfrvf/8rwzCUnZ3t7ZAAAAAAADipnj17yjAMzyssLEzXX3+91q9f7+3QzktcXJznXFwuly6//HLNmTOnRPY9YMAALVmyxDPds2fPYsmGmJgY7d+/X5deeqlnXv/+/RUfH68dO3bozTffLJFYUPp89VpZvXp1kfmPP/64WrVqVerxcD3hRIXX29ixY4vM/+ijj2QYRqkc21eu9b8j2QefkZqaquXLl6t///6qWbOmfvnlF+3bt8/bYcFHmKap/Px8JSQkSJL++9//6tNPP5Xb7fZyZChPqAgFAAAAUJquv/567d+/X/v379eSJUtks9l0ww03eDus08rNzT3lspEjR2r//v366aef1LRpU3Xt2lUrV678x8cMDAxUWFjYadexWq2KioqSzWbzzNu+fbtat26t6tWrKzQ09B/HAe/xtWvF6XRq4MCBpRjNueF6qticTqf++9//6siRI6V+bF+71k9Esg8+o7ARfevWrfq///s/JSQkeOUDA77JMAzVqVNHixYtUrt27TR48GBdccUVslj4GMWpFX4uHTx4UJIu+BNKAAAAAHAiPz8/RUVFKSoqSvHx8Ro0aJD27NmjP//8U5K0dOlSGYaho0ePerZZt26dDMPQzp07JUmtWrUqUglR+Nq5c6fefPPNky5LSkry7O/111/XxRdfLKfTqfr162vKlCmeZYVd+b3//vtq2bKlnE6nZs6cecrzCQoKUlRUlOrWravJkyfL399fn376qSRpw4YNat26tfz9/RUWFqY+ffooPT3ds+3SpUt15ZVXyuVyKTQ0VM2bN9euXbskFe3GMykpSW+99ZY+/vhjz/ksXbq0SLeDhT8fOnRIvXr1kmEYVCKVc752rfTp00erV6/WggULTnvepzumJK1cuVLx8fFyOp1q0qSJp/qqsPvN/Px83XfffapZs6b8/f1Vr149/d///Z9ne64nnEybNm0UFRWlMWPGnHKduXPn6pJLLpGfn5/i4uI0YcKEIsvj4uI0evRo9erVS0FBQapRo4Zee+21Mx7b1671E9FKjXIvMzNTkhQaGqoXX3xRc+bM0cCBA/Xkk08WKQUHzsfrr7+u/Px8SQU3ShEREfrmm280YMAA1ahRw8vRoawzDEMffPCBHnroIc+XSAAAAADwhvT0dL3zzjuqXbv2GavYTjRv3jxPFcT+/ft16623ql69eoqMjFTXrl2LLHv33Xdls9nUvHlzSdLMmTM9Q6788ssvGj16tIYOHaq33nqryDEGDRqkxx57TL/88ovat29/VnHZbDbZ7Xbl5OQoIyND7du3V6VKlfT9999rzpw5Wrx4sR5++GFJUl5enjp37qyWLVtq/fr1WrVqlfr06XPSBzIHDBigO+64o0j1x9VXX11kncIuCIODgzVp0iTt379fXbt2PevfKco2X7hWatasqQceeECDBw8+Za9UZzpmWlqabrzxRjVs2FA//vijRo0aVaxa0O12q3r16pozZ442b96sYcOG6amnntLs2bMlcT3h5KxWq0aPHq0XX3xRe/fuLbZ87dq1uuOOO3TnnXdqw4YNSkpK0tChQ4slgSdMmKAmTZrop59+0kMPPaQHH3xQW7ZsOes4fOFaP5HtzKsAZdewYcO0adMmzZ49W1arVTabTenp6QoICNAff/yhbdu2qXbt2t4OE+XU559/rsmTJ6tXr17Kz8/XwYMHFRAQoG7duun1119XdHS0EhMTVblyZW+HijLGNE0ZhqEDBw5o2LBhevTRRxUbG+vtsAAAAABUMPPnz1dgYKAkKSMjQ9HR0Zo/f/459VJz4nfeiRMn6quvvtJ3330nf39/SfL8u337dvXt21ejR49W27ZtJUnDhw/XhAkTdOutt0oqSEBs3rxZr776qhITEz37ffzxxz3rnI2cnBxNmDBBqampat26tWbNmqWsrCzNmDFDLpdLkvTSSy/pxhtv1H//+1/Z7XalpqbqhhtuUK1atSRJF1988Un3HRgYKH9/f2VnZysqKuqk6xR2QWgYhkJCQk65HsoPX7xWhgwZounTp2vmzJnq3r17seVnOuasWbNkGIamTp0qp9OpBg0aaN++ferdu7dnH3a7XSNGjPBM16xZU6tWrdLs2bN1xx13cD3hlG655RbFx8dr+PDhmjZtWpFlzz//vK677joNHTpUklS3bl1t3rxZ48ePV8+ePT3rdezYUQ899JAkaeDAgZo4caK+/vpr1atX75TH9cVrvRDJPpRrd955p9xut6xWq3JzcxUdHa1169YpNTVVN910k3JycjRo0CDPjRxwLjp06KD27dvLYrFo6dKlatWqlVatWiWbzabo6GiNHDlShmGoR48eJPxQhGEYWrhwoVauXKlmzZrp7rvv9nZIAAAAACqgf/3rX3r55ZclSUeOHNGUKVPUoUMHrVmz5pwfSPz88881aNAgffrpp6pbt26RZYWJtE6dOunJJ5+UVNCIun37dt13331FkgN5eXkKCQkpsn2TJk3OKoaBAwdqyJAhysrKUmBgoMaOHatOnTqpf//+uuyyyzyJPklq3ry53G63tmzZohYtWqhnz55q37692rZtqzZt2uiOO+5QdHT0Of0O4Lt87VqRpPDwcA0YMEDDhg0rVil3NsfcsmWLGjVqJKfT6Vl+5ZVXFjvO5MmT9cYbb2j37t06fvy4cnJyPN3iAqfz3//+V61bt9aAAQOKzP/ll1908803F5nXvHlzTZo0Sfn5+bJarZKkRo0aeZYbhqGoqCilpKRIKmjX/fbbbyVJsbGx2rRpkyTfvNYLkexDuWWapho0aCBJ+uqrrzRmzBi9++67not85syZuvvuu2UYhgYOHEjCD2fNNE1PEtlisWjjxo1q3bq1nnrqKQ0dOlQ2m03PPvusDMPQiBEjPAm/SpUqeTt0lCHr1q3TyJEjFR0drdTUVAUFBXk7JAAAAAAVjMvlKtLj0euvv66QkBBNnTpVzzzzjKeSoXC8cUnKzc0ttp/Nmzfrzjvv1NixY9WuXbsiy/Lz89W1a1cFBwcXGS+pcLy8qVOnqlmzZkW2KWyoPTHOs/Hkk0+qZ8+eCgwMVGRk5DmNiz59+nQ9+uij+uKLL/T+++9ryJAhWrRoka666qqz3gd8l69dK4X69++vKVOmFBuL71yOeTrvvfeeBgwYoAkTJighIUFBQUEaP368vvvuu3OKExVTixYt1L59ew0ePLhIxd7ZstvtRaYNw/B0W/v666/r+PHjxdbz1WtdItmHcsbtdnsuuMIbury8PEVGRmr16tXq1auXpk2bpvDwcHXs2FGzZs1St27dZLVa1a9fv2IZduBkUlNTFRoaKkn64Ycf1KRJE02fPl3//ve/ZbFY9PTTT8vPz8/zB+CZZ57RsWPH9Nhjj5HQgcd//vMfBQUFqW/fvpo5c6b+85//nNMXUQAAAAAoaYZhyGKxeBpAw8PDJUn79+/3PMC6bt26ItscPHhQN954o7p06aJ+/foV22e/fv20YcMG/fDDD0UqgCIjI1W1alX9/vvvJdbbSZUqVU46XMvFF1+sN998UxkZGZ4G0hUrVshisRTpzq1x48Zq3LixBg8erISEBM2aNeukyT6Hw6H8/PwSiRnlU3m/VgoFBgZq6NChSkpK0k033XROx6xXr57eeecdZWdny8/PT5L0/fffF1lnxYoVuvrqqz1dKUoFXReeiOsJpzN27FjFx8cX+ay++OKLtWLFiiLrrVixQnXr1j3rZHS1atXOaj1fudYlkn0oZywWi/bs2aP169erU6dOev/997V+/Xo9++yzWr16tdq2bavExES99dZbCg8PV4cOHfTuu++qY8eO8vPz0/jx44tl/IETff3113r++ef1xhtv6JlnntEnn3yitWvXKjExURaLRffee68keRJ+I0eOVFpampYvX66nn37ay9HDWwrH6Nu7d69SU1PldDoVExOjBx98UEePHtVTTz2lwMBA9e3b19uhAgAAAKhAsrOzlZycLKmgu7KXXnpJ6enpuvHGGyVJtWvXVkxMjJKSkvTss8/qt99+04QJE4rso0uXLgoICFBSUpJnX1JBg+iMGTM0ZcoUffjhhzIMw7M8MDBQgYGBGjFihB599FGFhITo+uuvV3Z2tn744QcdOXJE/fv3L7HzvPvuuzV8+HAlJiYqKSlJf/75px555BF1795dkZGR2rFjh1577TXddNNNqlq1qrZs2aKtW7eqR48eJ91fXFycvvzyS23ZskVhYWHFuleD7/Hla6VPnz6aOHGiZs2aVaSa6EzH7Natm55++mn16dNHgwYN0u7du/Xcc89J+l8RRp06dTRjxgx9+eWXqlmzpt5++219//33qlmzpuc4XE84nYYNG+ruu+/WCy+84Jn3xBNPqGnTpho1apS6du2qVatW6aWXXipWoXo+fPlalwmUI2lpaWaPHj3MZs2amYMGDTINwzDfeOMNz/INGzaY0dHRZocOHcyUlBTP/IULF5q//vqrN0JGOTNjxgyzZcuWZv369c3KlSub27dvN03TNN1ut2e51Wo1hw0bZmZlZXm2K1xe+C8qjsL/83nz5pmXXXaZGRsba1577bXmDTfcYKalpZmmaZrjxo0zLRaLOWXKFG+GCgAAAKACSUxMNCV5XkFBQWbTpk3NDz74oMh6y5cvNxs2bGg6nU7z2muvNefMmWNKMnfs2GGapllkHye+duzYUewYha/hw4d79j9z5kwzPj7edDgcZqVKlcwWLVqY8+bNM03TNHfs2GFKMn/66acznk9sbKw5ceLEUy5fv369+a9//ct0Op1m5cqVzd69e5vHjh0zTdM0k5OTzc6dO5vR0dGmw+EwY2NjzWHDhpn5+fmmaZrm8OHDzcsuu8yzr5SUFLNt27ZmYGCgKcn8+uuvTxprSEiIOX369DPGjrKtIlwrs2bNMiWZLVu2LDL/dMc0TdNcsWKF2ahRI9PhcJhXXHGFZz+F7axZWVlmz549zZCQEDM0NNR88MEHzUGDBnE94ZQSExPNm2++uci8HTt2mA6HwzwxXfXBBx+YDRo0MO12u1mjRg1z/PjxRbY52fv8sssuK3JNnezYvnSt/53xV3BAmVbYHackbdy4Ub1799Z3332nxx57TBMnTpQkz+CcGzduVLt27dSkSRNNnTpVkZGR3gwd5VDPnj01Y8YMtW7dWm+88YZq1Kjh6afZMAy9/fbbuv/++/Xggw8WqRY1/6ruQsXz1Vdf6cYbb9T48eN111136f3339dDDz2kV155RX369JEkPffcc/rPf/6j1157Tffff7+XIwYAAAAAADg3M2fO1L333qvU1FT5+/t7OxwAJ7B4OwDgTJYvX67Jkydr165dkgpKv+12u+Lj47VhwwZ99NFHkgoGsczPz9ell16qRYsWaeHChXr44Yc9g3ICZ5Kbm6vc3FwlJCRo3LhxMgxDjz/+uH755ZciA7x2795dL730kn788UfZbP/rDZlEX8VjmqbcbrcWLlyoBx54QA899JCys7M1evRo9e3b15Poy8vL04ABAzRx4kQ1b97cy1EDAAAAAACc2YwZM7R8+XLt2LFDH330kQYOHKg77riDRB9QBlHZhzIvIyNDx48fV5UqVbRhwwY1bNhQeXl5+umnnzR27FgdOnRIjz/+uDp37lxku19//VVWq1V16tTxTuAoF9xutyyWkz/38Oabb+qtt95SpUqVNHr0aNWvX19SQRVX69atPetR0VexnOz/+5577lGdOnV0//33q1mzZurUqZNeeeUVGYahDz/8UGlpaerevfsp32sAAAAAAABlzbhx4zRlyhQlJycrOjpanTt31rPPPquAgABvhwbgb0j2oUw7sVF99+7d6tChgxo2bKj33ntPkvTtt99q0qRJOnLkiB555BHdcsstGj58uEzTVFJSEg3rOK0TE33vvvuufv75Z4WGhqpx48Zq3769JOmtt97S22+/LT8/Pz366KOaOHGiDh06pDVr1pDgq4BO7M513bp1OnbsmK699loNHz5ca9as0S+//KK2bdtq6tSpMk1TWVlZevTRR1W1alU9/fTTcjgcXj4DAAAAAAAAAL6GZB/KtBOTfRkZGZo6dapmzpypBg0a6K233pJUkPCbPHmy1qxZo7i4OK1YsUIrVqxQkyZNvBk6ypGBAwfq7bff1tVXX620tDQdPnxYvXv31r///W9JBYnAt99+Wxs3blStWrW0cOFCzzh9qFgKP5M+/PBDdenSRT179tQbb7yh3bt365prrlFubq5Wr16t2NhY5ebmKikpSTNmzNCSJUtUt25db4cPAAAAAAAAwAeR7EOZVdiovnLlSmVkZKht27bKzMzUm2++qalTp6pRo0aehN+6des8VTX//ve/Pd0tAmfyyiuvaNy4cXr33XfVrFkzTZ06VQ8//LCqVq2qRx55RP3795ckJScnKy0tTbVr15bFYlFeXl6R8frg+wo/k2bPnq27775bbdq00bFjx/Tll1/K5XLpxx9/VJs2bVSnTh1ZrVZFRkZq+fLlWrhwoRo3buzt8AEAAAAAAAD4KJJ9KJMKG9XnzZunPn36qFevXnr00UdVvXp1paena8aMGXrttdd02WWXeRJ+wLnKzc3Vf/7zH0VGRmrQoEH65JNPlJiYqP79+2vHjh1asGCBRowY4anwK3S6cf7g22bOnKmePXvq9ddfV2xsrHr06KFt27Z5uufcu3ev3nnnHe3du1cXX3yx2rdvr9q1a3s5agAAAAAAAAC+jGQfyqzFixfrlltu0YsvvqiuXbvK39/fsyw7O1tvvvmmXnvtNcXFxWnu3LlejBTlxYndwhY6fPiwjh49Kknq0KGDHnjgAfXr109ffPGFunTpIkl67bXXdPfdd5d2uCgDTnzPbNu2TS1bttTw4cPVp08f/fLLL+rUqZNWrVqlKlWqyDRNqj0BAAAAAAAAlDpaJVFmLVy4ULfffrt69uypjIwMfffdd3rzzTcVFhamjh07qnfv3srIyNDHH3+sP/74Q1WrVvV2yCjDTkzavPjii0pISFCTJk1UuXJlVa5cWbNnz5bL5VJiYqIkyc/PTx06dNANN9ygO++805uhowzYt2+fqlSpoiVLlni6CXa5XDp8+LBSUlIUGRkpSXr//fdVrVo1XXPNNSdNLgMAAAAAAABASaMfOpRJpmlq7969+vnnn/X999+rd+/eGjp0qH788Ud9+eWXGjt2rNxut/r06aOPPvqIRB9Oy+12e5IuKSkpev7559WrVy/9/PPPnnWcTqf279+vRYsWKS0tTRMmTFC1atWUmJgoq9Wq/Px8b4UPLzBN05Os++STTxQTE6NPPvnEk+jLy8uT3W6Xv7+/Cgvkn376ad17772ezyMSfQAAAAAA4FSSkpIUHx/v7TAA+AiSfSgT/t6brGEYeuaZZ3TkyBHdcMMNcrvdevjhh/Xdd99pwIAB2rVrl9LS0hQYGKhKlSp5KWqUF4Xj6w0aNEi9evVStWrVtH37dt16661at26dJOnSSy/Vddddp4ceekiXXXaZ9uzZo+eee06GYcg0TVmtVi+eAbzBMAy99957uv322xUZGVkkOWyz2RQeHq7g4GAdPHhQSUlJmjRpkr755htddNFFXowaAAAAAABcCD179lTnzp1LbH8DBgzQkiVLznt7wzA8L5vNpho1aqh///7Kzs4usRgBlB904wmvK6yeWbVqlVauXKm8vDzFx8erffv22rBhg3bt2qUGDRp41l+7dq2qVKnC2Fg4J6+++qpefvllLV68WFFRUTp8+LAeffRR3Xzzzfr4448VHx+vUaNG6b777tOBAwd0++23y2q1Ki8vj/daBVP4mTR79mzdfffdmjt3rjZt2qTFixcXWc9isSgoKEiJiYk6dOiQvv32W11xxRVeihoAAAAAAJQngYGBCgwM/Ef7mD59uq6//nrl5ubq559/1r333iuXy6VRo0aVUJQlKycnRw6Hw9thAD6Jyj54nWEYmjt3rtq3b68PP/xQc+bMUYcOHTRgwAC53W5Pom/58uUaNGiQXn31VT3//PMKDg72cuQoT7Zt26Z27dqpadOmiomJ0WWXXaa5c+eqatWq6tq1q37++WfVrFlT//rXv3TnnXd6uu4k0VfxGIahpUuXqnv37nr11VfVuXNnBQUFFVnH7XbL7XYrPj5ehmFo9erVJPoAAAAAAKgg3G63xowZo5o1a8rf31+XXXaZPvjgA8/ypUuXyjAMLVmyRE2aNFFAQICuvvpqbdmyxbPO37vxXLp0qa688kq5XC6FhoaqefPm2rVr12njCA0NVVRUlGJiYnTDDTfo5ptv1o8//uhZfrJqxMcff1ytWrWSJO3cubNIhWDhq3B5q1atTrp8586dkqSjR4/q/vvv9/R+1Lp16yI9IxWe4+uvv66aNWvK6XSew28ZwLkg2Qev27p1qx577DE999xzWr58uVavXq3Zs2frxRdf1NixYyVJu3bt0htvvKHFixfr22+/1WWXXeblqFHeHDt2TBs2bPBM5+XlqUqVKnrggQe0detWdevWzXOjkpeXJ0l03VnBnNidcOXKlfXJJ5/o/vvvlyTVrl1bf/75pzIyMuR2u2WxWLR161Y98cQTWrFihRo1auStsAEAAAAAQCkbM2aMZsyYoVdeeUWbNm1Sv379dM8992jZsmVF1nv66ac1YcIE/fDDD7LZbOrVq9dJ95eXl6fOnTurZcuWWr9+vVatWqU+ffrIMIyzjum3337TV199pWbNmp31NjExMdq/f7/n9dNPPyksLEwtWrSQJM2bN6/I8ltvvVX16tVTZGSkJOn2229XSkqKPv/8c61du1aXX365rrvuOh0+fNhzjG3btmnu3LmaN2+eZzgdACWPkhWUmsIG8sJ/C6Wnp8vpdKp169aesdFuu+025efnq1u3burYsaOaN2+uESNGyOFweP6YACfz9/dXoT59+mjhwoUaOnSoRo0a5anYi4qK0kMPPaQNGzbotttu89x8oeIpfOLO4XDo2muvLZLAs9ls2rdvn44fPy6Xy6VBgwZp3LhxOnjwoCpXruzFqAEAAAAAQGnKzs7W6NGjtXjxYiUkJEiSLrroIi1fvlyvvvqqWrZs6Vn32Wef9UwPGjRInTp1UlZWVrEKt7S0NKWmpuqGG25QrVq1JEkXX3zxGWO56667PMPQZGdn64YbbtDgwYPP+lysVquioqIkSVlZWercubMSEhKUlJQkSUXaPCZOnKivvvpK3333nfz9/bV8+XKtWbNGKSkp8vPzkyQ999xz+uijj/TBBx+oT58+kgq67pwxY4bCw8PPOi4A544WbZSKwgTMtm3b9MYbb2j79u1q3bq12rZtq6CgIP3+++86cOCAateu7RkjrUOHDqpbt65++eUXNW/eXDExMd4+DZRxJyb65syZo82bN8vpdKpx48Zq166dEhMT9fnnnysjI0MjRozQwYMH9dJLL6levXoaMWKEbr/9dq1YsULNmzf38pnAG/Lz8/Xaa69pzpw5Wrlypa666irP+H3VqlWTv7+//Pz8NHLkSE2ePFnfffcdiT4AAAAAACqYbdu2KTMzU23bti0yPycnR40bNy4y78QHiaOjoyVJKSkpqlGjRpH1KleurJ49e6p9+/Zq27at2rRpozvuuMOzzalMnDhRbdq0UX5+vrZt26b+/fure/fueu+99875vHr16qVjx45p0aJFxR6k//zzzzVo0CB9+umnqlu3riTp559/Vnp6usLCwoqse/z4cW3fvt0zHRsbS6IPKAUk+3DBFSZgfv75Z7Vt21aXXHKJjhw5orlz5+r222/XmDFjdPvtt+vpp5/Wiy++qIYNG0qSnE6nAgICzqlcHRVb4Y3If/7zH82aNUvXXnutTNPU6NGjNWnSJPXr109+fn6aNm2aXn31VYWHhyskJESffvqpNm7cqMDAwGJjs6HisFqtmjp1qhwOhzp06KDPPvtMV199tSSpevXqcrlcuu2227R06VKtXLmSMfoAAAAAAKiA0tPTJUmfffaZqlWrVmRZYYVbIbvd7vm5sI3T7XafdL/Tp0/Xo48+qi+++ELvv/++hgwZokWLFumqq646ZSxRUVGqXbu2JKlevXo6duyY7rrrLj3zzDOqXbu2LBZLkWFLJCk3N7fYfp555hl9+eWXWrNmTbG2sc2bN+vOO+/U2LFj1a5duyK/h+joaC1durTY/kJDQz0/u1yuU8YPoOQwZh8uKNM0ZbFYtGnTJjVv3lyPPvqoFi9erHXr1umFF17Q+++/r02bNql3797y9/fXAw88oEWLFumHH35QUlKS9uzZo9atW3v7NFCOfPzxx3rvvfc0Z84cvfvuu+rQoYOysrJkmqaCg4P1xBNP6Oeff9Zbb72lGTNmeAYtfuutt1SlSpUzPjEF31F4s5udnS2p4GY7ODhYU6ZM0fXXX69OnTpp1apVkgpuYHfs2KHFixfr+++/J9EHAAAAAEAF1aBBA/n5+Wn37t2qXbt2kdc/7ZmscePGGjx4sFauXKlLL71Us2bNOqftrVarpILqOkkKDw/X/v37i6zz93Hz5s6dq5EjR2r27NmeLkQLHTx4UDfeeKO6dOmifv36FVl2+eWXKzk5WTabrdjvoUqVKucUN4B/jso+XFCGYejIkSO67rrrdMkll+jxxx/3/NHp3bu3xo8frx07dujhhx9WTk6OZs6cqfbt26tevXoyTVNffvmlatas6eWzQHlQ2P3r9u3bdcUVVyghIUHz5s3TI488ohdffFG9evVSWlqafvvtNzVp0kS33XabJOnHH3/U9OnT9fbbb2vZsmV0K1CBGIah77//XrfccotWrFih2NhYmaapoKAgvfrqq7r33nt100036bPPPtOVV16pr776SmFhYbrkkku8HToAAAAAAPCSoKAgDRgwQP369ZPb7dY111yj1NRUrVixQsHBwUpMTDznfe7YsUOvvfaabrrpJlWtWlVbtmzR1q1b1aNHj9Nud/ToUSUnJ8vtdmvr1q0aOXKk6tat6xnvr3Xr1ho/frxmzJihhIQEvfPOO9q4caOnu9GNGzeqR48eGjhwoC655BIlJydLkhwOhypXrqwuXbooICBASUlJnmVSQRKxTZs2SkhIUOfOnTVu3DjVrVtXf/zxhz777DPdcsstatKkyTn/HgCcPyr7cMFVqlRJ9913nw4dOqSXXnpJe/fulST99ttv2rt3r6pXry5J6tixo2bOnKlffvlFn332mZYvX16sn2vgRIsWLfI8VWSzFTy7EBgYqOjoaH344YdKTEzU+PHjPQMCL1myRPPmzdPhw4c9+/jjjz+Ul5enFStW6LLLLiv9k4DXmKapsLAwRUdHq3Xr1tqzZ48Mw/BU+A0YMECHDh3SNddco1WrVqlFixYk+gAAAAAAqKDcbren/WnUqFEaOnSoxowZo4svvljXX3+9Pvvss/MuWggICNCvv/6qLl26qG7duurTp4/69u2rf//736fd7t5771V0dLSqV6+uu+66S5dccok+//xzT5zt27fX0KFD9Z///EdNmzbVsWPHiiQQf/jhB2VmZuqZZ55RdHS053XrrbdKkr755htt3LhRsbGxRZYXtqEsWLBALVq00L333qu6devqzjvv1K5duxQZGXlevwcA588w/95pL1CCCsfrk6Thw4frjTfe0ODBg9W0aVPdeuutuuWWW/TCCy94OUqUR7m5uUpKStKHH36ozp07a/To0ZKkTz75RHfddZeysrI0efJkPfDAA5KkjIwMdenSRXXq1NGLL75YZF/Hjx+Xv79/qZ8DSte2bdv01ltvac+ePbrpppt06623yjRN7dy5U7169dL27du1fPlyzyDZv/zyi0aPHi2n06knnnhC9evX9/IZAAAAAAAAb7n++utVu3ZtvfTSS94OBQCKIdmHC+7EhN+wYcM0bdo0paen65ZbbtGbb74pScrPz/d07wmcrUOHDmnKlCn66KOPdN1112ncuHGSpLFjx+qpp57S5MmTFR8fL4fDocGDB+vPP//U999/L5vN5hmvrXBwZPi2n3/+Wddff70aNWqkvLw8ff3115o9e7anO9cdO3aoZ8+e2rFjh+bOnauqVatq2rRpWrt2rWbPnl1sgG0AAAAAAFAxHDlyRCtWrNBtt92m9957T507d/Z2SABQDGP24YKzWCyehN/IkSMVGBio0aNHq169ekpJSVFERASJPpyXsLAwPfjgg8rLy9P8+fM1YMAAPffccxo0aJBSU1M1ZswYpaamqn79+goJCdGaNWtks9lILlcwP//8sxISEtSvXz+NHDlSeXl5uueee7Rx40bddNNNcjgcqlmzpmbPnq37779fV111lerUqaOUlBR99dVXJPoAAAAAAKjAevXqpe+//15PPPGEbr75Zm+HAwAnRWUfSpxpmjIMQ1lZWXI6nZ75f+/Sc/r06XrkkUd0zz33KDo62lvhohx5//33tWHDBtWvX1+dO3eWxWJRQECAp8Jv7ty5uu666zRhwgRJ0q+//qqsrCwFBgbqoosuksViUV5enqffcvi+Xbt2KT4+XrfeequmTZvmmX/zzTcrPT1dR44cUXx8vG6//XZ16NBBkvTxxx/LarXq0ksvVVxcnJciBwAAAAAAAICzQ4s3SpxhGPrkk0+0detW9e7dW8HBwZKKVviNGDFCVqtVI0aMkN1u1yOPPEKlFU5r69atuuuuuyRJgYGBGjt2rKKjo3XXXXfpqquu0uDBg5WXl6dvv/1W/fr108SJE4uNsXbiQMqoGH744QdFR0crOztbW7duVZ06dTR27FgtXLhQjz/+uPz9/fXSSy9p06ZNql27turUqcNTegAAAAAAAADKFVq9UWIKK/o2bdqkbt26afLkyXK5XEXWOTHhN2zYMDkcDnXq1IlEH86oTp06Gj16tF588UX16tVLfn5+ysjI0KhRo5SZmamrrrpKlSpVUpUqVfTpp5/KarXqueeeK7KPwspSVBxdunRRZmampk2bplGjRqlKlSqaOXOmPvroI7Vv316SdN111+naa6/Vxo0bVadOHS9HDAAAAAAAAADnhmQfSoxhGFq9erX27Nmjhx56SImJiTpZL7EWi8UzZtqgQYO8ECnKmxPfLxkZGXr//fd1//3366mnntITTzyhffv26ZVXXtG+ffv0xRdfKC8vT2vXrvUkoFExFT5Y0L17d7ndbr322mt677339PLLL6t9+/bKzc2VxWJRRESE6tevX+zhBAAAAAAAAAAoD0j2ocTk5eXp0Ucf1Q8//KD27dufdmw0KvlwLqxWqydxM2rUKBmGoRdeeEFut1s9e/bUZZddpsmTJ8tisWjNmjXau3evbrrpJhmGQcKvAjuxkjgxMVF+fn76v//7Py1atEjXXHON6tWrJ0l66623lJ+fr0svvdTLEQMAAAAAAADAuTPMk5VeAefpzz//VM+ePfXDDz9owYIFuuKKK7wdEnxIYeJGkoYPH67p06froYceUs+ePRUVFVVs/dMlnFExFFaFHj16VIGBgfrwww81efJkhYeHa9KkSZo5c6aSkpK0cuVKxcfHeztcAAAAAAAAADhntILjvBVWTKWlpXkqp8LDwzVz5ky1bdtW99xzjz7++GPVrVvXy5GivDkxqXfs2DEFBQVJKlqpNWLECEnSyy+/7OmqMTo6ush+SPRVbIWJvl27dqlJkyYaPXq0evfurczMTL3zzju66qqrlJKSQqIPAAAAAAAAQLlm8XYAKJ8KE32ffvqpunXrpiZNmujf//63XnrpJYWGhmrhwoUKDg5W586dtXXrVm+Hi3KmMNE3bNgwvfHGG8rIyCiyzO12S5JGjBihXr16aciQIVqyZIlXYkXZUFikfmKxutVq1e7du9W8eXPddtttuvfeeyVJiYmJ6tq1q+rUqaMffviBCmQAAAAAAAAA5RrdeOK8zZ8/X7fffrtGjRqlevXq6csvv9SUKVP07bffqnnz5jp06JBuvPFG7dixQ8uXL1etWrW8HTLKuBMr+hYsWKDExER98cUXJ03GnLjutGnT1LNnT8aCrKAKHz745ptvtHTpUvn7++uOO+5QbGysXnnlFW3dulXPPfecDMMo8r5JS0tTcHCwl6MHAAAAAAAAgH+GZB/OS0ZGhhITE3XllVfqP//5jw4ePKj4+HjdcsstevHFFz3rHTp0SHfccYdee+01kn04a9OnT9eRI0eUnZ2twYMHe5I5f1fYTeOpplFxLFiwQDfddJPatGmjpUuX6sorr9TAgQPVqVMnSSryHjrV+wkAAAAAAAAAyiO68cR5MQxDW7duVcOGDbV//37Fx8erY8eOnkTf7NmztWbNGoWFhWnRokUk+nDWsrKy9Nxzz2nAgAGeLmBPlZj5e2KPRF/FUvisyoEDBzRnzhy98sor+uKLL7Rv3z45nU6NGTNGs2fP9iT3Crt/JdEHAAAAAAAAwJeQ7MMZmabpaVTftm2bDhw4IH9/f1188cVau3atmjdvro4dO+rVV1+VJKWkpOiLL77Qr7/+WqTLPOBk/l5c7HQ6tWzZMrVt21YLFy7UunXrvBMYyjzDMLRixQr16tVL27Zt0+WXXy5JCgsL0zvvvKPAwEC9+OKL+uCDD/gsAgAAAAAAAOCzaPnEaRUmYgzD0KeffqpWrVppyZIlMgxDzZo107Bhw1SzZk29+OKLnmqZSZMmafny5WrRogWN6zgtt9vted/s27dPe/bsUUpKiqpUqaL3339f0dHR6tatm6fCD/i7qKgo/f7771q5cqU2bNjgmR8REaF33nlHISEhGjlypD7++GMvRgkAAAAAAAAAFw5j9uGUTkz0zZ49W926dZPL5dLtt9+u119/XZI0dOhQ/fe//9UDDzwgq9Wq1NRUzZ07V8uWLVN8fLwXo0dZd+K4acOHD9dXX32lrVu36sorr1SLFi00YMAAHT58WB06dFB6ero++ugj1alTx8tRoyzauXOnbrnlFoWGhmr48OFq1aqVZ1lKSor69u2r8ePHKy4uzmsxAgAAAAAAAMCFQrIPZ/Tee++pR48eeuONN5ScnKxVq1Zp7ty5nuUvvfSSvvnmGyUnJys+Pl4PPPCAGjRo4MWIUZ6MGDFCL7zwgmbNmqXw8HCNGTNGH374oTZs2KCLL75Yhw8fVseOHbVt2zb99NNPiomJ8XbI8JLCBPGWLVu0Z88ehYaGKioqStWrV9dvv/2m2267TdHR0Ro8eHCRhB9deAIAAAAAAADwZTZvB4Cybc2aNerWrZumTp2qe+65R9OmTdP+/ftlmqays7PldDr18MMP6+GHH1Z+fr4kyWq1ejlqlBcpKSlatmyZ3n77bbVv315ffvmlvvzyS73yyiu6+OKLlZ2drcqVK+uzzz7TwIEDVbVqVW+HDC8pTPTNnTtXjz32mOx2u0zTlNPp1GuvvaYWLVrogw8+0G233abx48crJydH7dq1kyQSfQAAAAAAAAB8Gi2gKKaw2DMzM1OBgYH6+uuvdd9990mSHA6H/vjjD0mS0+mUJH3zzTdKSUmR1Wol0YfTcrvdRaZN09Tvv/+uuLg4ffbZZ7rttts0btw43X///crOztbrr7+un376SWFhYXr99ddltVo9SWVUHHl5eTIMQ2vWrNG9996roUOHavny5XrrrbfUtGlTtW/fXt9++63q1q2refPmacOGDXr11VeVmZnp7dABAAAAAAAA4IKjsg9FFFbPfPTRRxo1apQ+//xzNWjQwDO/atWqMgxD+fn5stlsGjx4sD744AN9++233g4dZdyJXSl+8803ql+/vlwul+rWraspU6Zo5syZGj9+vB544AFJ0o4dO7Rw4ULFxcWpcePGnv2QUK44du3apRo1ashmsyk/P18bNmxQkyZN1Lt3b1ksFlWrVk316tWT2+3WY489pgULFqh27dr65ptv5Ha7FRAQ4O1TAAAAAAAAAIALjso+SCpI8hUm9GbPnq3bb79dP/30kz7//HNJkmEYkqTo6Gilpqbq4MGDGjp0qP7v//5Ps2bNUlRUlDfDRxl3YqJv6NChateunX788UcFBgaqXbt2mjJlim655RZPoi8tLU1PPPGEMjIydP3113szdHhJdna27rzzTl100UUyTVNWq1VpaWlat26d0tLSJBV8bkVFRalbt246ePCgjhw5IkmKi4vTRRdd5M3wAQAAAAAAAKDUkOyDR2Gir1u3bpo2bZo6duyo/fv3F1nHbrcrODhYDz30kJ577jl9++23atq0qZciRnmQn5/vSfQ9/vjjeumll1S1alWtXr1akjRgwAANHDhQM2fO1J133qk777xTN910k/bs2aPPP/9cVqu1WPef8H0Oh0Pjx49XYGCgLr/8cpmmqZtvvlnR0dGaPn26jh496nkIoU6dOrLb7Tp27JiXowYAAAAAAACA0keyD5IKEn2ffvqp7rzzTr3yyivq0aOHwsLCdPz4cUnyjJNWuXJlOZ1Off3111q5cqWuuOIKb4aNcqCw281HHnlEb7/9tpYtW6Z27drpwIEDnnXGjBmj1157TVWqVJHT6VTHjh31448/ym63Ky8vz5MsRMVhGIauvvpqTZ06VcePH1ezZs100UUX6ZZbbtH06dM1depUHThwQOnp6XrjjTdksVgUFxfn7bABAAAAAAAAoNQxZh88duzYoffee0933HGHJCkkJETr16+X9L9uPK1Wq4YPH+5peAdO5cSuO2fOnKk33nhDK1asUKNGjRQREaHNmzdLkrKysuR0OpWYmKjExMQi+ygcGxIVQ3Jysnbu3KmrrrpKkmSxWHTFFVdoxowZuvPOO9WyZUstW7ZMFotFM2bM0LBhwxQfH6/t27fryy+/VEREhJfPAAAAAAAAAABKH63o0E8//aTGjRvr0UcflfS/JE1oaKh++uknSQWN7v369dMPP/ygJUuWyOFweDNklHEnJvoOHz6spk2batOmTZ7KK5fLpd9//12S5HQ6ZZqmZs+erTZt2igsLMyzn8KqQPi+PXv2qHHjxjp8+LBatmyphIQEtWnTRk2aNNGVV16p999/X/fdd5+uueYaLV++XA899JAWLFigSpUq6fLLL1dsbKy3TwEAAAAAAAAAvIK+8Sq4o0ePqk2bNrr++uuVm5sr6X9VfA0aNPB04/n0009r6tSpGj9+PIk+nNaJib5BgwapadOmioiIUFxcnKc72PDwcM/7TZLatGmjl19+WZUqVfJKzPA+t9utmJgY1a1bV+np6frjjz/UqVMntWzZUj169NCOHTs0dOhQJScnq127doqMjFSvXr10yy23kOgDAAAAAAAAUKGR7KvgQkND9eGHH2r9+vW66667lJub60n2hYSEKDMzU4899piee+45LVu2zNO9HnAyJyb6Hn/8cT3//PNKSUnRzz//LOl/lXo1atRQRkaGDh8+rA4dOmjfvn1atGiRLBaLTNP0WvzwntjYWM2ZM0cNGjRQtWrV9OCDD2rLli0aOHCgfv/9d02YMEE9e/ZUQECAFi9erFtvvVWSeL8AAAAAAAAAqPBI9lUwJ2sYb9GihebMmaNly5bprrvuUk5OjiTJ4XDo119/1YwZM/6/vXsPirLs/zj+WVhAUIhUZNFQMZSyg3gqCUdJIW08gUccT0iNNoUW6qSGqCmIhzyETaOlaY7lITyNqYlJaJhKmoJImnh2EjVP6CAI7D5/+HP7oY/Hx1oX368ZZpbruu6L772zwx/7met7a8eOHWratOm/XS7szM2gLzY2VosXL9a2bdsUEBCgo0ePlltXuXJlFRQUKCQkRIcPH9a+ffvk5OSk0tJSa9iMJ4+/v7+SkpJUVFSk+Ph4nTlzRpGRkcrIyNDGjRs1Z84cderUSYGBgRo7dqwk8XkBAAAAAAAA8MQj7HvCGAwGbdq0STExMeXGg4ODtXr1av30008aMGCAysrK1LZtW8XExCg9PV2NGze2UcWwN+PGjdPChQuVmpqq5s2by8PDQ6WlpZJkbeNpMpnk6uoqd3d37d+/3xr0GY08RvRJFxAQoNmzZ8vBwUHx8fHasmWLpBunkPv166fExERlZmbyPwkAAAAAAAAA/g9hXwVmNptvGystLdX58+f1+eefKzY2ttza4OBgffzxx1q2bJkiIiIkScnJyWrUqNG/VjPsz62fMx8fH23btk1NmjSRJNWoUUO5ubmS/m7j6ebmpjlz5mjr1q0EfbhN/fr1NXv2bBkMBiUlJemXX34pN89nBQAAAAAAAAD+RthXQd18dtqJEye0fPlyJScnq6ioSEajUREREVq2bJnmzp2roUOHSvq7/aKXl5datWqlgwcP6uTJk7a8BdiJm5+dlJQUSdI777yjhg0bWk/xOTs76/jx49b1LVq0UExMjDp06CBHR0eVlZUR3uA29evXV3JyspycnDR8+HDt2LHD1iUBAAAAAAAAwGOJsK8Cuhn0ZWdnKyQkRFOmTNG4ceMUGBioa9euycXFRREREVqwYIG+/PJLDRkyRMXFxbJYLMrNzVXbtm2VnZ0tX19fW98K7MSpU6fUs2dPhYeHq6SkRNLfIWBAQIB1rH379iooKNA333xjvfbmaT/gVvXr19e0adP0zDPPqGbNmrYuBwAAAAAAAAAeSwaLxWKxdRF4dG4GfVlZWQoKCtKwYcM0ZMgQXblyRa+//rpmzJihHj16WNevWLFC0dHRqlGjhqpXr67ff/9dGRkZevHFF214F3jcWSwWGQyGcmMZGRnq0aOHgoODtWTJEjk5OUmSFi5cqFmzZql69eo6evSoDhw4QOtOPJDr16/L2dnZ1mUAAAAAAAAAwGOJk30VjIODg/Ly8tSiRQsNHz5cCQkJ8vb2lr+/v+rUqaOsrCxFRUVpyZIlOnXqlLp166Zdu3apW7du6tChg3bs2EHQh3u6NeiTpJYtWyolJUVbtmxR7969df36dUmSk5OTsrOzdfXqVYI+PBSCPgAAAAAAAAC4M8K+CsZsNuurr76Su7u7qlWrZh2fPHmytm/friNHjujAgQMaMGCApk+froKCAtWvX1+TJ0/WmDFj9Nxzz9mwetiTqVOnKjo6utxYcHCwVq1apbS0NL311lsym83q06ePEhMT9fPPPxP0AQAAAAAAXCpOfgAAC5ZJREFUAADwiPGNewXj4OCgmJgYFRYWaunSpapUqZIKCgo0Y8YMrVu3Tu3atZPBYNCQIUM0f/58vf/++/Lw8LB12bAzJSUlMplMiouLk4eHh2bNmiXpRnvPli1bKiYmRgkJCTpz5oxSU1M1evRoSSLoAwAAAAAAAADgEeNb9wqoZs2aGjVqlBITEzVr1izl5eUpNTVVbdq00bVr1+Tq6qo333xT69evV3Fxsa3LhR3YvHmzsrOzdfr0acXHx8vd3V29evWSq6urBgwYILPZrOTkZGt7T5PJpMjISBUWFlqfIymJoA8AAAAAAAAAgEeMb94rKJPJpDFjxsjBwUEuLi7as2eP2rRpI1dXV0lSamqqvLy8VKNGDRtXisfdvHnzFBcXp5deekm5ublas2aNcnJy5OLiooiICJnNZkVFRclisWjs2LEyGo1KS0tTWFiYBg8eLEnlAj8AAAAAAAAAAPDoEPZVYN7e3ho9erTMZrO+++47lZaWauTIkUpISND8+fO1bds2Pf3007YuE4+xuXPnKiYmRsuXL1dYWJjy8/MVEhKiPXv2qHnz5jIajerVq5ecnZ0VHR2tVatWycnJSR4eHlq6dKl1H4I+AAAAAAAAAAD+GQaLxWKxdRH4Z+Xn5ysxMVFZWVkqLi5Wdna2MjIy1LRpU1uXhsfY6tWr1bVrV61Zs0adOnWSJF27dk2BgYFq27atcnNz1b17d3Xu3Fm1a9fWyZMntXbtWrm5ualv374yGo0qKyuTo6Ojje8EAAAAAAAAAICKi+M2TwCTyaS4uDj5+/vrwoUL2r59O0Ef7qq4uFgbN25UvXr1dOTIEet4nz59dOXKFXl4eKhKlSoaNmyY5syZo8LCQvn6+urdd99VVFQUQR8AAAAAAAAAAP8STvY9Qc6dOyez2Sxvb29blwI7cPr0aU2ZMkU7d+5UZGSkMjIylJeXp5UrV8rPz0+S1L9/f6WmpionJ0fVq1e3ccUAAAAAAAAAADx5eGbfE8TLy8vWJcCO+Pj4aNSoUUpMTNSnn36qy5cvKzs7W7Vq1VJhYaHc3NzUsmVLHThwQGaz2dblAgAAAAAAAADwRKKNJ4A7MplMGjNmjDp16iQ/Pz8tWbJEkuTm5qbS0lKlpKSoXr16BMkAAAAAAAAAANgIbTwB3FN+fr4SExOVmZmpHj16aMSIEercubMOHz6srKwsGY1GWSwWGQwGW5cKAAAAAAAAAMAThbAPwH3Jz8/XpEmTtHv3buXl5cnT01M5OTlycnJSaWmpjEa6AgMAAAAAAAAA8G8j7ANw3/Lz8zVy5EidO3dOa9asIegDAAAAAAAAAMDGCPsAPJCLFy/qqaeekoODA0EfAAAAAAAAAAA2RtgH4KGYzWY5ODjYugwAAAAAAAAAAJ5ohH0AAAAAAAAAAACAneJYDgAAAAAAAAAAAGCnCPsAAAAAAAAAAAAAO0XYBwAAAAAAAAAAANgpwj4AAAAAAAAAAADAThH2AQAAAAAAAAAAAHaKsA8AAAAAAAAAAACwU4R9AP5x48ePV2BgoK3LAAAAAAAAAACgwjFYLBaLrYsA8HiJiorSpUuXtHr16key39WrV1VcXKxq1ao91PUGg8H62tHRUTVr1lT37t2VlJQkFxeXR1IjAAAAAAAAAAD2yGjrAgBUfFWqVFGVKlX+pz0WLFig9u3bq6SkRFlZWRo4cKAqV66siRMnPqIqH63r16/L2dnZ1mUAAAAAAAAAACo42ngCuCuz2aykpCT5+fnJ1dVVjRo1UkpKinU+PT1dBoNBmzdvVrNmzeTm5qbXXntNBw8etK65tY1nenq6XnnlFVWuXFmenp4KDg7W8ePH71qHp6enTCaTfH191bFjR3Xp0kW//fabdT4qKkrh4eHlrvnggw8UEhIiSTp27JgMBsNtPzfnQ0JC/uv8sWPHJEmXLl3S22+/LS8vL3l4eKhNmzbKysq67R7nzZsnPz8/VapU6QHeZQAAAAAAAAAAHg5hH4C7SkpK0qJFizRnzhzt379fsbGx6tu3r7Zs2VJuXVxcnKZPn65du3bJaDQqOjr6v+5XWlqq8PBwtW7dWtnZ2dq+fbsGDRpUrlXnvfzxxx9KS0vTq6++et/X+Pr66vTp09afPXv2qFq1amrVqpUkaeXKleXmu3btqoCAAHl7e0uSevToobNnz2rDhg3avXu3mjRporZt2+rChQvWv5GXl6cVK1Zo5cqV2rt3733XBgAAAAAAAADAw6KNJ4A7Ki4u1qRJk/Tjjz8qKChIklSvXj1lZGRo7ty5at26tXVtYmKi9fdRo0apQ4cOKioquu2EW0FBgS5fvqyOHTvq2WeflSQ9//zz96yld+/ecnR0VGlpqYqLi9WxY0eNHj36vu/F0dFRJpNJklRUVKTw8HAFBQVp/PjxkqSqVata186cOVNpaWnauXOnXF1dlZGRoczMTJ09e9b6jMBPPvlEq1evVkpKigYNGiTpRuvORYsWycvL677rAgAAAAAAAADgf0HYB+CO8vLyVFhYqLCwsHLj169fV+PGjcuNvfzyy9bXPj4+kqSzZ8+qdu3a5dZVrVpVUVFRateuncLCwhQaGqqePXtar7mTmTNnKjQ0VGVlZcrLy9OwYcPUr18/LV269IHvKzo6WleuXNGmTZvk4FD+gPOGDRs0atQorV27Vg0aNJAkZWVl6erVq6pWrVq5tdeuXdPhw4etv9epU4egDwAAAAAAAADwryLsA3BHV69elSStW7dOtWrVKjd384TbTU5OTtbXN1tyms3m/7rvggULNHToUP3www9atmyZxowZo02bNqlFixZ3rMVkMsnf31+SFBAQoCtXrqh3795KSEiQv7+/HBwcZLFYyl1TUlJy2z4JCQnauHGjMjMz5e7uXm4uNzdXkZGRmjx5st54441y74OPj4/S09Nv28/T09P6unLlynesHwAAAAAAAACAfwJhH4A7atiwoVxcXHTixIlyLTsfhcaNG6tx48YaPXq0goKC9O2339417LuVo6OjpBun6yTJy8tLOTk55dbs3bu3XAi5YsUKTZgwQRs2bLC2EL3pr7/+UqdOndStWzfFxsaWm2vSpIny8/NlNBpVt27dB7lNAAAAAAAAAAD+UYR9AO7I3d1dI0aMUGxsrMxms1q2bKnLly9r27Zt8vDw0IABAx54z6NHj+qLL75Q586dVbNmTR08eFCHDh1S//7973rdpUuXlJ+fL7PZrEOHDmnChAlq0KCB9Xl/bdq00bRp07Ro0SIFBQVp8eLFysnJsbYbzcnJUf/+/TVy5Ei98MILys/PlyQ5OzuratWq6tatm9zc3DR+/HjrnHQjRAwNDVVQUJDCw8M1depUNWjQQH/++afWrVuniIgINWvW7IHfBwAAAAAAAAAAHgXCPgC3MZvNMhpv/HuYOHGivLy8lJSUpCNHjsjT01NNmjTRRx999FB7u7m56cCBA/r66691/vx5+fj46L333tPgwYPvet3AgQMl3WgRajKZ1KpVK02aNMlaZ7t27RQfH68PP/xQRUVFio6OVv/+/bVv3z5J0q5du1RYWKiEhAQlJCRY923durXS09O1detWSTeeu/f/HT16VHXr1tX69esVFxengQMH6ty5c9YavL29H+p9AAAAAAAAAADgUTBYbn3IFYAnXvv27eXv76/PPvvM1qUAAAAAAAAAAIC7cLB1AQAeHxcvXtT333+v9PR0hYaG2rocAAAAAAAAAABwD7TxBGAVHR2tX3/9VcOHD1eXLl1sXQ4AAAAAAAAAALgH2ngCAAAAAAAAAAAAdoo2ngAAAAAAAAAAAICdIuwDAAAAAAAAAAAA7BRhHwAAAAAAAAAAAGCnCPsAAAAAAAAAAAAAO0XYBwAAAAAAAAAAANgpwj4AAAAAAAAAAADAThH2AQAAAAAAAAAAAHaKsA8AAAAAAAAAAACwU4R9AAAAAAAAAAAAgJ36D98nwEXCEw3AAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "# Membaca data dari file CSV yang sudah diberi label\n", "labeled_df = pd.read_csv(\"combined_data_with_buzzer_type.csv\")\n", "\n", "# Menghitung jumlah 'buzzer positif', 'buzzer negatif', dan 'non-buzzer'\n", "buzzer_count = labeled_df['buzzer_type'].value_counts()\n", "\n", "# Membuat data untuk visualisasi\n", "labels = ['Buzzer Positif', 'Buzzer Negatif', 'Non-Buzzer']\n", "counts = [\n", " buzzer_count.get('buzzer positif', 0),\n", " buzzer_count.get('buzzer negatif', 0),\n", " buzzer_count.get('non-buzzer', 0)\n", "]\n", "\n", "# Warna yang lebih lembut\n", "colors = ['#a3e4d7', '#f5b7b1', '#d6eaf8']\n", "\n", "# Membuat figure dengan 3 subplots (dalam satu baris)\n", "fig, axes = plt.subplots(1, 3, figsize=(18, 6))\n", "\n", "# Diagram Batang\n", "axes[0].bar(labels, counts, color=colors)\n", "axes[0].set_xlabel('Jenis Buzzer')\n", "axes[0].set_ylabel('Jumlah')\n", "axes[0].set_title('Jumlah Buzzer Positif, Negatif, dan Non-Buzzer')\n", "axes[0].tick_params(axis='x', rotation=45)\n", "\n", "# Diagram Pie\n", "axes[1].pie(counts, labels=labels, autopct='%1.1f%%', colors=colors)\n", "axes[1].set_title('Proporsi Buzzer Positif, Negatif, dan Non-Buzzer')\n", "\n", "# Diagram Garis\n", "axes[2].plot(labels, counts, marker='o', linestyle='-', color='#85c1e9')\n", "axes[2].set_xlabel('Jenis Buzzer')\n", "axes[2].set_ylabel('Jumlah')\n", "axes[2].set_title('Jumlah Buzzer Positif, Negatif, dan Non-Buzzer')\n", "axes[2].grid(True)\n", "\n", "# Menampilkan plot\n", "plt.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 234, "id": "378d4188-2b07-4703-a882-df094295fe3b", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAAJOCAYAAACZX7sKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADrSElEQVR4nOzdeXxU1f3/8fedJZN1EgJkU/YdRRFQRKm4IMiiolZLv1hxqVjXqlWrfhUVRH/iWq17Le72W1tZpIigqBREQFBKIexhJwlZZ7LNen9/UKZGQAhkcjOT1/PxmIfMvXfuvG9kJofzueccwzRNUwAAAAAAAAAAAABijs3qAAAAAAAAAAAAAACODsU+AAAAAAAAAAAAIEZR7AMAAAAAAAAAAABiFMU+AAAAAAAAAAAAIEZR7AMAAAAAAAAAAABiFMU+AAAAAAAAAAAAIEZR7AMAAAAAAAAAAABiFMU+AAAAAAAAAAAAIEZR7AMAAAAAAAAAAABiFMU+AId19tln6+yzz27w67Zu3SrDMPTUU081fqgfePjhh2UYRlTfoymcffbZOvHEExv1nB07dtTVV1/dqOcEAADN09VXX62OHTs22vkMw9DDDz/caOezwpdffinDMPS3v/2t0c755ptvyjAMbd26tdHOCQAADo4+qaZBnxQQ+yj2ATFif6fCt99+a3WUJtGxY0cZhnHYx5tvvmlpTsMwdMstt1ia4VhcffXVR/RzbszG2UsvvWT5/zcAQPza32ba/0hMTFT37t11yy23qKioyOp4lvrxz+ZQj8YsGB6N/Z1mJSUlluY4Wvs7F4/k0VgFw7Vr1+rhhx+mAAkAiAr6pOiTigb6pIDG5bA6AAAczHPPPaeqqqrI8zlz5uiDDz7Qs88+qzZt2kS2n3HGGbryyit17733WhEz5t1www0aOnRo5HlBQYEmTpyoCRMm6Gc/+1lke5cuXRrtPV966SW1adOGu7sAAFE1adIkderUSXV1dVq0aJFefvllzZkzR//+97+VnJxsdbyoeP311xUOhw+5/6yzztI777xTb9uvf/1rnXbaaZowYUJkW2pqqiSptrZWDgf/ZGyotm3bHvBzfvrpp7Vz5049++yzBxzbGNauXatHHnlEZ599tuXFWgAAYh19Uk2DPimgcfEvNwDN0pgxY+o9Lyws1AcffKAxY8YctAODjqijM2jQIA0aNCjy/Ntvv9XEiRM1aNAgXXnllRYmAwDg2IwYMUIDBgyQtK+g1bp1az3zzDOaOXOmfvnLXx70NdXV1UpJSWnKmIfVkExOp/Mn93fu3FmdO3eut+03v/mNOnfufNDf+4mJiUceFBEpKSkH/Dz/8pe/qLy8nPYVAAAxgD6ppkGfFNC4mMYTiFGHmrP8x2u1/HCO8hdffFGdO3dWcnKyhg0bph07dsg0TU2ePFnHH3+8kpKSdPHFF6usrOwn39vv92vixInq37+/0tPTlZKSop/97Gf64osvDvma1157TV26dJHL5dKpp56q5cuXH+2lH+Bg86NPmzZN5557rrKysuRyudS7d2+9/PLLB7y2Y8eOGj16tObNm6e+ffsqMTFRvXv31kcffdRo+WbOnKlRo0YpLy9PLpdLXbp00eTJkxUKhQ56/IoVK3TGGWcoKSlJnTp10iuvvHLAMT6fTw899JC6du0ql8uldu3a6Z577pHP52u03D+0dOlSXXDBBUpPT1dycrKGDBmixYsXR/bn5+crKSlJV111Vb3XLVq0SHa7Xb///e8l7ft5r1mzRl999VVkOoajmXsfAICGOvfccyXtu2NY2tdmSk1N1ebNmzVy5EilpaVp3LhxkvYV2H73u9+pXbt2crlc6tGjh5566imZplnvnPunTnrvvffUo0cPJSYmqn///lq4cOEB7//dd99pxIgRcrvdSk1N1Xnnnadvvvmm3jH7p8j66quvdNNNNykrK0vHH3+8JMnr9er2229Xx44d5XK5lJWVpfPPP18rV66MvD7aa/Zt27ZNN910k3r06KGkpCS1bt1al19++QFTR+6/joULF+qGG25Q69at5Xa7ddVVV6m8vLxRspWVlemuu+5Snz59lJqaKrfbrREjRmjVqlUHPT4UCun+++9XTk6OUlJSdNFFF2nHjh0HHHe4Nk9jOpL23Pjx45WYmKj8/Px6rx0+fLhatWql3bt3680339Tll18uSTrnnHMibawvv/wyKrkBAKBP6r/ok6JPCmguuO0AaCHee+89+f1+3XrrrSorK9PUqVN1xRVX6Nxzz9WXX36p3//+99q0aZNeeOEF3XXXXfrzn/98yHN5PB796U9/0i9/+Utdf/318nq9euONNzR8+HAtW7ZMffv2rXf8+++/L6/XqxtuuEGGYWjq1Km69NJLtWXLlsPegX60Xn75ZZ1wwgm66KKL5HA49PHHH+umm25SOBzWzTffXO/YjRs36he/+IV+85vfaPz48Zo2bZouv/xyzZ07V+eff/4xZ3nzzTeVmpqqO++8U6mpqVqwYIEmTpwoj8ejJ598st6x5eXlGjlypK644gr98pe/1F//+lfdeOONSkhI0LXXXitJCofDuuiii7Ro0SJNmDBBvXr10urVq/Xss89qw4YNmjFjxjFn/qEFCxZoxIgR6t+/vx566CHZbLZIw/Wf//ynTjvtNPXq1UuTJ0/W3XffrZ///Oe66KKLVF1drauvvlo9e/bUpEmTJO2bCuPWW29Vamqq/vd//1eSlJ2d3ah5AQA4mM2bN0uSWrduHdkWDAY1fPhwDR48WE899ZSSk5NlmqYuuugiffHFF7ruuuvUt29fffrpp7r77ru1a9euA6Zh/Oqrr/R///d/uu222+RyufTSSy/pggsu0LJly3TiiSdKktasWaOf/exncrvduueee+R0OvXqq6/q7LPP1ldffaWBAwfWO+dNN92ktm3bauLEiaqurpa0bwTe3/72N91yyy3q3bu3SktLtWjRIuXn56tfv37R/NFFLF++XF9//bXGjh2r448/Xlu3btXLL7+ss88+W2vXrj1getRbbrlFGRkZevjhh7V+/Xq9/PLL2rZtm7788ssDOsUaasuWLZoxY4Yuv/xyderUSUVFRXr11Vc1ZMgQrV27Vnl5efWOnzJligzD0O9//3sVFxfrueee09ChQ/X9998rKSlJ0pG1eRrLkbbn/vCHP2jBggUaP368lixZIrvdrldffVXz5s3TO++8o7y8PJ111lm67bbb9Pzzz+v+++9Xr169JCnyXwAArEafFH1SR4s+KaABTAAxYdq0aaYkc/ny5aZpmuaQIUPMIUOGHHDc+PHjzQ4dOkSeFxQUmJLMtm3bmhUVFZHt9913nynJPPnkk81AIBDZ/stf/tJMSEgw6+rqItt+/F7BYND0+Xz13re8vNzMzs42r7322gPeu3Xr1mZZWVlk+8yZM01J5scff3zE1//kk0+aksyCgoID9j300EPmj7/OampqDjhu+PDhZufOnett69ChgynJ/Pvf/x7ZVllZaebm5pqnnHLKYXNJMm+++eafPOZgWW644QYzOTn5gJ+zJPPpp5+ObPP5fGbfvn3NrKws0+/3m6Zpmu+8845ps9nMf/7zn/XO+corr5iSzMWLF9e7vvHjxx/2OvZbvny5KcmcNm2aaZqmGQ6HzW7dupnDhw83w+FwvWvq1KmTef7550e2hUIhc/DgwWZ2drZZUlJi3nzzzabD4Yj8nd3vhBNOOOjfXQAAGsP+NtNnn31m7t2719yxY4f5l7/8xWzdurWZlJRk7ty50zTNfW0mSea9995b7/UzZswwJZmPPvpove0///nPTcMwzE2bNkW2STIlmd9++21k27Zt28zExETzkksuiWwbM2aMmZCQYG7evDmybffu3WZaWpp51llnHZB98ODBZjAYrPf+6enph21z/LgdeCRSUlIO2VaQZD700EOR5wdr0yxZssSUZL799tuRbfuvo3///pH2i2ma5tSpU01J5syZM38y0/623d69ew95TF1dnRkKheptKygoMF0ulzlp0qTIti+++MKUZB533HGmx+OJbP/rX/9qSjL/8Ic/mKbZsDbP/us7WLv0UEaNGlXv/01D2nOffvpp5O/kli1bzNTUVHPMmDH1Xvfhhx+akswvvvjiiDMBAHCk6JOiT4o+KaD5YxpPoIW4/PLLlZ6eHnm+/w7yK6+8st7c4gMHDpTf79euXbsOeS673a6EhARJ++7oKSsrUzAY1IABA+pNJbXfL37xC7Vq1SryfP8iu1u2bDm2i/oJ++/QlqTKykqVlJRoyJAh2rJliyorK+sdm5eXp0suuSTyfP80U999950KCwsbNYvX61VJSYl+9rOfqaamRuvWrat3rMPh0A033BB5npCQoBtuuEHFxcVasWKFJOnDDz9Ur1691LNnT5WUlEQe+6cn+6mpKxrq+++/18aNG/U///M/Ki0tjbxXdXW1zjvvPC1cuFDhcFiSZLPZ9Oabb6qqqkojRozQSy+9pPvuuy+yXhIAAE1p6NChatu2rdq1a6exY8cqNTVV06dP13HHHVfvuBtvvLHe8zlz5shut+u2226rt/13v/udTNPUJ598Um/7oEGD1L9//8jz9u3b6+KLL9ann36qUCikUCikefPmacyYMfXWy8vNzdX//M//aNGiRfJ4PPXOef3118tut9fblpGRoaVLl2r37t0N/2E0kh+2aQKBgEpLS9W1a1dlZGQctA04YcKEenfM33jjjXI4HJozZ84xZ3G5XLLZ9v1zNhQKqbS0VKmpqerRo8dBs1x11VVKS0uLPP/5z3+u3NzcSJaGtHkaQ0Pac8OGDdMNN9ygSZMm6dJLL1ViYqJeffXVRssCAEC00SdFn9TRoE8KaBim8QRaiPbt29d7vr+R1a5du4NuP9x6Km+99ZaefvpprVu3ToFAILK9U6dOh33v/Y2sxlqz5WAWL16shx56SEuWLFFNTU29fZWVlfUamV27dj1gKqnu3btL2je/fE5OzjFlWbNmjR544AEtWLDggM68gzXyUlJSDpnl9NNP18aNG5Wfn6+2bdse9P2Ki4uPKe8Pbdy4UdK+9WIOpbKyMvL/tEuXLnr44Yd1991368QTT9SDDz7YaFkAAGiIF198Ud27d5fD4VB2drZ69OgRKQ7t53A4Imvi7bdt2zbl5eXVKwxJ/50Scdu2bfW2d+vW7YD37t69u2pqarR3715JUk1NjXr06HHAcb169VI4HNaOHTt0wgknRLYfrD01depUjR8/Xu3atVP//v01cuRIXXXVVfUKiNFWW1urxx9/XNOmTdOuXbvqrWH44zaNdODPJjU1Vbm5uQes8Xc0wuGw/vCHP+ill15SQUFBvXVnfjhV66GyGIahrl27RrI0tM1zrBrannvqqac0c+ZMff/993r//feVlZXVKDkAAGgK9En9F31SR44+KaBhKPYBMcowjHodLPsdaoHdH98dfrjtBzv3fu+++66uvvpqjRkzRnfffbeysrJkt9v1+OOPR9bDOdb3OBabN2/Weeedp549e+qZZ55Ru3btlJCQoDlz5ujZZ59t1LuyD6eiokJDhgyR2+3WpEmT1KVLFyUmJmrlypX6/e9/f1RZwuGw+vTpo2eeeeag+3/cWD4W+/M9+eSTB8x7v19qamq95/PmzZMk7d69W6WlpcfcMAUA4Gicdtpph72T94ejw5qTH96Bvd8VV1yhn/3sZ5o+fbrmzZunJ598Uk888YQ++ugjjRgxokly3XrrrZo2bZpuv/12DRo0SOnp6TIMQ2PHjm3S9pUkPfbYY3rwwQd17bXXavLkycrMzJTNZtPtt99+1O0rqWFtnmPR0Pbcd999F+k8W716tX75y182WhYAABqKPqlDo0+KPinAKhT7gBjVqlWrg0458OO7zaPhb3/7mzp37qyPPvqo3t1HDz30UNTf+0h8/PHH8vl8mjVrVr07uA41lcCmTZtkmma9a9mwYYMkqWPHjseU5csvv1Rpaak++ugjnXXWWZHtBQUFBz1+9+7dqq6urncn1Y+zdOnSRatWrdJ55513wN1fja1Lly6S9k0jMXTo0MMe/8orr2j+/PmaMmWKHn/8cd1www2aOXNmvWOinRkAgGPRoUMHffbZZ/J6vfVG9+2f5qhDhw71jt9/x/EPbdiwQcnJyZE7npOTk7V+/foDjlu3bp1sNtsRd4rk5ubqpptu0k033aTi4mL169dPU6ZMabJi39/+9jeNHz9eTz/9dGRbXV2dKioqDnr8xo0bdc4550SeV1VVac+ePRo5cmSjZDnnnHP0xhtv1NteUVGhNm3aHDTLD5mmqU2bNumkk06S1PA2z7FqSHuuurpa11xzjXr37q0zzjhDU6dO1SWXXKJTTz01cgztKwBAU6JP6tDok2o89EkBDdP8bmMFcES6dOmidevWRaaHkqRVq1Zp8eLFUX/v/XdF/fAuqKVLl2rJkiVRf+8jcbB8lZWVmjZt2kGP3717t6ZPnx557vF49Pbbb6tv377HfAfQwbL4/X699NJLBz0+GAzWW4PF7/fr1VdfVdu2bSPrAV1xxRXatWuXXn/99QNeX1tbq+rq6mPK/EP9+/dXly5d9NRTT6mqquqA/T/8+1dQUKC7775bl112me6//3499dRTmjVrlt5+++16r0lJSTlkpyAAAFYbOXKkQqGQ/vjHP9bb/uyzz8owjAMKa0uWLKm3PsyOHTs0c+ZMDRs2THa7XXa7XcOGDdPMmTPrTV9ZVFSk999/X4MHD5bb7f7JTKFQ6IBplrKyspSXlyefz3eUV9pwdrv9gLvgX3jhhUPexf/aa6/Vm1rr5ZdfVjAYbJTi5MGyfPjhh4dc4+ftt9+W1+uNPP/b3/6mPXv2RLI0pM3TGBrSnvv973+v7du366233tIzzzyjjh07avz48fX+3+/vlKONBQBoCvRJHRp9UvRJAVZhZB8Qo6699lo988wzGj58uK677joVFxfrlVde0QknnHDAHNyNbfTo0froo490ySWXaNSoUSooKNArr7yi3r17H/SXb1MbNmyYEhISdOGFF+qGG25QVVWVXn/9dWVlZWnPnj0HHN+9e3ddd911Wr58ubKzs/XnP/9ZRUVFh2yI/di3336rRx999IDtZ599ts444wy1atVK48eP12233SbDMPTOO+8ccrqIvLw8PfHEE9q6dau6d++u//u//9P333+v1157TU6nU5L0q1/9Sn/961/1m9/8Rl988YXOPPNMhUIhrVu3Tn/961/16aefNtoCxDabTX/60580YsQInXDCCbrmmmt03HHHadeuXfriiy/kdrv18ccfyzRNXXvttUpKStLLL78sSbrhhhv097//Xb/97W81dOhQ5eXlSdrXWHv55Zf16KOPqmvXrsrKyoos5AwAgNUuvPBCnXPOOfrf//1fbd26VSeffLLmzZunmTNn6vbbb4/cYbzfiSeeqOHDh+u2226Ty+WKdJ488sgjkWMeffRRzZ8/X4MHD9ZNN90kh8OhV199VT6fT1OnTj1sJq/Xq+OPP14///nPdfLJJys1NVWfffaZli9fXm+UXbSNHj1a77zzjtLT09W7d28tWbJEn3322UHXyJP2dRCdd955uuKKK7R+/Xq99NJLGjx4sC666KIjer9nnnlGycnJ9bbZbDbdf//9Gj16tCZNmqRrrrlGZ5xxhlavXq333nvvkGsYZmZmavDgwbrmmmtUVFSk5557Tl27dtX1118fOe+RtHkay5G25xYsWKCXXnpJDz30kPr16ydJmjZtms4++2w9+OCDkb8/ffv2ld1u1xNPPKHKykq5XC6de+65rO0HAIgK+qQOjT4p+qQAy5gAYsKf//xnU5K5cuXKyLZ3333X7Ny5s5mQkGD27dvX/PTTT83x48ebHTp0iBxTUFBgSjKffPLJeuf74osvTEnmhx9+WG/7tGnTTEnm8uXLI9uGDBliDhkyJPI8HA6bjz32mNmhQwfT5XKZp5xyijl79uwjfm/TNE1J5kMPPXTE1//kk0+aksyCgoID9j300EPmj7/OZs2aZZ500klmYmKi2bFjR/OJJ56I/Ax/eI4OHTqYo0aNMj/99FPzpJNOMl0ul9mzZ88Dfi6HIumQj8mTJ5umaZqLFy82Tz/9dDMpKcnMy8sz77nnHvPTTz81JZlffPFF5FxDhgwxTzjhBPPbb781Bw0aZCYmJpodOnQw//jHPx7wvn6/33ziiSfME044wXS5XGarVq3M/v37m4888ohZWVlZ7/rGjx9/RNdimqa5fPlyU5I5bdq0etu/++4789JLLzVbt25tulwus0OHDuYVV1xhfv7556ZpmuYf/vAHU5L597//vd7rtm/fbrrdbnPkyJGRbYWFheaoUaPMtLQ0U1K9v1sAAByrg7VlDmb8+PFmSkrKQfd5vV7zjjvuMPPy8kyn02l269bNfPLJJ81wOFzvOEnmzTffbL777rtmt27dIu2iH/5+32/lypXm8OHDzdTUVDM5Odk855xzzK+//vqIsvt8PvPuu+82Tz75ZDMtLc1MSUkxTz75ZPOll1464Jp+2BY7EikpKYdsK/y4vVZeXm5ec801Zps2bczU1FRz+PDh5rp16w5ob+y/jq+++sqcMGGC2apVKzM1NdUcN26cWVpaethM+9t2B3vY7XbTNE2zrq7O/N3vfmfm5uaaSUlJ5plnnmkuWbLkgHbr/jbvBx98YN53331mVlaWmZSUZI4aNcrctm3bAe99uDbPD6/vYO3SQxk1atQB/28O157zeDxmhw4dzH79+pmBQKDea++44w7TZrOZS5YsiWx7/fXXzc6dO5t2u/2AdiYAAMeCPin6pH6IPimgeTJMM0qrkQJoVM8//7x++9vfatOmTQfcUY6j17FjR5144omaPXu21VEAAECMMQxDN9988wFTfrZ0b775pq655hotX7680e7sBgAA1qFPKjrokwLQmFizD4gRy5cvV0pKijp06GB1FAAAAAAAALQQ9EkBQPPHmn1AM/f3v/9dX375pd577z39+te/lsPBxxYAAAAAAADRRZ8UAMQOvqGBZu6uu+6S1+vVddddp2effdbqOAAAAAAAAGgB6JMCgNjBmn0AAAAAAAAAAABAjGLNPgAAAAAAAAAAACBGUewDAAAAAAAAAAAAYhRr9kkKh8PavXu30tLSZBiG1XEAAEAzY5qmvF6v8vLyZLNxrxQAAACOHf1RAADgpzSkP4pin6Tdu3erXbt2VscAAADN3I4dO3T88cdbHQMAAABxgP4oAABwJI6kP4pin6S0tDRJ+35gbrfb4jQAAKC58Xg8ateuXaTNAAAAAByraPdHBQIBzZs3T8OGDZPT6Wz08wNofHxugdgS7c9sQ/qjKPZJkakS3G43xT4AAHBITK8EAACAxhLt/qhAIKDk5GS53W6KBkCM4HMLxJam+sweSX8Ui84AAAAAAAAAAAAAMYpiHwAAAAAAAAAAABCjKPYBAAAAAAAAAAAAMYpiHwAAAAAAAAAAABCjKPYBAAAAAAAAAAAAMYpiHwAAAAAAAAAAABCjKPYBAAAAAAAAAAAAMYpiHwAAAAAAAAAAABCjKPYBAAAAAAAAAAAAMYpiHwAAAAAAAAAAABCjKPYBAAAAAAAAAAAAMYpiHwAAAAAAAAAAABCjKPYBAAAAAAAAAAAAMYpiHwAAAAAAAAAAABCjKPYBAAAAAAAAcSRsmtpeGVCls7W2VwYUNk2rIwEAgChyWB0AAAAAAAAAQONYV1Kn+Zuq5PWHpdTu+r+1VUpLqNH5XVPVs02i1fEAAEAUMLIPAAAAAAAAiAPrSur00VrPvkLfD3j9YX201qN1JXUWJQMAANFEsQ8AAAAAAACIcWHT1PxNVT95zGebq5jSEwCAOESxDwAAAAAAAIhxOyoDB4zo+zGPL6wdlYEmSgQAAJoKxT4AAAAAwE96+OGH1bdv3wO2ZWdnyzAMzZgxw5JcAID/qjpMoa+hxwEAgNjhsDpAS/DurnVWR0AzduVxPa2OAAAAAEQYhqHp06drzJgxkW133XWXbr311sjz/Px8PfLII5o+fbpOP/10tWrVyoKkAIAfSk04snv6j/Q4AAAQOyj2AQAAAAB+UmpqqlJTUyPPN2/eLEm6+OKLZRiGVbEAAD/QLt2ptATbT07l6XbZ1C7d2YSpAABAU+BWHgAAAABoBs4++2zddtttuueee5SZmamcnBw9/PDDkf0VFRX69a9/rbZt28rtduvcc8/VqlWr6p3j0UcfVVZWltLS0vTrX/9a9957b73pN5cvX67zzz9fbdq0UXp6uoYMGaKVK1dG9nfs2FGSdMkll8gwjMjzH07j+fDDD+vCCy+UJNlsNop9ANBM2AxD53dN/cljhnZJlY3vbQAA4g7FPgAAAABoJt566y2lpKRo6dKlmjp1qiZNmqT58+dLki6//HIVFxfrk08+0YoVK9SvXz+dd955KisrkyS99957mjJlip544gmtWLFC7du318svv1zv/F6vV+PHj9eiRYv0zTffqFu3bho5cqS8Xq+kfcVASZo2bZr27NkTef5Dd911l6ZNmyZJ2rNnj/bs2RO1nwcAoGF6tknUpb3dSjvEVJ1hlusDACAuMY0nAAAAADQTJ510kh566CFJUrdu3fTHP/5Rn3/+uZKSkrRs2TIVFxfL5XJJkp566inNmDFDf/vb3zRhwgS98MILuu6663TNNddIkiZOnKh58+apqqoqcv5zzz233vu99tprysjI0FdffaXRo0erbdu2kqSMjAzl5OQcNGNqaqoyMjIk6ZDHAACs07NNorq3dqmgtFaLl63Umaf103ZPSEt21mrORq9y05xqlWS3OiYAAGhEjOwDAAAAgGbipJNOqvc8NzdXxcXFWrVqlaqqqtS6devI+nmpqakqKCiIrJ+3fv16nXbaafVe/+PnRUVFuv7669WtWzelp6fL7XarqqpK27dvj+6FAQCalM0w1D7dqfRAqdqnOzWkU6qOdzvlD5makV+pUNi0OiIAAGhEjOwDAAAAgGbC6XTWe24YhsLhsKqqqpSbm6svv/zygNfsH2V3JMaPH6/S0lL94Q9/UIcOHeRyuTRo0CD5/f5jTA4AaM5shqGLe7r1xsoy7akK6ouCKg3tkmZ1LAAA0EgY2QcAAAAAzVy/fv1UWFgoh8Ohrl271nu0adNGktSjR48D1tj78fPFixfrtttu08iRI3XCCSfI5XKppKSk3jFOp1OhUCi6FwQAaHLpiXaN7uGWJC3bVatNpT6LEwEAgMZCsQ8AAAAAmrmhQ4dq0KBBGjNmjObNm6etW7fq66+/1v/+7//q22+/lSTdeuuteuONN/TWW29p48aNevTRR/Wvf/1LhmFEztOtWze98847ys/P19KlSzVu3DglJSXVe6+OHTvq888/V2FhocrLy5v0OgGgqXi9Xt1+++3q0KGDkpKSdMYZZ9S7QcI0TU2cOFG5ublKSkrS0KFDtXHjxnrnKCsr07hx4+R2u5WRkaHrrruu3jqpzVH31i4NyNv3vf/xeo88Pm7uAAAgHlDsAwAAAIBmzjAMzZkzR2eddZauueYade/eXWPHjtW2bduUnZ0tSRo3bpzuu+8+3XXXXerXr58KCgp09dVXKzExMXKeN954Q+Xl5erXr59+9atf6bbbblNWVla993r66ac1f/58tWvXTqecckqTXicANJVf//rXmj9/vt555x2tXr1aw4YN09ChQ7Vr1y5J0tSpU/X888/rlVde0dKlS5WSkqLhw4errq4uco5x48ZpzZo1mj9/vmbPnq2FCxdqwoQJVl3SETu3c6pyUh2qDZqauc6jsMn6fQAAxDrDNPmN7vF4lJ6ersrKSrnd7kY//7u71jX6ORE/rjyup9URAACHEe22AgBEy/nnn6+cnBy98847VkcBgGajtrZWaWlpmjlzpkaNGhXZ3r9/f40YMUKTJ09WXl6efve73+muu+6SJFVWVio7O1tvvvmmxo4dq/z8fPXu3VvLly/XgAEDJElz587VyJEjtXPnTuXl5R02R7TbmIFAQHPmzNHIkSMPWBO2rDaoP68slz9kanD7ZJ3VMbXR3x9Aw/3U5xZA8xPtz2xD2gqM7AMAAACAOFBTU6NnnnlGa9as0bp16/TQQw/ps88+0/jx462OBgDNSjAYVCgUqjfyWZKSkpK0aNEiFRQUqLCwUEOHDo3sS09P18CBA7VkyRJJ0pIlS5SRkREp9En7ply22WxaunRp01zIMchMcmhEtzRJ0uLtNdpW4bc4EQAAOBYOqwMAAAAAAI7d/qk+p0yZorq6OvXo0UN///vf63VWAwCktLQ0DRo0SJMnT1avXr2UnZ2tDz74QEuWLFHXrl1VWFgoSZFpkvfLzs6O7CssLDxgGmSHw6HMzMzIMT/m8/nk8/kizz0ej6R9owICgUCjXd9++895qHN3b2XXiW0T9O+9fs3Ir9TVJ7uV7GRcAGClw31uATQv0f7MNuS8FPsAAAAAIA4kJSXps88+szoGAMSEd955R9dee62OO+442e129evXT7/85S+1YsWKqL3n448/rkceeeSA7fPmzVNycnLU3nf+/PmH3BeWTS53H1UrWW8t2ar2VetkRC0JgCP1U59bAM1PtD6zNTU1R3wsxT4AAAAAAAC0KF26dNFXX32l6upqeTwe5ebm6he/+IU6d+6snJwcSVJRUZFyc3MjrykqKlLfvn0lSTk5OSouLq53zmAwqLKyssjrf+y+++7TnXfeGXnu8XjUrl07DRs2LGpr9s2fP1/nn3/+T64jtLc6pHdXe1TlbKW2fc/VaXmJhzwWQHQd6ecWQPMQ7c/s/lkAjgTFPgAAAAAAALRIKSkpSklJUXl5uT799FNNnTpVnTp1Uk5Ojj7//PNIcc/j8Wjp0qW68cYbJUmDBg1SRUWFVqxYof79+0uSFixYoHA4rIEDBx70vVwul1wu1wHbnU5nVDv1D3f+vAynhnYxNXeTV//cXqtOrRKV56bIAFgp2t8LABpXtD6zDTknE3EDAAAAAACgRfn00081d+5cFRQUaP78+TrnnHPUs2dPXXPNNTIMQ7fffrseffRRzZo1S6tXr9ZVV12lvLw8jRkzRpLUq1cvXXDBBbr++uu1bNkyLV68WLfccovGjh2rvLw8ay/uKJySm6iebVwKm9KMdZWqC4atjgQAABqAkX0AAAAAAABoUSorK3Xfffdp586dyszM1GWXXaYpU6ZE7qC/5557VF1drQkTJqiiokKDBw/W3LlzlZj43yku33vvPd1yyy0677zzZLPZdNlll+n555+36pKOiWEYGtk9TXu8AVXUhTVng1eX9HLLMFjBDwCAWECxDwAAAAAAAC3KFVdcoSuuuOKQ+w3D0KRJkzRp0qRDHpOZman3338/GvEskeiw6ZJe6Xp7VbnWlfj03Z469ctLsjoWAAA4AkzjCQAAAAAAAEB5bqfO7pgqSfpsi1fF1UGLEwEAgCNBsQ8AAAAAAACAJGng8Unq0ipBwbA0Pb9S/pBpdSQAAHAYFPsAAAAAAAAASNo3henoHm6lJthUWhPS/E1eqyMBAIDDoNgHAAAAAAAAICIlwaaLerolSauK6rSmuM7iRAAA4KdQ7AMAAAAAAABQT8eMBA1unyxJ+mSjV2W1rN8HAEBz5bA6AAAAAACg+TNNU34zLH84pKAZVtiUwqapsEyFTVOm9q3pZEoyTUmGZJchh2HIbthk/89/9z3f92ebYVh6TQCAnza4Q4q2VQa0ozKgGfkeXdW3lRw2vrsBAGhuKPYBAAAAQAtkmqbqwiFVhwKqCQVVEwqoOhSUPxz6zyMsv/nfPwfMcKNnMCQl2OxKtNmVaHMo0b7vz67Inx1KtNmVbHco2e6kOAgATcxmGBrT060/rShTYVVQXxRU6fwuaVbHAgAAP0KxDwAAAADiVDAcVmXQp8qgX56gX9XBwA+Ke0GF/zMazyqmJF84JF84pEr5f/JYQ1KK3ak0h1OpjgSl2p1Ki/zXKafN3iSZAaClSXPZdWEPt/66plLLd9WqQ0aCurd2WR0LAAD8AMU+AAAAAIhxgf1FvYBPFUG/KgP7CnzVoYDV0RqNKakqFFBVKCD5ag7Yn2izq5XTpQxnojKdLrVyJsrtSGA0IAA0gq6tXTrtuCQt21Wrf6z3KKdfptyJ3GQBAEBzQbEPAAAAAGJI2DRVFqhTqb9OJf5alfhr5Y2jot7RqguHtMdXoz0/KATaZCjDmaBWzkS1+k8BsHVCohyGzcKkABCbzumUqh2VAe2pCmrGOo+uPDmDGyoAAGgmKPYBAAAAQDNWFfSrZH9hL1Cncn+dQhZPvxkrwjJVFvCpLOCLbLNJynQmKsuVrKyEJLV1JcvFFKAAcFh2m6Exvdx6Y2W5dnoCWri1Wmd3SrU6FgAAEMU+AAAAAGhWakNBFfqqtcdXo0JftWpCQasjxZWwpJJAnUoCdVr7n23pjoRI8S8rIVkpDqeVEQGg2WqV5NDIbmmasc6jr3fUqENGgjq1SrA6FgAALR7FPgAAAACwUDAcVrG/Rnt81dpTV6OKoO/wL0Kjqgz6VRn0a2N1hSTJ7UjQcYmpOi4xRVkJyUxTBwA/0DsrUVsr/Pq+sE6z1nt0Xb9MpSYwPTIAAFai2AcAAAAATcwb9Gt7rVe766q111+rMNNyNiueoF+eqjLlV5XJadiU40pW3n+Kf8l2Rv0BwPld0rTTE1BJTUgfr/do7InpMrgxAgAAy1DsAwAAAIAmUBHwaXutV9trvYzeiyEBM6wddVXaUVclSWrldOm4xFS1T0xTZkKixekAwBpOu6FLeqVr2ndlKij365udNRrULsXqWAAAtFgU+wAAAAAgSkr9tfsKfHVV8gb9VsdBIygP+FQe8Onf3lK5HQnqkJSmjklupTtdVkcDgCbVNsWhYV3SNGejV18WVKtdeoKOdzP6GQAAK1DsAwAAAIBGVBnwaXNNpbbVelQdClodB1HkCfq12luq1d5StXK61DHJrQ5JbqU66OwG0DKcnLNv/b61e32amV+pa/tlKsnJ+n0AADQ1in0AAAAAcIz84ZC21nq0ubpSpYE6q+PAAvtG/O3Vd569apOQpI5JaeqUnC6XzW51NACIGsMwNKJbmnZ7A6qoC2vORq8u7eVm/T4AAJoYxT4AAAAAOAqmaarQV6PNNZXaUetVSKbVkdBMlPhrVeKv1crKvWqXlKquyRnKcSXT+Q0gLrkcNl3SK11vfV+u9SU+rdxTq/55yVbHAgCgRaHYBwAAAAANUB0MaGNNhbbUVKqGaTrxE8Iyta3Wq221XqXaneqakqGuyelKtPNPcQDxJTfNqXM7peqzLVX6bHOVjnc7lZ3KlMYAADQV/oUBAAAAAEeg0Fet9VXl2llXxRg+NFhVKKDvPXv1L0+J2ielqXtKhrJcjHwBED9OPS5JWyv82lTm1/R8j67t10oJdtbvAwCgKVDsAwAAAIBDCJlhbanxaH1VuSqCPqvjIA6EZWprrUdbaz3KcLjUOy1THZPcsjHFJ4AYZxiGRvdw640VZSqrDenTTVW6sIfb6lgAALQI3F4DAAAAAD9SGwpqlWevPircrKUVhRT6EBUVQZ++Lt+jmUWblV9VpkA4bHUkADgmyU6bLu7pliFpdVGdVhfVWh0JAIAWgZF9AAAAAPAf3qBfa7yl2lLjUZjJOtFEqkNBrags1mpPibqntFKP1FZKYl0/ADGqfUaCBndI0T+3VWvuxirlpTnVOpnvNAAAoomRfQAAAABaPG/Qr6/Ld2tW0RZtqqmk0AdL+M2w/l1VqumFm/VN+R55An6rIwHAUTmzfbI6pDsVCJuanu9RMMzvVQAAooliHwAAAIAWyxPwa3HZviLflhoPJT40C2GZ2lRTqY+Lt2hR2W55gxT9AMQWm2Hoop5uJTsNFVcH9fmWKqsjAQAQ1xhDDwAAAKDFqQz4tNpbqm21FPjQfJmSttZ6tK3Woy7J6erjbqMUu9PqWABwRNJcdl3Yw63/+3elVuyuVceMBPVo47I6FgAAcYliHwAAAIAWwxv0a5WnhCIfYoopaVNNpbbUeNQ9JUMnprVWImv6AYgBXTJdOv34ZH2zs0b/2OBRTmqm0hPtVscCACDuMI0nAAAAgLjnC4f0bUWRPi7aoq0U+hCjwjK1rrpcM4q26HvPXvnDIasjAcBhDemYorw0h+qCpmasq1SI9fsAAGh0FPsAAAAAxK2waSq/qkwzCzdrXXW5wlYHAhpB0Azr395SzSjcrLXeUoVNOs4BNF92m6ExPdPlshva5Qlq4bZqqyMBABB3KPYBAAAAiEvba736uGiLVlQWy29S5kP88ZthrfTs1eziAu2uq7I6DgAcUkaSXSO7p0mSluyo0ZYyn8WJAACILxT7AAAAAMSVUn+t5u3dpoVlu+QNBayOA0SdJ+jXgtKd+qJ0p7xBv9VxAOCgerVN1Cm5SZKkWes9qvIzFTEAAI2FYh8AAACAuOALh7SkfI8+2btNxf5aq+MATW5XXZU+LirQd5V7FQwzmhVA8zO0c6rapthVEzA1a51HJtMQAwDQKCj2AQAAAIh5W2oqNatoizbXVFodBbBUWKbWVJVqVtEWFfB5ANDMOO2GLumVLqdN2loR0Nc7aqyOBABAXLC02BcKhfTggw+qU6dOSkpKUpcuXTR58uR6d/WYpqmJEycqNzdXSUlJGjp0qDZu3FjvPGVlZRo3bpzcbrcyMjJ03XXXqaqK9QoAAACAeOcN+vVZyXZ9Xb5HvjDTgQH71YSDWly+R/P3bmdqTwDNSptkh4Z13bd+38Kt1dpRyXcUAADHytJi3xNPPKGXX35Zf/zjH5Wfn68nnnhCU6dO1QsvvBA5ZurUqXr++ef1yiuvaOnSpUpJSdHw4cNVV1cXOWbcuHFas2aN5s+fr9mzZ2vhwoWaMGGCFZcEAAAAoAmETVOrPSWaXVSgQh+jAoBDKfLXaHZxgdZ6y5guD0CzcVJ2ok7IcsmUNHOdR7UBph4GAOBYOKx886+//loXX3yxRo0aJUnq2LGjPvjgAy1btkzSvlF9zz33nB544AFdfPHFkqS3335b2dnZmjFjhsaOHav8/HzNnTtXy5cv14ABAyRJL7zwgkaOHKmnnnpKeXl51lwcAAAAgKgo9tVoaUWhKhmtBByRkGlqpadY22s9GtQqV+lOl9WRALRwhmHogq5p2uMNqqw2pH9s8Oiy3ukyDMPqaAAAxCRLR/adccYZ+vzzz7VhwwZJ0qpVq7Ro0SKNGDFCklRQUKDCwkINHTo08pr09HQNHDhQS5YskSQtWbJEGRkZkUKfJA0dOlQ2m01Lly496Pv6fD55PJ56DwAAAADNW9AMa3lFoeaVbKfQBxyFkkCd/lG8Vau9JQozyg+AxVwOm8b0dMtuSBtK/fp2d63VkQAAiFmWjuy799575fF41LNnT9ntdoVCIU2ZMkXjxo2TJBUWFkqSsrOz670uOzs7sq+wsFBZWVn19jscDmVmZkaO+bHHH39cjzzySGNfDgAAAIAoKfXXaXH5bnko8gHHJCxTqzwl2l7r1RmtctXKmWh1JAAtWE6aU+d2TtX8zVVasKVK7dxO5aQ5rY4FAEDMsXRk31//+le99957ev/997Vy5Uq99dZbeuqpp/TWW29F9X3vu+8+VVZWRh47duyI6vsBAAAAODr71+b7dO9WCn1AIyoP+PRJ8Vb9y1PCWn4ALDUgL0ndWycoZErT8z3yBVm/DwCAhrJ0ZN/dd9+te++9V2PHjpUk9enTR9u2bdPjjz+u8ePHKycnR5JUVFSk3NzcyOuKiorUt29fSVJOTo6Ki4vrnTcYDKqsrCzy+h9zuVxyuVijAAAAAGjOvEG/vi7fo71+pvUCoiEs6V/eEhX6qjU4M0/JdkbTAGh6hmFoVHe3CleWqbwupLmbvLqoh5v1+wAAaABLR/bV1NTIZqsfwW63KxzedwdPp06dlJOTo88//zyy3+PxaOnSpRo0aJAkadCgQaqoqNCKFSsixyxYsEDhcFgDBw5sgqsAAAAA0Ng2VlfoH8VbKfQBTaDYX6t/FG/Vjlqv1VEAtFBJTpsu7umWIWlNsU+ri+qsjgQAQEyxdGTfhRdeqClTpqh9+/Y64YQT9N133+mZZ57RtddeK2nfnT233367Hn30UXXr1k2dOnXSgw8+qLy8PI0ZM0aS1KtXL11wwQW6/vrr9corrygQCOiWW27R2LFjlZeXZ+HVAQAAAGgoXzikJeV7tLOuyuooQIviC4f0VdkudU/JUP/0LNkNS+8NBtACtUtP0FkdU/TV1mp9usmrPLdTbZIt7boEACBmWPob84UXXtCDDz6om266ScXFxcrLy9MNN9ygiRMnRo655557VF1drQkTJqiiokKDBw/W3LlzlZj430XE33vvPd1yyy0677zzZLPZdNlll+n555+34pIAAAAAHKVSf50Wlu1SdShgdRSgxdpQXaFiX61+lpmndCfLXwBoWoPaJWtbhV9bKwKanl+pq/tmymlnOk8AAA7H0mJfWlqannvuOT333HOHPMYwDE2aNEmTJk065DGZmZl6//33o5AQAAAAQFPYWF2h5RVFCsu0OgrQ4lUEfZqzd6sGpGerW0qG1XEAtCA2w9BFPd3604oy7a0O6bMtVRrRLc3qWAAANHvMywEAAADAMkEzrCXle7S0opBCH9CMhExTSysK9U35HoVMPpsAmk5qgl0X9XBLkr7bU6v8vazfBwDA4VDsAwAAAGAJb9CvT/du0+aaSqujADiETTWVml+yXTWhoNVRALQgnTNdGtQuWZI0Z4NXFbUhixMBANC8UewDAAAA0OR21nr1SfFWlQd8VkcBcBgl/lp9UrxVJf5aq6MAaEHO6pCi49wO+UKmZqyrVCjMKGMAAA6FYh8AAACAJvUvT4m+LNslvxm2OgqAI1QbDmre3u3aXF1hdRQALYTdZmhMz3QlOgzt9gb11dZqqyMBANBsUewDAAAA0CRCpqnFZbv1L2+J1VEAHIWwTC2pKNTyikKFWccPQBNIT7RrZPc0SdI3O2u0uYwZAQAAOBiKfQAAAACizhcK6fOS7Sqo9VgdBcAxWl9doc9KtssXYg0tANHXs02i+uclSZJmrffI6+O7BwCAH6PYBwAAACCqPEG/5u7dqmLW+wLiRrG/VnNLtqkq6Lc6CoAW4LzOqcpOcag2YGrWOg+jiwEA+BGKfQAAAACipshXo7nFW+UNBayOAqCReYN+zd27TWX+OqujAIhzDpuhMb3cctoMbasM6OvtNVZHAgCgWaHYBwAAACAqttRU6vOSHfKbYaujAIiSunBI80u2a09dtdVRAMS51skOXdAtVZL0z23V2l7ByGIAAPaj2AcAAACg0a32lOjr8j0Ki2m2gHgXMMP6onSHttRUWh0FQJzrk52kPlmJMiXNXOdRTYAbigAAkCj2AQAAAGhkKyqLtcpbYnUMAE0oLOnr8j36t7fU6igA4tzwbqnKTLLL6w9r9nqPTNbvAwCAYh8AAACAxmGappaWFyq/qszqKAAs8r1nr5ZXFNL5DiBqEuw2XdLLLbshbSrza/muWqsjAQBgOYp9AAAAAI5Z2DS1uHyPNtZUWB0FgMXWV1docfkehSn4AYiS7FSnhnbZt37fgoIq7fEGLE4EAIC1KPYBAAAAOCYhM6yFZbu0tdZjdRQAzcTWWo8Wle2m4AcgavrlJql7a5fCpjQj3yNfkPX7AAAtF8U+AAAAAEctGA7ri9Kd2llXZXUUAM3M9jqvFpbtUoiCH4AoMAxDo7qnKd1lU3ldSJ9s9DKFMACgxaLYBwAAAOCo+MMhfV66Q4W+GqujAGimdtZV6avSnQqZjLgB0PiSnDZd3CtdhqS1e31aVVhndSQAACxBsQ8AAABAgwXCIS0o2aG9/lqrowBo5nb7qvVV6S4KfgCi4ni3U2d3SpEkzdvs1d7qoMWJAABoehT7AAAAADTI/qk7SwLcPQ/gyFDwAxBNpx+frE6tEhQMS9PzKxUIMZ0nAKBlodgHAAAA4IgFzbC+LNupYkb0AWig/QW/MGtqAWhkhmHowh5upSTYVFIT0vzNXqsjAQDQpCj2AQAAADgiYdPUwtJdrNEH4Kjt9lVrcflumRT8ADSy1ASbLurhliR9X1intcXMQAAAaDko9gEAAAA4rLBpalH5bu32VVsdBUCM21br1fLKIqtjAIhDnVol6Ix2yZKkORu9Kq9l/T4AQMtAsQ8AAADATzJNU0srCrW9limxADSODdUV+penxOoYAOLQWR1TdLzbKX/I1Ix8j0JhRhIDAOIfxT4AAAAAP2lFZbE211RaHQNAnPmXt0Trq8qtjgEgztgMQ2N6upXoMLSnKqgvCqqsjgQAQNRR7AMAAABwSPlVZVpXTWc8gOj4trJIW2s8VscAEGfciXaN/s/6fct21WpTqc/iRAAARBfFPgAAAAAHtaPWq5WVxVbHABDHTElfl+/W7jpG3gBoXN1buzQgL0mS9PF6jzy+kMWJAACIHop9AAAAAA5Q4q/VovLdYpUbANEWlrSwbJdK/bVWR0ELEQqF9OCDD6pTp05KSkpSly5dNHnyZJnmf3/rmaapiRMnKjc3V0lJSRo6dKg2btxY7zxlZWUaN26c3G63MjIydN1116mqisJ1c3Ju51TlpDpUGzQ1c51HYZOWDQAgPlHsAwAAAFBPVdCvL0t3KkSHGIAmEjRNfVm6SzWhgNVR0AI88cQTevnll/XHP/5R+fn5euKJJzR16lS98MILkWOmTp2q559/Xq+88oqWLl2qlJQUDR8+XHV1dZFjxo0bpzVr1mj+/PmaPXu2Fi5cqAkTJlhxSTgEh83QmF5uJdgN7agMaNG2aqsjAQAQFRT7AAAAAET4wyF9UbpTdWGmugLQtGrDQX1ZuktBM2x1FMS5r7/+WhdffLFGjRqljh076uc//7mGDRumZcuWSdo3qu+5557TAw88oIsvvlgnnXSS3n77be3evVszZsyQJOXn52vu3Ln605/+pIEDB2rw4MF64YUX9Je//EW7d++28OrwY5lJDo3oliZJWrS9Rlsr/BYnAgCg8TmsDgAAAACgeQiZpr4q3aXKIJ1gAKxRFqjTkvI9+lnmcVZHQRw744wz9Nprr2nDhg3q3r27Vq1apUWLFumZZ56RJBUUFKiwsFBDhw6NvCY9PV0DBw7UkiVLNHbsWC1ZskQZGRkaMGBA5JihQ4fKZrNp6dKluuSSSw54X5/PJ5/PF3nu8XgkSYFAQIFA449q3X/OaJw71nRvZVeftglavdevmfmVuvpkt5KdjIFA88PnFogt0f7MNuS8FPsAAAAASJKWlu9Rkb/G6hgAWrhttV6le0p0kruN1VEQp+699155PB717NlTdrtdoVBIU6ZM0bhx4yRJhYWFkqTs7Ox6r8vOzo7sKywsVFZWVr39DodDmZmZkWN+7PHHH9cjjzxywPZ58+YpOTn5mK/rUObPnx+1c8eSsGxyufuoWsl6a8lWta9aJ8PqUMAh8LkFYku0PrM1NUf+73OKfQAAAACUX1WmLbUeq2MAgCTpX94SpTsT1CHJbXUUxKG//vWveu+99/T+++/rhBNO0Pfff6/bb79deXl5Gj9+fNTe97777tOdd94Zee7xeNSuXTsNGzZMbnfj/10PBAKaP3++zj//fDmdzkY/fyzaWx3Su6s9qnK2Utu+5+q0vESrIwH18LkFYku0P7P7ZwE4EhT7AAAAgBau2FejlZXFVsdAE/vo6T9q+rMv1tuW26WTpn41R5Lkr/Pp/clPaOnMOQr4A+oz5Exd/dhEpbc99GirV++4T4s+nFFvW58hg3XPe69LkgI+v964+wGtmLdAGW3baPxjE3Xiz86IHPuPl99Q6a49uurRBxrpKhHLvi7fo1R7glon0BmPxnX33Xfr3nvv1dixYyVJffr00bZt2/T4449r/PjxysnJkSQVFRUpNzc38rqioiL17dtXkpSTk6Pi4vq/O4PBoMrKyiKv/zGXyyWXy3XAdqfTGdVO/WifP5bkZTg1tIupuZu8+uf2WnVslajj3Pxs0PzwuQViS7Q+sw05J8U+AAAAoAWrCQW1sGyXTKuDwBLH9eiqez/4c+S53fHffyK+98jjWvX5Qt3y6nNKTkvT2w9M1h+uv00TZ7z/k+c86eyf6fpnpkSeOxMSIn/+4r2/qmD1Wj008wOt+uKfeumWu/Xi94tkGIaKt+/Ul+9/qElz/taIV4hYFjJNfVW2UyPadlSSne4LNJ6amhrZbPXXa7Pb7QqHw5KkTp06KScnR59//nmkuOfxeLR06VLdeOONkqRBgwapoqJCK1asUP/+/SVJCxYsUDgc1sCBA5vuYtBgp+QmamuFX+tKfJqRX6nr+mcq0cH6fQCA2MZvMgAAAKCFCpum/lm2S3XhkNVRYBG73aGMrLaRR1pmK0lSjcerr/7ykf5n4u91wpmnq9NJJ+j6Zx7Txm+/06YV3//kOR2uhHrnTMlIj+zbvWmz+p1/jo7v0U3nj/8feUvL5C0rlyS9ed8j+sX9v1NSWmrUrhexpyYU1KKy3TJNbklA47nwwgs1ZcoU/eMf/9DWrVs1ffp0PfPMM7rkkkskSYZh6Pbbb9ejjz6qWbNmafXq1brqqquUl5enMWPGSJJ69eqlCy64QNdff72WLVumxYsX65ZbbtHYsWOVl5dn4dXhcAzD0MjuaUp32VTpC2vOBi/fMQCAmMetcQAAAEALtaKyWHv9tVbHgIUKC7bp1v5nyelyqWu/vrrivjvU5rg8Faxeo1AgoBN+NihybF7Xzmp9XK42rvxeXfv3PeQ51y1ZpptOPlMp6W71PnOgfn7Pb5XWal8RsX3vnlr891ny19bpX18tUkb2vgLj4o8+ljPRpQEjzo/2JSMGFflr9C9viU52t7U6CuLECy+8oAcffFA33XSTiouLlZeXpxtuuEETJ06MHHPPPfeourpaEyZMUEVFhQYPHqy5c+cqMfG/08q+9957uuWWW3TeeefJZrPpsssu0/PPP2/FJaGBEh02XdIrXW+vKte6Ep++21OnfnlJVscCAOCoUewDAAAAWqCCmkqtry63OgYs1OWUkzTh2ceU27mTKor3avqzL+rRS6/U459/rMriEjkSnEpJd9d7TXqbNqosLjnkOU86e7BOHXG+2rY7XkXbtuvDJ57TU1feoIdmfSCb3a6zfnGptuev1+/PHa20zFa65eVnVV1RqY+efkH3f/iWPpz6nL6Z+YmyO7bTr5+aoszc7Gj/GBAj/u0tVVZCsnITU6yOgjiQlpam5557Ts8999whjzEMQ5MmTdKkSZMOeUxmZqbef/+npzZG85XndursjqlaUFClz7Z4dXy6U1kpdJUCAGITv8EAAACAFqY8UKdvKgqtjgGLnXzuWZE/t+/dQ11OOUl3nH6eln78iRJ+MHKlIQZdPCry53a9uqt9rx763ZnDlL9kmU4YPEgOp1NXT5lY7zWv3Xm/hl1zpbb9O18rPv1cU+ZP1z9eekPvTJyi377OCBnsY0paXL5bI7M6KZn1+wA0koHHJ2lbhV+by/2avrZS1/TLVILdsDoWAAANxpp9AAAAQAsSDIf1z7LdCrE2DX4kJd2tnM4dVbR1u9Kz2ijoD6i60lPvmMqSEqVntTnic2Z1aKe0zFYq2rr9oPvXLl6qXes36fxrxil/yTKdfM5ZSkxO1sALL9C6JcuO6XoQf+rCIS0u260w318AGolhGBrdw63UBJtKa0Oav8lrdSQAAI4KxT4AAACgBVlRWSxP0G91DDRDddXVKt66QxlZbdWpzwmyO51au+ibyP49mwtUumuPuvXre8TnLNtdqKryCmVkHbjWmr/Op7cemKxrnnhYNrtd4VBYoWBQkhQKBhUOh4/5mhB/ivw1Wu099FSyANBQKQk2Xdxz37TVq4rqtKa4zuJEAAA0HMU+AAAAoIXYWevVxpoKq2OgmXh/8lTlL1mmvTt2acO33+m5X98qm92mQWNGKdmdpiFjL9V7k/6f1i5eqoJ/rdFrd96vrv37qmv/vpFz3DNkpL79ZL6kfcXCDyY/qU0rvtfeHbu0ZtESPXvdzcru2F59hgw+4P1n/uFlnXzuWep4Ym9JUvdTT9G3n8zX9rXrNX/ae+o24JQm+Tkg9vzbW6o9ddVWxwAQRzpkJGhw+2RJ0icbvSqrDVqcCACAhmGiewAAAKAFqA0FtYR1+vADZXsK9dItd6mqvEJpmZnqflo/PTTrL3K3zpQkjXvoPhk2m56f8FsF/H6dNORMjX+s/np7ezYXqMZbJUmy2ezasW69/vm3GarxeNUqu61OPOtM/fzu2+R0JdR73Y51G7T040/06LzpkW2njhqu/CXL9OhlVyq3cyfd9Mcno/wTQKzav37f6KxOSmT9PgCNZHCHFG2rDGhHZUAz8j26qm8rOWys3wcAiA2GaTLZvcfjUXp6uiorK+V2uxv9/O/uWtfo50T8uPK4nlZHAAAcRrTbCkBTWFCyQ7t9jIQBED/aJ6XprMzjrI4BHLVotzEDgYDmzJmjkSNHyul0Nvr545HXF9KfVpSpNmhqQF6ShnVNszoSWhg+t0BsifZntiFtBabxBAAAAOLc+qpyCn0A4s72Wq+21nisjgEgjqS57Lqwx77O1G9312pDqc/iRAAAHBmKfQAAAEAcqwz4tNJTbHUMAIiK5ZVFqg2xthaAxtO1tUunHZckSfrHeo88dSGLEwEAcHgU+wAAAIA4FTZNLSrfrRAz9wOIU75wSEtZjxRAIzunU6pyUx2qDZqasc6jMG0pAEAzR7EPAAAAiFNrqkpVHmD6KQDxbWddlbbUVFodA0AcsdsMjenlVoLd0E5PQAu3Mh06AKB5o9gHAAAAxCFPwK/VnlKrYwBAk/i2okjVoYDVMQDEkVZJDo3sliZJ+npHjQrK/RYnAgDg0Cj2AQAAAHFoaUWhwmLKKQAtg98M65typvME0Lh6ZyWqb06iJGnWeo+q/GGLEwEAcHAU+wAAAIA4s6m6QkX+GqtjAECT2uOrZjpPAI3u/C5papNsV7U/rI/Xe2Syfh8AoBmi2AcAAADEkbpQUCsri62OAQCWWFlZLH84ZHUMAHHEaTd0Sa90OWxSQblf3+zkhioAQPNDsQ8AAACII8sri+Q3mWIKQMtUFw5plWev1TEAxJm2KQ4N67Jv/b4vC6q108MaoQCA5oViHwAAABAndtVVaVut1+oYAGCpDdUVKvPXWR0DQJw5OSdRvdu6ZEqakV+p2gA3VwEAmg+KfQAAAEAcCIbDWlZRaHUMALCcKWlZRSHragFoVIZhaES3NLVKtMvjC2vORi/fMwCAZoNiHwAAABAH1lSVqjoUtDoGADQLJYE6baqptDoGgDjjctg0ppdbNkNaX+LTyj21VkcCAEASxT4AAAAg5tWEAlpbVWZ1DABoVr737JUvFLI6BoA4k5vm1LmdUiVJn22uUlEV6/cBAKxHsQ8AAACIcd9V7lWIaaQAoB5fOKTvPMVWxwAQh049LkldMxMUMqXp+R75Q6zfBwCwFsU+AAAAIIaV+GtVUOuxOgYANEubaipV5q+zOgaAOGMYhkb3cCstwaay2pA+3VhldSQAQAtHsQ8AAACIYSsqGbUCAD/lO89eqyMAiEPJTpsu7uWWIWl1cZ1WF7F+HwDAOhT7AAAAgBi1rcajvX46lgDgp+zxVavQV211DABxqH16gn7WIUWSNHdjlUprghYnAgC0VBT7AAAAgBgUMsNayWgVADgiKyv3ymRtUwBRcEb7ZHVIdyoQNjU936NgmO8aAEDTo9gHAAAAxKD8qnJVhwJWxwCAmFAWqNO2Wq/VMQDEIZth6KKebiU7DRVXB/X5FtbvAwA0PYp9AAAAQIzxh0Na6y21OgYAxJTvPXsVZnQfgChIc9l1YQ+3JGnF7lqtK6mzOBEAoKWh2AcAAADEmPyqMvnNsNUxACCmVIUC2lhdYXUMAHGqS6ZLpx+fLEmas8GryrqQxYkAAC0JxT4AAAAghvjDIa2rKrc6BgDEpNXeEgXCdMADiI4hHVOUl+ZQXdDUjHWVCrF+HwCgiVDsAwAAAGJIflWZAozqA4CjUscNEwCiyG4zNKZnulx2Q7s8QS3cVm11JABAC0GxDwAAAIgRPjqpAeCYrasuVzDMTRMAoiMjya6R3dMkSUt21GhLmc/iRACAloBiHwAAABAjGNUHAMfOFw5pY02F1TEAxLFebRN1Sm6SJGnWeo+q/EwfDACILop9AAAAQAzwhUNaz6g+AGgUa71lCpmspQUgeoZ2TlVWikM1AVOz1nkU5jsHABBFFPsAAACAGJDvZVQfADSW2nBQW2oqrY4BII457YbG9HLLaZO2VgS0ZEeN1ZEAAHGMYh8AAADQzPnDIa2vZlQfADSmNd5SRtoAiKo2yQ4N67pv/b6FW6u1o9JvcSIAQLyi2AcAAAA0c5uqKxjVBwCNrCoU0LZaj9UxAMS5k7ITdUKWS6akmes8qg3QpgMAND6KfQAAAEAzFjZNRvUBQJT821sqk9F9AKLIMAxd0DVNmUl2eXxhzd7g4XsHANDoKPYBAAAAzdiOOq+qQ0GrYwBAXKoM+rWzrsrqGADinMth05hebtkNaWOpX9/urrU6EgAgzlDsAwAAAJqxfG+Z1REAIK7lV/E9CyD6clKdOrdzqiRpwZYqFXoDFicCAMQTin0AAABAM7XXX6uSQJ3VMQAgrhX7a1XOdy2AJjAgL0ndWycoZErT8z3yBVm/DwDQOCj2AQAAAM3UOkabAECTWFfF2qgAos8wDI3q7pbbZVN5XUhzN3lZvw8A0Cgo9gEAAADNUFUwoO21XqtjAECLsLXWI184ZHUMAC1AktOmi3u6ZUhaU+zTv4oYWQwAOHYU+wAAAIBmaH11ubjPGwCaRsg0tam6wuoYAFqIdukJOqtjiiRp3iavSmqCFicCAMQ6in0AAABAMxMyw9pMpzMANKlN1RVMpwegyZzRLlkdM5wKhKXp+ZUKhPj+AQAcPYp9AAAAQDOzvdYrvxm2OgYAtCjeUEB7fDVWxwDQQhiGoYt6upXsNLS3OqTPtlRZHQkAEMMo9gEAAADNzKbqSqsjAECLtLG63OoIAFqQ1AS7LurhliR9t6dW+XtZvw8AcHQo9gEAAADNiDfoV5GfkSUAYIWddVWqCbF2FoCm0znTpUHtkiVJczZ4VVEbsjgRACAWUewDAAAAmpHNjOoDAMuYkrbWeKyOAaCFOatDio5zO+QLmZqxrlKhMOv3AQAahmIfAAAA0EyYpqkttRT7AMBKBXwPA2hidpuhMT3TlegwtNsb1Fdbq62OBACIMRT7AAAAgGZij6+G6eMAwGLlAZ8qAj6rYwBoYdIT7RrZPU2S9M3OGm0u43sIAHDkKPYBAAAAzcSWGkaTAEBzUMD3MQAL9GyTqP55SZKkWes98vpYvw8AcGQo9gEAAADNgD8c0o46r9UxAACSCmo9Mk3WzALQ9M7rnKrsFIdqA6ZmrfMozHcRAOAIWF7s27Vrl6688kq1bt1aSUlJ6tOnj7799tvIftM0NXHiROXm5iopKUlDhw7Vxo0b652jrKxM48aNk9vtVkZGhq677jpVVVU19aUAAAAAR21nXZVCdOYAQLNQEwqqyF9jdQwALZDDZmhML7ecNkPbKgNavJ3vIgDA4Vla7CsvL9eZZ54pp9OpTz75RGvXrtXTTz+tVq1aRY6ZOnWqnn/+eb3yyitaunSpUlJSNHz4cNXV1UWOGTdunNasWaP58+dr9uzZWrhwoSZMmGDFJQEAAABHZXsto/oAoDkpqPFYHQFAC9U62aELuqVKkhZtq9b2Cr/FiQAAzZ3Dyjd/4okn1K5dO02bNi2yrVOnTpE/m6ap5557Tg888IAuvvhiSdLbb7+t7OxszZgxQ2PHjlV+fr7mzp2r5cuXa8CAAZKkF154QSNHjtRTTz2lvLy8pr0oAAAAoIEC4bD21FVbHQMA8APba706LSNbdsPySZEAtEB9spO0tTyg1cV1mrnOo+v6ZyrZyfcRAODgLP0NMWvWLA0YMECXX365srKydMopp+j111+P7C8oKFBhYaGGDh0a2Zaenq6BAwdqyZIlkqQlS5YoIyMjUuiTpKFDh8pms2np0qVNdzEAAADAUdpVV6WQmMITAJqTgBnWLm7EAGCh4d1SlZlkl9cf1uz1rCUKADg0S4t9W7Zs0csvv6xu3brp008/1Y033qjbbrtNb731liSpsLBQkpSdnV3vddnZ2ZF9hYWFysrKqrff4XAoMzMzcsyP+Xw+eTyeeg8AAADAKkzhCQDN006+nwFYKMFu0yW93LIb0qYyv5bvqrU6EgCgmbK02BcOh9WvXz899thjOuWUUzRhwgRdf/31euWVV6L6vo8//rjS09Mjj3bt2kX1/QAAAIBDCYbD2uWrsjoGAOAgdvmqFWYkDQALZac6NbTLvvX7FhRUaY83YHEiAEBzZGmxLzc3V7179663rVevXtq+fbskKScnR5JUVFRU75iioqLIvpycHBUXF9fbHwwGVVZWFjnmx+677z5VVlZGHjt27GiU6wEAAAAaapevSiE6kgGgWfKFQ9rrZyQNAGv1y01SjzYuhU1pen6lfMGw1ZEAAM2MpcW+M888U+vXr6+3bcOGDerQoYMkqVOnTsrJydHnn38e2e/xeLR06VINGjRIkjRo0CBVVFRoxYoVkWMWLFigcDisgQMHHvR9XS6X3G53vQcAAABgBabwBIDmbWcdo68BWMswDI3slqZ0l00VdWF9stHL+n0AgHosLfbdcccd+uabb/TYY49p06ZNev/99/Xaa6/p5ptvlrTvF9ntt9+uRx99VLNmzdLq1at11VVXKS8vT2PGjJG0byTgBRdcoOuvv17Lli3T4sWLdcstt2js2LHKy8uz8OoAAACAnxYyw9pVV211DADAT2DdPgDNQZLTpot7pcuQtHavT6sK66yOBABoRiwt9p166qmaPn26PvjgA5144omaPHmynnvuOY0bNy5yzD333KNbb71VEyZM0KmnnqqqqirNnTtXiYmJkWPee+899ezZU+edd55GjhypwYMH67XXXrPikgAAAIAjVuyrVdBkGiYAaM68oYAqAz6rYwCAjnc7dXanFEnSvM1e7a0OWpwIANBcOKwOMHr0aI0ePfqQ+w3D0KRJkzRp0qRDHpOZman3338/GvEAAACAqNnjY1QfAMSCnXVVSne6rI4BADr9+GRtqwhoS7lf0/Mrdc0pmXLaDatjAQAsZunIPgAAAKAlo9gHALFhB+v2AWgmDMPQhT3cSkmwqaQmpPmbmWoYAECxDwAAALBEbSiocqaFA4CYUOqvlS8csjoGAEiSUhJsuqiHW5L0fWGd1hazfh8AtHQU+wAAAAALMKoPAGKHKanIV2N1DACI6NQqQWe0S5YkzdnoVXkt6/cBQEtGsQ8AAACwwJ46in0AEEso9gFobs7qmKLj3U75Q6Zm5HsUCptWRwIAWIRiHwAAANDETNNkZB8AxBiKfQCaG5thaExPt5IchvZUBfVFAeuLAkBLRbEPAAAAaGLlAZ/qWPsJAGJKRdCnuhDT5AFoXtyJdo36z/p9y3bVamMpa0IDQEtEsQ8AAABoYoWM6gOAmFTkZ3QfgOane2uXBuQlSZJmr/fI4+OmMgBoaSj2AQAAAE2s2F9rdQQAwFFgKs/40LFjRxmGccDj5ptvliTV1dXp5ptvVuvWrZWamqrLLrtMRUVF9c6xfft2jRo1SsnJycrKytLdd9+tYJCRn7DOuZ1TlZPqUG3Q1Mx1HoVN1u8DgJaEYh8AAADQxEoo9gFATKLYFx+WL1+uPXv2RB7z58+XJF1++eWSpDvuuEMff/yxPvzwQ3311VfavXu3Lr300sjrQ6GQRo0aJb/fr6+//lpvvfWW3nzzTU2cONGS6wEkyWEzNKaXWwl2QzsqA1q0jZkkAKAlodgHAAAANKGqoJ/1+gAgRlUG/azbFwfatm2rnJycyGP27Nnq0qWLhgwZosrKSr3xxht65plndO6556p///6aNm2avv76a33zzTeSpHnz5mnt2rV699131bdvX40YMUKTJ0/Wiy++KL/fb/HVoSXLTHJoRLc0SdKi7TXaWsHfRwBoKSj2AQAAAE1oL6P6ACCmFbNuX1zx+/169913de2118owDK1YsUKBQEBDhw6NHNOzZ0+1b99eS5YskSQtWbJEffr0UXZ2duSY4cOHy+PxaM2aNU1+DcAPnZCVqJOzEyVJs9Z5VO0PW5wIANAUHFYHAAAAAFoSpvAEgNhW6q9T+yS31THQSGbMmKGKigpdffXVkqTCwkIlJCQoIyOj3nHZ2dkqLCyMHPPDQt/+/fv3HYrP55PP54s893g8kqRAIKBAIHCsl3KA/eeMxrnRvJ3dIVE7PX6V1oY1a12FLuuZKsMwrI6FI8DnFogt0f7MNuS8FPsAAACAJrTXX2d1BADAMSgN8D0eT9544w2NGDFCeXl5UX+vxx9/XI888sgB2+fNm6fk5OSove/+NQnRsmTYklXm7qOCiqDeWfC92vj2WB0JDcDnFogt0frM1tQc+YwSFPsAAACAJhI0wyqnkxgAYloZN23EjW3btumzzz7TRx99FNmWk5Mjv9+vioqKeqP7ioqKlJOTEzlm2bJl9c5VVFQU2Xco9913n+68887Ic4/Ho3bt2mnYsGFyuxt/tGggEND8+fN1/vnny+l0Nvr50fx9X+TT/C012pvSUUNP66O8NLqCmzs+t0BsifZndv8sAEeCb3gAAACgiZT562RaHQIAcEz8ZljeoF9pjgSro+AYTZs2TVlZWRo1alRkW//+/eV0OvX555/rsssukyStX79e27dv16BBgyRJgwYN0pQpU1RcXKysrCxJ++7od7vd6t279yHfz+VyyeVyHbDd6XRGtVM/2udH8zXgOId2eEJaV+LT7I3Vuq5/phIdNqtj4QjwuQViS7Q+sw05J9/uAAAAQBPZy3p9ABAXyhilHfPC4bCmTZum8ePHy+H4773w6enpuu6663TnnXfqiy++0IoVK3TNNddo0KBBOv300yVJw4YNU+/evfWrX/1Kq1at0qeffqoHHnhAN99880GLeYBVDMPQyO5pyki0qdIX1pwNXpkmt54BQDyi2AcAAAA0kfKAz+oIAIBGUMpUnjHvs88+0/bt23XttdcesO/ZZ5/V6NGjddlll+mss85STk5Ovak+7Xa7Zs+eLbvdrkGDBunKK6/UVVddpUmTJjXlJQBHJNFh05ie6bIZ0roSn77bw/cXAMQjpvEEAAAAmkgFxT4AiAuM7It9w4YNO+QIp8TERL344ot68cUXD/n6Dh06aM6cOdGKBzSqPLdTZ3dM1YKCKn22xavj053KSqFbGADiCSP7AAAAgCYQNk15gn6rYwAAGkEZI/sAxJiBxyepS6sEBcPS9LWV8oeYzhMA4gnFPgAAAKAJeIN+hUWnCgDEA78ZlpcbOADEEMMwNLqHW6kJNpXWhjRvk9fqSACARkSxDwAAAGgCFUGm8ASAeMJobQCxJiXBpot7umVI+ldRnf5dxChlAIgXFPsAAACAJsB6fQAQXyj2AYhFHTISdGb7ZEnS3E1eldUGLU4EAGgMFPsAAACAJlAZoFMYAOIJ03gCiFWDO6SoXbpT/pCpGfkeBcNMNQ8AsY5iHwAAANAEmMYTAOILI/sAxCqbYWhMT7eSHIYKq4JasKXK6kgAgGNEsQ8AAACIspBpMgIEAOIMxT4AsSzNZdeFPdySpG9312pDCTemAUAso9gHAAAARFlV0C8mRwKA+FITCioYDlsdAwCOWtfWLp12XJIkafYGjyrrQhYnAgAcLYp9AAAAQJRVh4JWRwAARAGj+wDEunM6pSo31aG6oKmZ6zwKm9yiBgCxiGIfAAAAEGXVoYDVEQAAUcAUzQBind1maEwvtxLshnZ6Alq4tdrqSACAo0CxDwAAAIgyin0AEJ8Y2QcgHrRKcmhktzRJ0tc7alRQzncbAMQain0AAABAlFUHKfYBQDziZg4A8aJ3VqL65iRKkmat86jKz5qkABBLHA19QUVFhZYtW6bi4mKFf7QQ9VVXXdVowQAAAIB4QWcwAMSn2jBrsjYV+qOA6Du/S5p2egIqqQnp4/UejT0xXYZhWB0LAHAEGlTs+/jjjzVu3DhVVVXJ7XbX+7I3DIPGFQAAAHAQFPsAID7Vhij2NQX6o4Cm4bQbuqRXuqZ9V6aCcr++2VmjQe1SrI4FADgCDZrG83e/+52uvfZaVVVVqaKiQuXl5ZFHWVlZtDICAAAAMStsmqqhMxgA4lJtKGR1hBaB/iig6bRNcWhYl33r931ZUK2dHm5aA4BY0KBi365du3TbbbcpOTk5WnkAAACAuFIbCsq0OgQAICrqwkGFTb7lo43+KKBpnZyTqN5tXTIlzcivVG2A9fsAoLlrULFv+PDh+vbbb6OVBQAAAIg7jOoDgPhlSqoLM7ov2uiPApqWYRga0S1NrRLt8vjC+scGr0xubACAZu2wa/bNmjUr8udRo0bp7rvv1tq1a9WnTx85nc56x1500UWNnxBAk6iZO+vwB6HFSr6A73cAOFo+OoEBIK7VhoJKth+2ewUNRH8UYC2Xw6Yxvdx66/tybSj1acWeWg3IY3QtADRXh22Njhkz5oBtkyZNOmCbYRgKMVc9AAAAUI/fpI0MAPGslhHcUUF/FGC93DSnzu2Uqs+2VOnzzVVq53YqO9V5+BcCAJrcYafxDIfDR/SgYQUAAAAcyM/IPgCIa7Vhin3RQH8U0DycelySumYmKGRK0/M98odYvw8AmqMGrdkHAAAAoGGYxhMA4puPYh+AOGYYhkb3cCstwaay2pA+3VhldSQAwEE0eFL56upqffXVV9q+fbv8fn+9fbfddlujBQMAAADiASP7ACC+BcKMcmkK9EcB1kl22nRxL7feW1Wh1cV16tjKqT7ZSVbHAgD8QIOKfd99951GjhypmpoaVVdXKzMzUyUlJUpOTlZWVhaNKwAAAOBHfHQCA0BcC5p8z0cb/VGA9dqnJ+hnHVK0cFu15m6sUl6aU62TGzyOBAAQJQ2axvOOO+7QhRdeqPLyciUlJembb77Rtm3b1L9/fz311FPRyggAAADELEb2AUB8C1Dsizr6o4Dm4Yz2yeqQ7lQgbGp6vkfBsGl1JADAfzSo2Pf999/rd7/7nWw2m+x2u3w+n9q1a6epU6fq/vvvj1ZGAAAAIGZR7AOA+MY0ntFHfxTQPNgMQxf1dCvZaai4OqjPt7B+HwA0Fw0q9jmdTtls+16SlZWl7du3S5LS09O1Y8eOxk8HAAAAxDgfIz4AIK4FTUa2RBv9UUDzkeay68IebknSit21WldSZ3EiAIDUwDX7TjnlFC1fvlzdunXTkCFDNHHiRJWUlOidd97RiSeeGK2MAAAAQMwKU+wDgLjGNJ7RR38U0Lx0yXTp9OOT9c3OGs3Z4FVOqlMZiXarYwFAi9agkX2PPfaYcnNzJUlTpkxRq1atdOONN2rv3r167bXXohIQAAAAiGUhRnwAQFwLMo1n1NEfBTQ/QzqmKC/NobqgqZn5lQqxfh8AWKpBI/sGDBgQ+XNWVpbmzp3b6IEAAACAeEK3BwDEN0b2RR/9UUDzY7cZGtMzXW+sLNMub1ALt1XrnE6pVscCgBarQSP7AAAAADRMmJF9ABDXghT7ALRQGUl2jeyeJklasqNGW8p8FicCgJbrsCP7TjnlFBmGcUQnW7ly5TEHAgAAAOJJmLF9ABDXTG7qiAr6o4DY0KttorZWBPTdnlrNWu/Rr/tnKjWB9fsAoKkdttg3ZsyYJogBAAAAxCdG9gFAfONbPjrojwJix9DOqdrlCai4OqhZ6zwa2ydDtiMs1gMAGsdhi30PPfRQU+QAAAAA4o5pmnQCA0Cc43s+OuiPAmKH025oTC+3pq0s09aKgJbsqNGZ7VOsjgUALcphi32HUlVVpXC4/rz0brf7mAMBAAAA8YJVnAAg/nFbR9OiPwpontokOzS8a5pmb/Bq4dZqtU93ql16gtWxAKDFaFCxr6CgQLfccou+/PJL1dXVRbabpinDMBQKhRo9IAAAABCrWMcJzYkjbMopyWFKTklO05TDNOQwTTlkymFK9rAph2nKbkp2mbKHTdnNfQ+bacr2n+e2sCnDDMsWNmUzwzLCpgzTlC0cVlVeJ1WltbX6coEmw0R10Ud/FBAb+mQnqqDCrzXFPs1c59F1/TKV5LRZHQsAWoQGFfuuvPJKmaapP//5z8rOzj7ihZIBAACAlohSH6T/Ftmc5r5/gDW4yBbeV2j775/3Fdci/w2HZZimFA7LMMMyQmHJDMsIh6UfPppIsqtYFclZTfZ+gNVsdI1EHf1RQGwwDEMXdE3THm9QZbUhzd7g0c97p/OZBYAm0KBi36pVq7RixQr16NEjWnkAAACAuEEHsLWOpMjmiBTV9J9i248La0dYZPtPoU2h//zXgiJbc+HYu1u2dicyjS2ARkN/FBA7XA6bxvRy663vyrWx1K9vd9fq1OOSrY4FAHGvQcW+U089VTt27KBxBQAAABwBWwud3O2HRTbnf5471LAi23+njQzLZpr/KbKZMsLh/xTZ9hXcRJGt2TFMU4kKqEZOq6MATaJlftM3LfqjgNiSk+rUuZ1TNX9zlRZsqVI7t1M5abQLACCaGlTs+9Of/qTf/OY32rVrl0488UQ5nfW/pE866aRGDQcAAADEMsMwZKiJpvM0zR+sxXa4IptkN80Dimz2/xTUGlxkC++bNlL/mT4SSKypVE1yG6tjAE2Dal/U0R8FxJ4BeUnaVuHXhlK/pud7dG2/VnI5WL8PAKKlQcW+vXv3avPmzbrmmmsi2wzDYEFkAAAA4BC6BvYVzo6uyBaWLWxGpojctwabGVmLjSIbmqvEkkKpPcU+tAzU+qKP/igg9hiGoVHd3SpcWabyupDmbvLqoh5u1u8DgChpULHv2muv1SmnnKIPPviABZEBAACAI9Bn81YpELA6BtCkHCW7ZWvPun1oGegZiT76o4DYlOS06eKebr27qkJrin3qmFGnk3OSrI4FAHGpQcW+bdu2adasWeratWu08gAAAABxxbDZZYpiH1oWwzSVZPpVbSRYHQVAHKA/Cohd7dITdFbHFH21tVrzNnl1nNupNskN6pIGAByBBk2UfO6552rVqlXRygIAAADEH7vd6gSAJRJrPFZHAJqEjVFmUUd/FBDbzmiXrI4ZTgXC0vS1lQqEmmRFawBoURp0G8WFF16oO+64Q6tXr1afPn0OWBD5oosuatRwAAAAQMyj2IcWylW6R0ph3T7EP3uDbqPG0aA/CohthmHoop5u/WlFmfbWhPTZliqN6JZmdSwAiCsNKvb95je/kSRNmjTpgH0siAwAAAAcyLDbxb3LaIkce3fL1r4P6/Yh7jlsjOyLNvqjgNiXmmDXRT3c+su/K/Xdnlp1zHCqV9tEq2MBQNxo0P1n4XD4kA8aVgAAAMBBOJyHPwaIQ4akJNNvdQwg6uwU+6KO/iggPnTOdGlQu2RJ0pwNXlXU8vkFgMbCZBMAAABAFBkJCVZHACyTWF1pdQQg6hzU+gDgiJ3VIUXHuR3yhUzNWFepUJg5MACgMTRoGs+DTZfwQxMnTjymMAAAAEC8MRJcVkcALJNQtkdKbWt1DCCqGNkXffRHAfHDbjM0pme63lhZpt3eoL7cWq3zOqdaHQsAYl6Din3Tp0+v9zwQCKigoEAOh0NdunShcQUAAAD8CCP70JI59+6RrcNJ4qZ9xDM7cyZFHf1RQHxJT7RrVHe3/r62Ukt31qhjhlNdMrlBDgCORYOKfd99990B2zwej66++mpdcskljRYKAAAAiBeM7ENLZkhKCvtVbVD0RvxyMLIv6uiPAuJPjzYu9c9L0ordtZq13qNf98tUmstudSwAiFnHfP+Z2+3WI488ogcffLAx8gAAAABxxXBR7EPLxrp9iHd2an2WoD8KiH3ndU5VdopDtQFTs9Z5FDaZCgAAjlajTDZRWVmpykr+AQcAAAAcgJF9aOESSndbHQGIKkb2WYf+KCC2OWyGxvRyy2kztK0yoMXba6yOBAAxq0HTeD7//PP1npumqT179uidd97RiBEjGjUYAAAAEA9Ysw8tnbOkULaOJ7NuH+IWtb7ooz8KiF+tkx26oFuqPl7v1aJt1Wqf7lSHDNrPANBQDSr2Pfvss/We22w2tW3bVuPHj9d9993XqMEAAACAeMCafWjpWLcP8cxukwyDal+00R8FxLc+2UnaWhHQ6qI6zVrn0XX9M5XsbJQJ6QCgxWhQsa+goCBaOQAAAIC4ZNjtkt0hhYJWRwEsk1hdoerULKtjAI3OQaGvSdAfBcS/4V1TtcsTUFltSLPXe3T5CencTAEADXBExb5LL7308CdyOJSTk6Pzzz9fF1544TEHAwAAAOKF4XLJrKHYh5bLVbJHotiHOGRn4ElU0R8FtBwJdpsu6eXWm9+Va1OZX8t31eq045OtjgUAMeOImqXp6emHfSQlJWnjxo36xS9+oYkTJ0Y7NwAAABAzjCQ6KtCyOUoLZefmfMQhBwv2RRX9UUDLkp3q1NAuqZKkBQVV2uMNWJwIAGLHEY3smzZt2hGfcPbs2brppps0adKkow4FAAAAxBNbSorCpXutjgFYxpCUGPap2mANS8QXO8W+qKI/Cmh5+uXuW79vfYlP0/MrdW2/TCU6GEYNAIfT6N+UgwcP1oABAxr7tAAAAEDMMpJTrI4AWC6xutLqCECjS2DIarNBfxQQHwzD0MhuaUp32VRRF9YnG70yTdPqWADQ7DV6sS8jI0MfffRRY58WAAAAiFk2in2AXHt3Wx0BaHQuin3NBv1RQPxIctp0ca90GZLy9/q0qrDO6kgA0OwxBhoAAACIMkb2AZKjrIh1+xB3XA7+UgNANBzvdursTvva0PM2e7W3OmhxIgBo3ij2AQAAAFFGsQ/Yt25fUthndQyg0dgNycGafQAQNacfn6zOrRIUDEvT8ysVCDGdJwAcCsU+AAAAIMoMm01GUrLVMQDLJVZVWB0BaDSM6gOA6DIMQxf2cCslwaaSmpDmb/ZaHQkAmi2KfQAAAEATMJIp9gEJJXusjgA0mgTmpQWAqEtJsOmiHm5J0veFdVpTzPp9AHAwFPsAAACAJmBjKk+AdfsQV1wOulQAoCl0apWgM9rtu3Huk41eldeyfh8A/BgtUwAAAKAJGMmpVkcALMe6fYgnLirXANBkzuqYouPdTvlDpmbkexQKs34fAPwQxT4AAACgCdhS06yOADQLrNuHeMGafQDQdGyGoTE93UpyGNpTFdQXBVVWRwKAZoViHwAAANAEbOnpVkcAmoWEvbusjgAcM7shOWwU+wCgKbkT7Rr1n/X7lu2q1cZSZgsAgP0o9gEAAABNwEhwyUhMsjoGYDln+V7W7UPMY1QfAFije2uXTj1uX5t69nqPPL6QxYkAoHmg2AcAAAA0EZub0X2AJCWFuBMfsY31+gDAOud0SlVOqkO1QVMz8z0Km6zfBwDNptj3//7f/5NhGLr99tsj2+rq6nTzzTerdevWSk1N1WWXXaaioqJ6r9u+fbtGjRql5ORkZWVl6e6771YwGGzi9AAAAMDh2dIzrI4ANAuJ1eVWRwCOicvRbLpTcJR27dqlK6+8Uq1bt1ZSUpL69Omjb7/9NrLfNE1NnDhRubm5SkpK0tChQ7Vx48Z65ygrK9O4cePkdruVkZGh6667TlVVrCMGRJvDZmhML7cS7IZ2eAJatK3a6kgAYLlm0Tpdvny5Xn31VZ100kn1tt9xxx36+OOP9eGHH+qrr77S7t27demll0b2h0IhjRo1Sn6/X19//bXeeustvfnmm5o4cWJTXwIAAABwWDZ3htURgGYhYe9uqyMAx4SRfbGtvLxcZ555ppxOpz755BOtXbtWTz/9tFq1ahU5ZurUqXr++ef1yiuvaOnSpUpJSdHw4cNVV1cXOWbcuHFas2aN5s+fr9mzZ2vhwoWaMGGCFZcEtDiZSQ6N6JYmSVq0vUZbK/wWJwIAa1le7KuqqtK4ceP0+uuv12tUVVZW6o033tAzzzyjc889V/3799e0adP09ddf65tvvpEkzZs3T2vXrtW7776rvn37asSIEZo8ebJefPFF+f18wQMAAKB5saUzjScg7V+3jym3ELsSWLMvpj3xxBNq166dpk2bptNOO02dOnXSsGHD1KVLF0n7RvU999xzeuCBB3TxxRfrpJNO0ttvv63du3drxowZkqT8/HzNnTtXf/rTnzRw4EANHjxYL7zwgv7yl79o925uaACawglZiTo5O1GSNGudR9X+sMWJAMA6lhf7br75Zo0aNUpDhw6tt33FihUKBAL1tvfs2VPt27fXkiVLJElLlixRnz59lJ2dHTlm+PDh8ng8WrNmzSHf0+fzyePx1HsAAAAA0WYkuGQkJlkdA2gWkkLcoInY5LDtm0IOsWvWrFkaMGCALr/8cmVlZemUU07R66+/HtlfUFCgwsLCen1S6enpGjhwYL0+qYyMDA0YMCByzNChQ2Wz2bR06dKmuxighTu/a5paJ9tV5Q/r4/UemazfB6CFclj55n/5y1+0cuVKLV++/IB9hYWFSkhIUEZGRr3t2dnZKiwsjBzzw0Lf/v379x3K448/rkceeeQY0wMAAAANZ3OnK1RXa3UMwHKJVeWqcudYHQNosBSn5fdN4xht2bJFL7/8su68807df//9Wr58uW677TYlJCRo/PjxkT6lg/U5/bBPKisrq95+h8OhzMzMQ/ZJ+Xw++Xy+yPP9N58HAgEFAoFGu7799p8zGucGmgtD0oVdU/Tuao+2lPv19fYqnZaXaHWso8bnFogt0f7MNuS8lhX7duzYod/+9reaP3++EhOb9gv4vvvu05133hl57vF41K5duybNAAAAgJbJlp6hUPGhb0wDWgrX3l0SxT7EoOQEin2xLhwOa8CAAXrsscckSaeccor+/e9/65VXXtH48eOj9r6Huvl83rx5Sk5Ojtr7zp8/P2rnBpqLtglZ2pPSRV9trdb21cuUHKqyOtIx4XMLxJZofWZramqO+FjLin0rVqxQcXGx+vXrF9kWCoW0cOFC/fGPf9Snn34qv9+vioqKeqP7ioqKlJOz7x+EOTk5WrZsWb3zFhUVRfYdisvlksvlasSrAQAAAI6MzZ1hdQSgWXBUlMhhmAqaTIeI2MLIvtiXm5ur3r1719vWq1cv/f3vf5f03z6loqIi5ebmRo4pKipS3759I8cUFxfXO0cwGFRZWdkh+6QOdfP5sGHD5Ha7j/m6fiwQCGj+/Pk6//zz5XQ6G/38QHNimqY+3lit9aUBlbU9WaNPSlOiI/a+r/ncArEl2p/ZhixBZ1mx77zzztPq1avrbbvmmmvUs2dP/f73v1e7du3kdDr1+eef67LLLpMkrV+/Xtu3b9egQYMkSYMGDdKUKVNUXFwcmTph/vz5crvdBzTaAAAAgObA1ipTMgyJ9UQAJYZ8qrLF7lRbaHmcNslpp0Ad684880ytX7++3rYNGzaoQ4cOkqROnTopJydHn3/+eaS45/F4tHTpUt14442S9vVJVVRUaMWKFerfv78kacGCBQqHwxo4cOBB3/dQN587nc6odupH+/xAczGqh0NFK8tUURfW/II6XdLLLcOIze9sPrdAbInWZ7Yh57Ss2JeWlqYTTzyx3raUlBS1bt06sv26667TnXfeqczMTLndbt16660aNGiQTj/9dEnSsGHD1Lt3b/3qV7/S1KlTVVhYqAceeEA333wzI/cAAADQLBkOh2zpGQpXlFsdBbDcvnX7cg9/INBMMIVnfLjjjjt0xhln6LHHHtMVV1yhZcuW6bXXXtNrr70mSTIMQ7fffrseffRRdevWTZ06ddKDDz6ovLw8jRkzRtK+kYAXXHCBrr/+er3yyisKBAK65ZZbNHbsWOXl5Vl4dUDLleiwaUzPdL29qlzrSnz6bk+d+uUlWR0LAJpEs26lPvvssxo9erQuu+wynXXWWcrJydFHH30U2W+32zV79mzZ7XYNGjRIV155pa666ipNmjTJwtQAAADAT7O1bmt1BKBZcBXvsjoC0CBM4RkfTj31VE2fPl0ffPCBTjzxRE2ePFnPPfecxo0bFznmnnvu0a233qoJEybo1FNPVVVVlebOnavExP+ORn7vvffUs2dPnXfeeRo5cqQGDx4cKRgCsEae26lzOqVKkuZv9qq4KmhxIgBoGpaN7DuYL7/8st7zxMREvfjii3rxxRcP+ZoOHTpozpw5UU4GAAAANB57ZhsFN2+wOgZgOUdlKev2IaYkU+yLG6NHj9bo0aMPud8wDE2aNOknbyjPzMzU+++/H414AI7BacclaWu5X5vL/ZqeX6lr+mUqgSmYAcQ5WqkAAABAE7O1aiXZ7FbHAJqFpJDP6gjAEUmwG6zXBwAxwDAMje7hVmqCTaW1Ic3b5LU6EgBEHcU+AAAAoIkZNvu+gh8AuapYvxKxIdlJoQ8AYkVKgk0X93TLkPSvojr9u6jO6kgAEFXNahpPAAB+Sv5e7vzHofVq67I6AtAg9sw2CpeWWB0DsJyreKfkzrU6BnBYTOEJALGlQ0aCzmyfrEXbazR3k1d5bocyk+gOBxCfaKkCAAAAFrC1bmt1BKBZcFSWyWGYVscADislgS4UAIg1gzukqH26U/6Qqen5HgXDtDkAxCdaqgAAAIAFbOkZkoM7iwGJdfvQ/CXYDTlsTOMJALHGZhi6uKdbSQ5DRVVBLdhSZXUkAIgKin0AAACABQzDkL1Va6tjAM2Cy1tmdQTgJ6WwXh8AxKw0l10X9nBLkr7dXasNJdxkBCD+UOwDAAAALGLPyrE6AtAsuIp3WR0B+EnJTOEJADGta2uXTjsuSZI0e4NHlXUhixMBQOOitQoAAABYhGIfsI/Dw7p9aN6SnXSfAECsO6dTqnLTHKoLmpq5zqOwSdsDQPygtQoAAABYxHC5ZGuVaXUMoFlICtZZHQE4qBQn6/UBQDyw2wyN6Zkul93QTk9AC7dWWx0JABoNxT4AAADAQvbsXKsjAM1CYhXr9qF5cifarY4AAGgkrZLsGtEtTZL09Y4aFZT7LU4EAI2DYh8AAABgIYp9wD4JrNuHZsiQlMZ6fQAQV3pnJapvTqIkadY6j6r8YYsTAcCxo8UKAAAAWMiWlCzDnW51DMByDk856/ah2UlJsMnOFJ4AEHfO75KmNsl2VQfC+ni9Rybr9wGIcRT7AAAAAIs5GN0HSGLdPjQ/bhfdJgAQj/5/e/cdHlWdtnH8PtNn0hNSCAFCh9A7EQsWxN5Y2ypFQRRBUezrSlMWu4iAXVBXRV1dbKwiKKh0EBApESlCgCQQ0ieZlJn3D15mzYIKQnJSvp/ryiWnzJn7YA45Oc/8fo/daujydhGyWaQdOaVatttrdiQAOCHctQIAAAAmYypP4BBXAX37UHMYksIo9gFAnRUbYtO5LQ7171u8s0jp+WUmJwKAP4+7VgAAAMBkltAwGSGhZscATOfMSjc7AhAU6rTIYjCFJwDUZZ0TXEqJdSogae7mPBWX0b8PQO1EsQ8AAACoARjdB0jWglzZ6duHGoIpPAGg7jMMQ+e3ClOUy6p8n1+f/VRA/z4AtRJ3rgAAAEANYEtMMjsCUCO46NuHGsBiSKEOHpkAQH3gtFl0WbtwWQzpp2yf1uwrNjsSABw37lwBAACAGsASGiZLRJTZMQDTuQqyzY5w0r307OO66ty+6tGsgU5NaazRg6/Ujp9/qrTPe2+8oiGX9VfP5rFKiXMpPy/3D4+7etm3uvX6K3RGx2ZKiXNpwbyPj9jntRnP6NSUxjo1pbFmzZxaadv6NSv1l3NSVV5efiKnVyeFOZjCEwDqk4Zhdp3V7NC0+gu3FSqzkP59AGoXin0AAABADWFLamx2BMB0zqw9Zkc46VYv/VbX3niz3vnPN3rlvc9UXl6m4VddKG9RUXCfkuJinXrWuRpxx73HfFyv16s27TvqoUenHnV72sYNmv74JD354ht64oXXNe3RCfpp04+SpPLyck285zaNf+I52Wy2Ezq/uogpPAGg/unZyK2W0Q5VBKR/b85XaQX9+wDUHtzRAwAAADWEtWEjactGqaLC7CiAaQ737SsL1J1RVS+9+0ml5X9Me1mnpjTWph++V4/U0yRJg2++TZK0csniYz7u6WcP0OlnD/jN7dt/TlPrlI7qc9qZkqTWKR3/f10HvTbjafVIPVUdu/Y43tOp86yGFMIUngBQ7xiGoYvahOvVNQd1sLhCX2wt1MVtw82OBQDHhLtXAAAAoIYwbHZZ4xuaHQMwnbu8bvfKKcjPlyRFREZX6fu0btdBO7dt1d70Xdqz+xf9sm2rWrVtr107tunf77yhMQ9MqNL3r63CnBYZTOEJAPWSx27Rpe3CZUjakFWiDZl1+54EQN1BsQ8AAACoQWyNmpgdATCds+Cg2RGqjN/v16MP3a1uvVLVql37Kn2vFq3b6o6/TdLwKy/UTVddpDsefFgtWrfVhLtH665x/9B3X3+pS07vpivO6q3Vy76t0iy1SbjTanYEAICJmkQ4dFrTEEnS51sLle2lty2Amo9pPAEAAIAaxBIdI8PtUaDYa3YUwDTOzN1SZJLZMarEw/eN0dYtG/XPT76qlve7ZuhNumboTcHluXPeVEhomLr06K0LT+mkd+cvUebedN01YrC+XL1FDqezWnLVVHaL5LEzqg8A6rtTmnj0S16pfskt078352to1yjZLPx8AFBzMbIPAAAAqEEMw5CtUWOzYwCmshbmy24EzI5x0j1y/x1a/OU8zf7wCyUkVn8xMyf7gGY+OVkPTnlaP3y/SsktWim5eUv1PrWfysvLtHPb1mrPVNNEua1M4QkAkMUwdEmbcHnshrKKyrVwe6HZkQDgd1HsAwAAAGoYK8U+QO6yutMjJxAI6JH779CCeR/rtQ+/UFLTZqbkePShezT4ltuVkJgkf0WFysrKgtsqystVUVFhSq6awmJIkS6m8AQAHBLmtOriNuGSpDV7i7XlQInJiQDgtzGNJwAAAFDDWNweWWJi5c/eb3YUwDTOgmwpymN2jJPi4fvG6LMP39X0N95XSEio9mdmSJLCwiPkcrslSfszM3QgK1O7dmyTJP20+UeFhISpYVJjRUZFS5JuGHiezrngUl03bKQkqaiwMLi/JO3ZtVObN6xXRFSUEpMq9/9cumiBdm7/WVOmvypJ6tC1u3b8nKZvFn6hjD27ZbFa1axl66r9i6jhIlxWWZmiDQDwKy2ineqT5NHydK/m/VSghFA7HwwBUCNR7AMAAABqIHvT5vJR7EM95sxMl6LqxijXObNfkiQNuezcSusnT3tJl18zWJL07usva+aTk4PbBl9yzhH77N65XTnZB4L7bFy/RkMvHxBcfmzcvZKky66+Xv947pXg+pLiYj3ywJ166qV/ymI5NMFPQmKSHvzH03rw9hFyOB2a8twrwcJjfRXt5uEtAOBIZySHaFdeqfYWlOujzXm6vnMUHw4BUONQ7AMAAABqIEtsnIyQUAWK6A+C+sladKhvX1mg9j9M25T1x9N+jb73IY2+96Hf3WfBmp8qLffqe8YxHdvldmvesg1HrP/L9TfqL9ff+Ievrw9CHRY5rLX/ew0AcPJZLYYuaxehV9cc1J6Ccn3zS5HObBZqdiwAqISefQAAAEANZBiG7MnNzY4BmKou9e1DzcaoPgDA74l0WXVB6zBJ0rLdXm0/6DM5EQBURrEPAAAAqKGsiY0lu8PsGIBpXAXZZkdAPeC0GQpx8HgEAPD72sW61LXhoSmvP07LV2FphcmJAOC/uJsFAAAAaijDapWtSbLZMQDTODJ3mx0B9QCj+gAAx+qc5qGKC7HJWxbQx1vy5Q8EzI4EAJIo9gEAAAA1mr1JM8nCbTvqJ2tRgewGD9FQdawWKcLJv7EAgGNjtxq6rF247BZpZ26Zlu32mh0JACRR7AMAAABqNMPplDUxyewYgGncZTxEQ9WJclllGIbZMQAAtUgDj00DWh7q3/fNziLtzis1OREAUOwDAAAAajx7cguzIwCmceUfNDsC6ihDUhRTeAIA/oSO8S51iHMqIGnu5nwVl/nNjgSgnqPYBwAAANRwltAwWRrEmR0DMIUji759qBrhLotsFkb1AQCOn2EYGtAyTNFuqwpK/fr0p3wF6N8HwEQU+wAAAIBawN6spdkRAFNYiwrkoG8fqkA0o/oAACfAabPosnbhshrS1uxSrd5bbHYkAPUYxT4AAACgFrDGNJAlKsbsGIApXPTtw0kWYjfksvFIBABwYhJC7Tqreagk6avthcooKDM5EYD6ijtbAAAAoJawt2xjdgTAFK78bLMjoI6JDbGZHQEAUEf0SHSrdYxDFQHp35vz5Sunfx+A6kexDwAAAKglGN134p5491867fa7FH/F1Wp6zWBdPekf+ik9vdI+GQdzNOyJZ9Tsr0MUe9lVOmX0nZr73dLfPe7kf76jkPMvrfTV9aZbK+1z30uvKunK69R60I2a89WiSts+/HaJ/jL+kZNyjnWRI5O+fTh5wp0Wue08DgEAnByGYejC1uEKd1qUU1Khz7cW0L8PQLXjo2wAAABALWJv1Ua+lb9feMJv+27Djxpx8QXq3rqVyisqNGH2m7rkwQla8+J0hbhckqSbnpyqvKIivT/+QcWEh+u9Rd9o0JQn9O2zT6lLy+a/eex2TZvo039MCi7brP/tBzZv+Uq9t+gbfTx5gn7eu08jn3lO53TvpgYR4corKtLE1/9Z6bWozOotlMMIqDRgmB0FtZwhRvUBAE4+t92iS9uG65/rc7Vxv0/JUSXqnOA2OxaAeoSPsgEAAAC1iDW6gSwxDcyOUWt99MgEDep/tlKaNlGn5s304tgx2p21X2u3bgvus2LzFt1yyYXq0aa1mjVM0H3XXqXIkBCt+/nn3z22zWpVQnRU8KtBRHhw25bd6Tq9Ywd1a91KV/U7XWEet37JyJQk/f3V1zX8wvPUOC62ak66jnDTtw8nQaTbKoeVojEA4ORrHOHQ6ckhkqT5PxfogLfc5EQA6hOKfQAAAEAtY2/dzuwIdUa+91ABKSosNLiud7u2+uCb73SwoEB+v1/vL/pGJaWlOq1Tx9891rY9e9XiuqFqf8MI3fDYU9qdtT+4rWPzZH2/9WflFBRq7dafVeIrVfPEhlr64yat+3mbbr3koqo5wTrEmXfA7Aio5SyG1MBj/eMdAQD4k05p7FFypF1lfunfm/JUVsF0ngCqB3NXAAAAALWMNSJK1viGqsjcZ3aUWs3v9+veF19Rako7tU9uGlz/5t/u0eApT6jxVdfLZrXK43TqnYceUIvEhr95rB5tWuvFu8aoVVIjZRw8qClvzVH/ex7QquenKczjUf/u3XTNWf10+pi75HI69dJdYxTicmrMjBf00tjb9fJnn+uFjz9VTES4nrt9lFKaNqmOv4JaxZG5W4pp+sc7Ar8h2m2VzcKoPgBA1TEMQ5e0Ddcraw5qv7dCC7YX6PxW4X/8QgA4QRT7AAAAgFrI3qqtKrIypACfFv6z7pzxojbt3KUFT06ptP7hN95WXlGRPv3HJMVEhOvTZSs0eMoTmv/EP9ShWfJRjzWgZ/fgnzs2S1bPNq3VbshN+vDbJRoyoL8k6cHrr9WD118b3O8fb83RmV06yWaz6bE572nlzGn6z8pVuunJqVry3NMn/4RrOWtxkRyGX6UBJqjB8bNapBhG9QEAqkGow6pL20bonQ25WruvRMmRDrWLdZkdC0Adx29JAAAAQC1kCQ2TNTHJ7Bi11tiZL+o/K1fpP489okax/+2BuH3vPr3wyWd6/s7bdWbXzurUvJn+dt016tqqhV76dN4xHz8yNFQtGyVq296jj75M252uOV8t0rjB1+nbHzbo1A7tFRsZoYGnn6p1P29TgZf+dEfjLi02OwJqqViPTRaDUX0AgOrRLMqh1MYeSdK8nwqUW1xhciIAdR3FPgAAAKCWcrRqJ1kZqXI8AoGAxs58UR8vXa55jz6i5IT4Stu9Pp8kHVEUsFos8vuPfRRlYXGxduzLUEJ01FEz3D5tph696UaFut2q8PtVVl4uScH/Vvj9x3Ve9YUzn759OH4Oq6FIF48/AADV6/SmIWoUbpOvIqC5W/JUcRz3kgBwvLjbBQAAAGopw+WSvUVrs2PUKnfOeFFzvlqsWffepVC3WxkHc5RxMEfF/1/ka9M4SS0SG+r252ZqddpP2r53n579YK6+WrteF6X2Dh7ngvsf0gsffxZcfuDlWfr2hx/1S2amlm/arGseniKrxaIrzzj9iAyzP/9SDSLCdUGfXpKk1JR2Wrx+g1ZuTtP0f3+sdk0aKzI0tIr/JmonR8ZusyOgFooNscpgVB8AoJpZLYYuaxshl83Q3oJyLdpZZHYkAHUYPfsAAACAWsyW3ELl6bsU8PLw4Fi8/Nl/JEnn3fdgpfUvjL1dg/qfLbvNpg8njdO4WW/oLxMeUVFxiZonNtRLd43Reb16BPffsS9D2fn5weW9Bw5o6GNP6mB+gRpEROiU9u309TOPKzYyotL7ZObk6vE57+urpx8NruvRprVuv+JSDRz/sGIjI/TSXWOq4tTrBGsJfftwfNw2Q+FORkADAMwR4bLqwtbh+mBTnlake5UcaVeLaKfZsQDUQRT7AAAAgFrMsFjkaNdRvjXLzY5SKxT956M/3Kdlo0S9/ff7f3efza+/XGn59QfuOab3j4+KPOK1kvTAddfogeuuOaZj1HfuUq9K7Yx8xLGJC+GxBwDAXG0aONU90a01e4v1cVq+hneLVhgfRAFwkvFxSAAAAKCWs8bGyRob/8c7AnWAK4++fTg2oQ6LPA4eewAAzHd281DFh9hUXBbQR1vy5Q/Qvw/AycVdLwAAAFAH2Nt1kCzc3qPus2fStw9/zJAUF8KoCQBAzWCzGLqsXbjsFkO78sq0ZJfX7EgA6hieBgAAAAB1gMUTIltyC7NjAFXOWuKV0/CbHQM1XAOPVU4bjzwAADVHjMem81odmor8u1+K9EtuqcmJANQl3PkCAAAAdYS9RSsZLrfZMYAq5yrl0/D4bU6boRgPo/oAADVPx3i3Osa7FJD00ZZ8ecv4ABOAk4NiHwAAAFBHGFab7G1SzI4BVDlX3n6zI6AGSwyzyTAMs2MAAHBUA1qGKtptVWGpX5+m5StA/z4AJwHFPgAAAKAOsTVsJEtsvNkxgCpF3z78lhiPVS6m7wQA1GAOq0WXtwuX1ZB+PliqVXuKzY4EoA7gDhgAAACoYxztO0s2u9kxgCpjLSmmbx+O4LAaimX6TgBALRAfatc5LQ717/tqR6H2FZTJHwhoV16Z8uwx2pV3aBkAjpXN7AAAAAAATi6LyyVHu/Yq3bDO7ChAlXGVFslnDzM7BmoQpu8EANQm3Rq6tTO3TGkHfHr3x1xZDEOFpX4ptLXe3VSoMIdX/VuGqm0Dl9lRAdQCjOwDAAAA6iBboyZM54k6zZV7wOwIqEGi3Va57TziAADUHoZh6MLWYfLYDHnLAocKfb9SUOrXh5vyteVAiUkJAdQm3AkDAAAAdRTTeaIus2fRtw+H2C1SbAjTdwIAah+H1ZD+YFD6gm2FTOkJ4A9R7AMAAADqqEPTeXYwOwZQJejbh8MahtllYfpOAEAttDuvTN6y3y/k5fv82p1XVk2JANRWFPsAAACAOszWqDHTeaLOcvmKzI4Ak0W6LApx8GgDAFA7/e/UnSe6H4D6iztiAAAAoI5ztu8s2ZnOE3WPK2+/2RFgIptFiguxmR0DAIA/LfQYP7DitDGCHcDvo9gHAAAA1HGGyyVHW6bzRN3jyNhldgSYqGGoTVYLDz8BALVX4wi7wo6h4PfR5jwt2lGowtKKakgFoDai2AcAAADUA7ZGjWVNTDI7BnBSWUp99O2rpyJcFoU6rWbHAADghFgMQ/1bhv7uPiF2i3wV0tLdXs1Yka15P+XrgLe8mhICqC2Y7wIAAACoJxwpnVSSl6tAUaHZUYCTxu0rlM8RbnYMVCOn1VBCKI8zAAB1Q9sGLl2RIn35c6EKftWbL9xp0TktQtU6xqmfsn1asdurPQXlWpdRonUZJWoZ7VCfJI8aR9hlGIx0B+o77o4BAACAesKw2eTs0kMly76V/EwBhLrBmXtAiqPYV19YDKlRuE0WHmoCAOqQtg1cah3j1I7sYi1Z+b369uqmZjHu4M+7tg1catvApd15pVqR7tVP2aX6+eChr4ZhNvVO8qhtAyc/H4F6jGIfAAAAUI9YwsLlSOmg0h/Xmx0FOCkcmbukuOZmx0A1SQi1yWmjIwkAoO6xGIaaRNj1Y1m2mkTYj1q4axzhUOMIh7K95Vq5x6sNmSXaV1CuuZvzFemyqGcjjzonuOSw8rMSqG+46gEAAIB6xpbUlP59qDPo21d/RLosinDRpw8AgBiPTee3CteoXg10ahOP3DZDuSV+fbmtUNNXZGvRjkIVljKTB1CfMLIPAAAAqIfo34e6hL59dZ/TZiiePn0AAFQS4rDo9ORQpTYO0Q+ZxVqZXqyckgot3e3VinSvOsS71DvJowYefoYCdR1XOQAAAFAPBfv3Lf9WquBTv6jdnLn76dtXh1kMKSn86NOZAQAAyW411D3Ro64N3dqaXarl6UXak1+u9RklWp9RopbRDvVO8qhJhF0GP0+BOolpPAEAAIB6yhIWLke7jmbHAE6YI2O32RFQhRLDbHJYeTCJk2fChAkyDKPSV9u2bYPbS0pKNGrUKMXExCg0NFQDBw5UZmZmpWPs2rVLF154oTwej+Li4nTPPfeovLy8uk8FACqxGIbaNHBqSJdoDe4cpdYxTknSzwdL9dYPuZq9NkebskrkDwRMTgrgZGNkHwAAAFCP2ZKaqCI3RxXpv5gdBfjTLGU+OY0K+QL0c6trYj1WhTn5/4qTr3379lqwYEFw2Wb77yOyO++8U5999pnef/99RUREaPTo0briiiu0ZMkSSVJFRYUuvPBCJSQkaOnSpdq3b58GDx4su92uf/zjH9V+LgBwNEkRdv0lIkLZ3nKt3FOsDZnF2ldYrrlb8hWxw6JeSR51TnDJYWU8EFAXUOwDAAAA6jlHSkf5vEXyHzxgdhTgT3OXFMnnZCrPuiTMYVGMh0IfqobNZlNCQsIR6/Py8vTqq6/q7bff1llnnSVJmjVrltq1a6fly5erT58+mj9/vjZt2qQFCxYoPj5eXbp00cMPP6z77rtPEyZMkMPhqO7TAYDfFOOx6fxWYTq9aYi+31es1Xu9yvP59eW2Qn37S5G6NXSrR6JboXy4BqjVKPYBAAAA9ZxhscjZtYdKln2rgLfI7DjAn+LM3S/FU+yrK5xWQ4nhNvoKocps3bpViYmJcrlcSk1N1ZQpU9SkSROtWbNGZWVlOuecc4L7tm3bVk2aNNGyZcvUp08fLVu2TB07dlR8fHxwnwEDBmjkyJHauHGjunbtetT39Pl88vl8weX8/HxJUllZmcrKyk76OR4+ZlUcG0DVqMrr1mFIfRId6h5v18b9pVq1r0S5JX4t3e3VinSvUho41CPRpQZ80AY4ZlX9s/Z4jkuxDwAAAIAMu0PO7r1VsvxbiYeCqIUcmbuk+BZmx8BJYDEOTT1mqSWFvkWLFunMM89UTk6OIiMjf3O/5ORk3XHHHbrjjjskSRkZGRo0aJCWLl0qu92u3NzcaskLqXfv3po9e7batGmjffv2aeLEiTrttNP0448/KiMjQw6H44j/l/Hx8crIyJB06P/drwt9h7cf3vZbpkyZookTJx6xfv78+fJ4PCd4Vr/tyy+/rLJjA6ga1XHdJkoKs0fpgCtRxbZwbdhfqg37SxVamqMGvr3ylOerdvwkBsxXVdes1+s95n0p9gEAAACQJFlCQuXs0kO+1culQMDsOMBxsZSVymVUqIS+fbVeo3C7HNba83jxlFNO0b59+xQRESFJmj17tu64444jinerVq1SSEhIcPmZZ57Rvn37tG7duuBrUT3OP//84J87deqk3r17q2nTpnrvvffkdrur7H0feOABjR07Nricn5+vxo0b69xzz1V4+MkfmVxWVqYvv/xS/fv3l91uP+nHB3DymXXd7iko16q9Jdp6sEyFjigVOqIUH2JVz0SX2sTUng/gANWtqq/Zw7MAHAuKfQAAAACCrDGxcqR0UunG9WZHAY6bq6RQJU6KJrVZQqhNoQ6L2TGOi8PhOGrvt/8VGxtbaXnbtm3q3r27WrVqVVXRcIwiIyPVunVr/fzzz+rfv79KS0uVm5tbaXRfZmZm8P9zQkKCVq5cWekYmZmZwW2/xel0yul0HrHebrdX6UP9qj4+gJOvuq/b5Gi7kqPdOlhcrpXpxfohs1iZRRX6dGuRvt1lUc8kj7okuOSw1q6f0UB1qapr9niOydUJAAAAoBJb46ayNW1udgzguDlzs8yOgBMQ67Eqyl01IzP79eun0aNHa/To0YqIiFCDBg300EMPKfD/o5hzcnI0ePBgRUVFyePx6Pzzz9fWrVuDr//ll1908cUXKyoqSiEhIWrfvr3mzZsn6dA0noZhKDc3V4sWLdINN9ygvLw8GYYhwzA0YcIESYem8Zw6dWrwzx988IHeeOMNGYahoUOHVsl549gUFhZq27Ztatiwobp37y673a6FCxcGt6elpWnXrl1KTU2VJKWmpmrDhg3KyvrvvzlffvmlwsPDlZKSUu35AeBkiXbbdF6rMI3q1UCnNQ2Rx24oz+fXgm2Fmr4iW4t2FKrQV2F2TABHwcg+AAAAAEewt20vv7dI/v2ZZkcBjpkjc7cUzyip2ijabVWDkKp9RPH6669r2LBhWrlypVavXq0RI0aoSZMmuummmzR06FBt3bpVH3/8scLDw3Xffffpggsu0KZNm2S32zVq1CiVlpbqm2++UUhIiDZt2qTQ0NAj3uOUU07R1KlTNW7cOKWlpUnSUfdbtWqVBg8erPDwcD377LNVOnUkjnT33Xfr4osvVtOmTbV3716NHz9eVqtV1157rSIiIjRs2DCNHTtW0dHRCg8P12233abU1FT16dNHknTuuecqJSVFgwYN0uOPP66MjAz9/e9/16hRo446cg8AapsQh0WnNQ1RnySPNmSWaOUerw4WV2jpbq9WpHvVPs6l3kkexVbxz24Ax46rEQAAAMARDMOQs3N3+VYtlT8v1+w4wDGxlJXJpQqViL59tUmE06K4kKr/f9a4cWM988wzMgxDbdq00YYNG/TMM8+oX79++vjjj7VkyRKdcsopkqS33npLjRs31ty5c3XllVdq165dGjhwoDp27ChJat786KOfHQ6HIiIiZBjG707nGBsbK6fTKbfbfUxTgOLkSk9P17XXXqvs7GzFxsbq1FNP1fLly4NTrT7zzDOyWCwaOHCgfD6fBgwYoJkzZwZfb7Va9emnn2rkyJFKTU1VSEiIhgwZokmTJpl1SgBQJexWQ90S3era0KWt2aVanu5Ven6Zfsgs0Q+ZJWoR7VDvJI+aRthl0NcPMBXFPgAAAABHZdhscnbvo5KVSxQoLDA7DnBM3D769tUmoQ6LGobZquUBYZ8+fSq9T2pqqp566ilt2rRJNptNvXv3Dm6LiYlRmzZttHnzZknS7bffrpEjR2r+/Pk655xzNHDgQHXq1KnKM6NqzJkz53e3u1wuzZgxQzNmzPjNfZo2bRqcyhUA6jrDMNS6gVOtGziVnl+mFelepR3wadvBUm07WKqEUJt6J3nULtYpC0U/wBT07AMAAADwmwyHQ64eqTI8HrOjAMfEkUPfvtrCYzfUKLx6Cn0navjw4dq+fbsGDRqkDRs2qEePHnruuefMjgUAQLVLCrdrYEqEbukZrW4N3bJZpIzCcn20JV/Pr8zWynSvfOV+s2MC9Q7FPgAAAAC/y3C55Oxxigyny+wowB9yZO02OwKOgdNmKCncXq2f/l+xYkWl5eXLl6tVq1ZKSUlReXl5pe3Z2dlKS0tTSkpKcF3jxo11yy236MMPP9Rdd92ll19++ajv43A4VFFRUTUnAQBADRHttum8VmEa3buBTm8aIo/dUJ7PrwXbCzVjZba+3lGoAh8/D4HqQrEPAAAAwB+yeDxy9kyVHA6zowC/63DfPtRcDquhJhF2WS3VO6Jv165dGjt2rNLS0vTOO+/oueee05gxY9SqVStdeumluummm/Tdd99p/fr1uv7669WoUSNdeumlkqQ77rhDX3zxhXbs2KHvv/9eX3/9tdq1a3fU90lOTlZhYaEWLlyoAwcOyOv1VudpAgBQrTx2i05tGqJRvRro/FZhinZbVVIe0LLdXs1Yma1P0/K1v6jc7JhAnUexDwAAAMAxsYSGydUjVbLR+hs1m9tXaHYE/AabRWoSYZetmgt9kjR48GAVFxerV69eGjVqlMaMGaMRI0ZIkmbNmqXu3bvroosuUmpqqgKBgObNmye73S5Jqqio0KhRo9SuXTudd955at26tWbOnHnU9znllFN0yy236Oqrr1ZsbKwef/zxajtHAADMYrca6trQrZt7ROsvKRFKCrfLH5B+yCzRy2sO6t0NudqZU6pAIGB2VKBO4rd0AAAAAMfMEh4hZ/fe8q1eLjFNHWooZ06mlBBhdgz8D6txqNBnt5rTo89ut2vq1Kl6/vnnj9gWFRWlN9544zdf+3v9+fr163fEg8vnn3/+iPfZuXNnpeW5c+f+cWgAAGoZwzDUuoFTrRs4tSe/TMvTvUo74NO2nFJtyylVQqhNvZM8atvAWe2j/IG6jJF9AAAAAI6LNSpGzq49JYNfJ1Az2TPTxaOjmsWQ1DjCLqeNfzcAAKgvGoXbNTAlQiN7Rqt7ols2i5RRWK6PtuTr+VXZWpnula/cb3ZMoE4w9S57ypQp6tmzp8LCwhQXF6fLLrtMaWlplfYpKSnRqFGjFBMTo9DQUA0cOFCZmZmV9tm1a5cuvPBCeTwexcXF6Z577lF5OfMAAwAAAFXF2iBOzm69JIvV7CjAESzl9O2rSQ4X+tx2Cn0AANRHUW6bBrQM0+jeDXR60xB57IbyfX4t2F6o6Suy9fWOQhX4uHcDToSpd9qLFy/WqFGjtHz5cn355ZcqKyvTueeeq6KiouA+d955pz755BO9//77Wrx4sfbu3asrrrgiuL2iokIXXnihSktLtXTpUr3++uuaPXu2xo0bZ8YpAQAAAPWGNTZOzh59JCvdAVDzuEoKzI4AHZq6s2mkXSEOcwt9ixYt0tSpU03NAABAfeexW3Rq0xCN7t1A57cKU7TbKl9FQMt2ezVjZbY+TctXVhGDeIA/w9Tfyj///PNKy7Nnz1ZcXJzWrFmj008/XXl5eXr11Vf19ttv66yzzpJ0qGl2u3bttHz5cvXp00fz58/Xpk2btGDBAsXHx6tLly56+OGHdd9992nChAlyOBxmnBoAAABQL1ijY+TsmSrfmuVSWZnZcYAgZ06W1DDS7Bj1ms1yqEcfU3cCAIBfs1kMdW3oVpcEl7YeLNWK3V7tzi/TD5kl+iGzRM2jHOqd5FFypF2GweTswLGoUXfceXl5kqTo6GhJ0po1a1RWVqZzzjknuE/btm3VpEkTLVu2TJK0bNkydezYUfHx8cF9BgwYoPz8fG3cuLEa0wMAAAD1kzUySq5efSWH0+woQBB9+8zlsBpKjnRQ6AMAAL/JMAy1jnFqUJcoDekSpbYNnDIkbc8p1TsbcvXa2hxtzCpRhT9gdlSgxqsx8+34/X7dcccd6tu3rzp06CBJysjIkMPhUGRkZKV94+PjlZGREdzn14W+w9sPbzsan88nn88XXM7Pzz9ZpwEAAADUS5awcLl695Vv1TIFSorNjgPIUnGob1+x6CtZ3Vw2Q40j7LJZKLcCAIBj0yjcritSIpRTXK6Ve4r1Q0axMgvL9dGWfH3ttKhXI486J7j4IBHwG2rMlTFq1Cj9+OOPmjNnTpW/15QpUxQRERH8aty4cZW/JwAAAFDXWUJC5ezdV4YnxOwogCT69pnBYzfUhEIfAAD4k6LcNg1oGaZRvRvo9KYh8tgN5fv8WrC9UNNXZOur7YUq8FWYHROocWpEsW/06NH69NNP9fXXXyspKSm4PiEhQaWlpcrNza20f2ZmphISEoL7ZGZmHrH98LajeeCBB5SXlxf82r1790k8GwAAAKD+srg9cvXuKyM0zOwogJw5mX+8E06aMIdFjSPsslLoAwAAJ8hjt+jUpiEa3buBLmgVpmi3Vb6KgJanezVjZbY+SctXVlG52TGBGsPUYl8gENDo0aP173//W1999ZWaNWtWaXv37t1lt9u1cOHC4Lq0tDTt2rVLqampkqTU1FRt2LBBWVlZwX2+/PJLhYeHKyUl5ajv63Q6FR4eXukLAAAAwMlhOF1y9eorS1S02VFQzzno21dtIl0WNQq3yWLwNw4AAE4em8VQl4Zu3dwjWle2j1DjCLv8AWlDZoleWXNQczbkakdOqQIB+vqhfjO1Z9+oUaP09ttv66OPPlJYWFiwx15ERITcbrciIiI0bNgwjR07VtHR0QoPD9dtt92m1NRU9enTR5J07rnnKiUlRYMGDdLjjz+ujIwM/f3vf9eoUaPkdDrNPD0AAACg3jIcDjl7nqLSH9epYm+62XFQTxkV5XKpXMU1p119nRTjsSouhL9jAABQdQzDUKsYp1rFOLU3v0zL071KO+DT9pxSbc8pVXyITb2TPGoX62SWAdRLpt6NP//885Kkfv36VVo/a9YsDR06VJL0zDPPyGKxaODAgfL5fBowYIBmzpwZ3NdqterTTz/VyJEjlZqaqpCQEA0ZMkSTJk2qrtMAAAAAcBSGxSJnp24qCwlV2dYtZsdBPeUqKVCxK8rsGHVWfIhV0R4KfQAAoPokhtt1RUqEcoortGqPV+szipVZVK6P0/K1aKdFPRt51CXBJaetRnQxA6qFqXfkxzK01uVyacaMGZoxY8Zv7tO0aVPNmzfvZEYDAAAAcJLYW7SW4QlR6Ya1kt9vdhzUM86DWVIixb6qkBhmU4TLanYMAABQT0W5rTq3ZZhObRqitfuKtXpPsfJ9fi3cXqjvfilS14Zu9WzkVpiT+xXUfXz8DgAAAECVszVsJMPtke/7lVKpz+w4qEccWbtlJLYRXVxOHqshNQq3K8TBp+UBAID5PHaL+jYJUe8kj37MLNGKdK+yiyu0PN2rlXu8ah/rUu8kj+JCKYeg7uK7GwAAAEC1sEZGyZV6mnxrVihQWGB2HNQTRkUFfftOIrfNUKNwu+xWeuEAAICaxWYx1KWhW50TXPr5YKlWpHu1K69MG7JKtCGrRM2jHOqd5FFypF2Gwb0M6hZ+2wEAAABQbSxuj1x9TpVv3Rr5D2SZHQf1hKu4QMVupvI8UdFuq+JCrDwcAwAANZphGGoV41SrGKf2FpRpRbpXW/b7tD2nVNtzShUXYlOfJI/axTpltXBfg7qBOTcAAAAAVCvDZpeze2/ZmrU0OwrqCWdOptkRajWLITUKsyk+1EahDwAA1CqJYXZd3i5CI3vGqEeiW3aLlFVUro/T8jVzZbZWpHvlK6evOGo/in0AAAAAqp1hGHK0SZGja0/JZjc7Duo4R1a6KFH9OQ6roeRIu8JdVrOjAAAA/GmRbqvObRmm0b0b6IzkEIXYLSoo9Wvh9kJNX5GthdsLle+rMDsm8KcxjScAAAAA09jiG8oSFi7f2lUKFOSbHQd1FH37/pwwp0WJYTZZGM0HAADqCLfdor5NQtQ7yaMfM0u0Yo9X2d4KrUj3atUer1JiXeqd5FZ8KB9IRO3CbzoAAAAATGXxhMjV5zSVbt6givRdZsdBHUXfvuMTH2JVtIdHBgAAoG6yWQx1aehW5wSXth0s1fJ0r3bllenHrBL9mFWiZlEO9UnyKDnSzjTmqBW4cwcAAABgOsNqlbNDF5VHN1Dpxh+kinKzI6GOceVkSBT7/pDNIjUKt8tjp+sHAACo+wzDUMsYp1rGOLWvoEzL073ast+nHTml2pFTqrgQm3onuZUS65LVQtEPNRd37wAAAABqDFtiklynnC4jPMLsKKhj7Jl76Nv3Bzx2Q82iHBT6AABAvdQwzK7L20VoZM8Y9Wzklt1iKKuoXJ+kFWjmymwt3+1VSbnf7JjAUXEHDwAAAKBGsYSEytXnVNmaNjc7CuoQw18htxgx+lti3FY1ibDLxifWAQBAPRfptqp/izCN7h2jfskhCnFYVFDq11c7CjV9RbYWbi9UfkmF2TGBSpjGEwAAAECNY1iscrTrIGt8gko3rFOg2Gt2JNQBruJ8ed3RZseoURxWQ4lhNrkZzQcAAFCJ227RKU1C1CvJo41ZJVqe7lW2t0Ir0r1atcerlFineid5FB9qNzsqQLEPAAAAQM1ljW4gV99+KkvbpPLdO82Og1rOeTBDakSx77AGHqsaeKwyDEbzAQAA/BabxVDnBLc6xbu0LadUK3Z79UtemX7M8unHLJ+aRdrVO8mjZlEO7qtgGop9AAAAAGo0w2aTo30nWRMaHhrlV1JsdiTUUvbMPTIapShgdhCTuWyGGobZ5LIxmg8AAOBYGYahltFOtYx2al9BmVake7V5v087csu0IzdPcSE29U5yKyXWJStTo6OacWcPAAAAoFawxsTKdeqZsiY1NTsKaikj4JdbZWbHMI0hKTbEquRIO4U+AACAE9AwzK7L2kVoZK8Y9Wzklt1iKKuoXJ+kFWjmymwt312kknK/2TFRj3B3DwAAAOCkGTp0qC677LIqO75hs8nZobOcPfrIcLmr7H1Qd7mKC8yOYAq3zVCzKLsaeGxMLwUAAHCSRLqs6t8iTKN7x6hfcohCHBYVlPr11Y4iTV+RrYXbC5RfUmF2TNQDFPsAAACAemzChAnq0qWL2TGOm7VBnFyn9pOtMaP8cHyc2RlmR6hWFkOKD7WpaaRdTkbzAQAAVAm33aJTmoRoVK8YXdg6TA08VpVWBLQivVgzV2Xroy15yiysvzNMoOrRsw8AAADAHyorK5Pdbjc7RiWGzS5H+86yJTVV6eYN8ufmmB0JtYA9a4+MpPrRty/EbqhhmF12KyP5AAAAqoPNYqhzglud4l3anlOq5ele/ZJbpo1ZPm3M8ik50q4+SR41i3Iw2wJOKj7WBwAAANRi/fr10+233657771X0dHRSkhI0IQJE4Lbc3NzNXz4cMXGxio8PFxnnXWW1q9fL0maPXu2Jk6cqPXr18swDBmGodmzZ0s61Hz++eef1yWXXKKQkBBNnjxZFRUVGjZsmJo1aya32602bdro2WefNeGsK7NERMrZ+1Q5OnSRHE6z46CGqw99+yyG1DDMpiaRDgp9AAAAJjAMQy2inbquU5Ru6BqllFinDEk7c8s058c8vfL9QW3ILFaFvz58BA3VgZF9AAAAQC33+uuva+zYsVqxYoWWLVumoUOHqm/fvurfv7+uvPJKud1u/ec//1FERIRefPFFnX322frpp5909dVX68cff9Tnn3+uBQsWSJIiIiKCx50wYYIeffRRTZ06VTabTX6/X0lJSXr//fcVExOjpUuXasSIEWrYsKGuuuoqs05f0qFfpm1JTWSNb6iyn9NUvmuHFOAXZxydy5svryfG7BhVItJlUWyITTYLRT4AAICaoGGYXZe1i9CZzSq0co9X6/aVaH9RhT5JK9DXO4rUs5FbXRu65WLKdZwAin0AAABALdepUyeNHz9ektSqVStNnz5dCxculNvt1sqVK5WVlSWn89CItyeffFJz587Vv/71L40YMUKhoaGy2WxKSEg44rh//etfdcMNN1RaN3HixOCfmzVrpmXLlum9994zvdh3mGG3y9Gug2xJTQ5N7Xkw2+xIqIGc2RlSHSv2hTksiguxysFDIgAAgBopwmVV/xZhOrVJiNZlFGvVnmIVlvr19Y4iLdnlVZcEl3o28ijCZTU7Kmohin0AAABALdepU6dKyw0bNlRWVpbWr1+vwsJCxcRULmoUFxdr27Ztf3jcHj16HLFuxowZeu2117Rr1y4VFxertLRUXbp0OaH8VcESFi5Xr74q37dHZWkbFSgpMTsSahD7/r2yNG4vv9lBTgKP3VBciE1uO0U+AACA2sBttyi1cYh6NvJoU1aJlqd7dcBboZV7DhUAU+Kc6p3kUUJozeqZjpqNYh8AAABQy9ntlX8JNAxDfr9fhYWFatiwoRYtWnTEayIjI//wuCEhIZWW58yZo7vvvltPPfWUUlNTFRYWpieeeEIrVqw4kfhVytawkaxxCSrfvVNl27dKpaVmR0INYAT8cqlMXtXeByhOq6G4EKtCnXzyGwAAoDayWQx1SnCrY7xL23NKtTzdq19yy7Qxy6eNWT4lR9rVO8mj5lEOGQZTtOP3UewDAAAA6qhu3bopIyNDNptNycnJR93H4XCooqLimI63ZMkSnXLKKbr11luD645lhKDZDKtV9uQWsiU1Vfkv21W2Y5tUXmZ2LJistvbts1mk2BCbIpwWHvoAAADUAYZhqEW0Uy2incooKNOKdK827fdpZ26ZdubmKdZjVe8kj9rHuWSlLzN+A/N8AAAAAHXUOeeco9TUVF122WWaP3++du7cqaVLl+rBBx/U6tWrJUnJycnasWOH1q1bpwMHDsjn8/3m8Vq1aqXVq1friy++0E8//aSHHnpIq1atqq7TOWGGzSZ7i9Zyn3G2bM1bSVZGRNVnrux9Zkc4LlZDiguxqkW0Q5EuK4U+AACAOighzK5L20Xo1l4x6tXILYfV0H5vhT79qUAzVmZr2e4ilZTXhcnocbJR7AMAAADqKMMwNG/ePJ1++um64YYb1Lp1a11zzTX65ZdfFB8fL0kaOHCgzjvvPJ155pmKjY3VO++885vHu/nmm3XFFVfo6quvVu/evZWdnV1plF9tYdgdcrRuJ/fpZ8vWtLlk4dei+si2f2+t+IXYkBTjPlTki/HYZKHIBwAAUOdFuKw6p0WYRveO0ZnNQhTqsKiw1K+vdxRp+opsLdhWoLySY5uhBfWDEQgEAmaHMFt+fr4iIiKUl5en8PDwk378f+7ZctKPibrj+kZtzY4gSfJ+/rHZEVCDec67xOwIkqTN+397tAnQLtZZZceu6nsFAObyFxerbNtPqtizWwrwKdn6ZH/3s2ps3z5DUoTLogYem+xWCnxAXVTV95hlZWWaN2+eLrjggiP6+wKombhu8Vsq/AFtzCrRinSv9nsPFfkMSSmxTvVO8ighjO8XM1T1NXs89wr07AMAAABQr1ncbjk7dFagZRuV7dqh8t07pTJ6+tUHLm+evJ4GZseoxGaRolxWRbqtstGTBQAAAJKsFkOdEtzqGO/S9pxSrUj3amdumTbu92njfp+aRtrVJ8mj5lEOpnuvpyj2AQAAAIAkw+WSo3U72Zu3Uvme3SrfuU2BYq/ZsVCFXAcypCY1o9jnshmKdlsV7rTwgAYAAABHZRiGWkQ71SLaqYzCMq1I92pTlk+/5Jbpl9w8xXqs6p3kUUqciw+O1TMU+wAAAADgVwybTfamzWRrkqyKzH0q37FN/rwcs2OhCtgO7JWlSQeZOXlrmNOiaLdVHntt6CAIAACAmiIh1K5L20aoX3KFVu3xal1GifZ7K/TpTwVatLNIPRu51bWhWy4b95n1AcU+AAAAADgKwzBkS0iULSFRFTkHVb7zZ1VkZpgdCyeREQjIHShTkVG9PU4shhTpsirabaUfHwAAAE5IhMuqc1qE6dSmIVq3r1gr9xSrsNSvr3cUackurzonuNSrkUcRLqvZUVGFKPYBAAAAwB+wRkXLGtVLfq9X5Xt2qWLPbgVKis2OhZPA5c1TUUj1TOXpsBqKclsV6bLIwlSdAAAAOIlcNov6NA5Rz0YebdpfouXpXu0vqtCqPcVavadY7WKd6pPkUUJY9X7QDdWDYh8AAAAAHCOLxyNHq7YKtGwj/4H9hwp/mRlSwMyJIHEinNn7pCou9oXYD/XjC3HQjw8AAABVy2ox1DHerQ5xLu3IKdXydK925pZp036fNu33qWmkXX2SPGoe5eDetA6h2AcAAAAAx8kwDFlj42SNjVOgtFTle9NVnv6LAoUFZkfDcbLt3ytLk44nvW+fy2Yo3GlRuJOpOgEAAFD9DMNQ82inmkc7lVlYphXpXm3a79MvuWX6JTdPDTxW9U7yqH2cSzYL96u1HcU+AAAAADgBhsMhe3Jz2ZObqyIvRxXpu1S+b49UXm52NBwDQ5I7UKoiw3HCx3L+qsDnoMAHAACAGiI+1K5L2kaoX3KFVu31au2+Eh3wVuiznwq0eGeReiS61bWhW267xeyo+JMo9gEAAADASWKNiJI1Ikr2dh3lzz6g8sy9h6b5LCs1Oxp+x6G+fbF/6rUO6+ECn0VOGw9HAAAAUHOFu6w6u3mY+jYJ0bp9xVq1p1gFpX4t2lmkJbu86tLQpZ6NPIp0Wc2OiuNEsQ8AAAAATjLDYvnvNJ/tA/IfzFZF5j5VZO5TwFdidjz8D0f2Puk4in12y6EHJeFOi1wU+AAAAFDLuGwW9Wkcop6NPNq0v0Qr0ouVVVSuVXuKtXpPsdrFOtU7yaOGYXazo+IYUewDAAAAgCpkGIasMQ1kjWmgQLsO8uflqCLj/wt/xV6z40GSff8+WZp2kj/w2/vYLFK481CBj+mNAAAAUBdYLYY6xrvVIc6lHTmlWpHu1Y7cMm3a79Om/T41jbCrd2OPWkQ5ZBhMU1+TUewDAAAAgGpiGIaskdGyRkZLbdvLX5CviuwDqsjeL//BbKmCPn9mMCS5/ZX79lkMyWO3KMRuKMTBFJ0AAACouwzDUPNop5pHO5VZWKYV6V5t2u/TL3ll+iUvTw08VvVO8qh9nEs2C0W/mohiHwAAAACYxBIWLktYuOzJzRXw++XPy5X/4P8X/3JypIDf7Ij1hrsoV/7IeIU4LApxWOS2GXx6GQAAAPVOfKhdl7SNUL/kCq3aW6y1+4p1wFuhz34q0KKdReqZ6FbXhm5mu6hhKPYBAAAAQA1gWCyyRkXLGhUte4vWClSUy59zUBXZB+TPPiB/QZ4U+J15JnF8LBZZIqJkiY6RNSpa7shoxdr4FRkAAACQDvWoPrt5qPo28WjdvhKt2uNVQalfi3YWackur7o0dKlnI48iXVazo0IU+wAAAACgRjKsNlkbxMnaIE6SFKiokD8/T/68HPlzc+XPy6Hn37EyDBmhYbKER/z3KyJShoUHEwAAAMDvcdks6tPYo56N3Nq836fl6V5lFZVr1Z5ird5TrLaxTvVJ8qhhmN3sqPUaxT4AAAAAqAUMqzU48u+wQFnpoQLgr74C3qL6PQLQapUlNLxSYc8IC6OwBwAAAJwAq8VQh3iX2sc5tTO3TMvTvdqRU6rN+33avN+nJhF29UnyqEW0g+nwTUCxDwAAAABqKcPukDUmVtaY2OC6gN+vQLFXgaIi+b2Flf4bKCk2Me1JZBgyXG4ZnhBZPB4ZnhAZbo8soWEyQkJ5uAAAAABUEcMw1CzKoWZRDmUWlmlFerE27S/Rrrwy7crLU4zHqj5JHrWPc8lm4b68ulDsAwAAAIA6xLBYZISESiGhsiq+0rZARYUC3iL5vUUKeIsU8PkUKP3/L59PKvUpUFpq7shAw5AcDhl2hwyHQ4bDKcPtluH+VWHP5ZZhsZiXEQAAAIDiQ+26pK1d/ZqFaPWeYq3dV6xsb4U++6lAi3YWqUeiW90auuW2c+9e1Sj2AQAAAEA9YVitMsLCZQkL/819AoGAVFYWLAAGSn0KlJVJfr/kr1CgoiL4Z1X4FfAfWg6uN4xDhTiL5VDhzmI5tGxYJIvx//+1yLDZZNgdhwp7weKeU4adXh8AAABAbRLutOqs5qHq28SjdRklWpnuVUGpX4t3FmnpLq86J7jUq5FHkW6m1q8qFPsAAAAAAEHG4ZF1DocUGmZ2HAAAAAC1hNNmUe8kj3okurV5v0/L073KKirX6r3FWrO3WG1jneqT5FHDMD7gd7JR7AMAAAAAAAAAAMBJYbUY6hDvUvs4p3bmlmlFulfbc0q1eb9Pm/f71CTCrt5JHrWMdtBv+ySh2AcAAAAAAAAAAICTyjAMNYtyqFmUQ1mF5VqR7tXG/SXalVemXXl5ivFY1buRRx3iXbJZKPqdCIp9AAAAAAAAAAAAqDJxoTZd3DZcZzQL0eo9xVq7r1jZ3grN21qgxTuL1KORW90auuW2W8yOWitR7AMAAAAAAAAAAECVC3dadVbzUPVt4tG6jBKt2uNVvs+vxTuLtHRXkTonuNWrkUeRbqvZUWsVin0AAAAAAAAAAACoNk6bRb2TPOqR6NaWAz4t3+1VZlG5Vu8t1pq9xWob61TvJI8Sw+xmR60VKPYBAAAAAAAAAACg2lkthtrHuZQS69TO3DKtSPdqe06pNu/3afN+nxpH2NUnyaOW0Q4ZBn39fguTnwIAAAAAAKDeevTRR2UYhu64447gupKSEo0aNUoxMTEKDQ3VwIEDlZmZWel1u3bt0oUXXiiPx6O4uDjdc889Ki8vr+b0AADUDYZhqFmUQ9d0jNTw7tHqGO+SxZB255Xp/Y15emn1Qa3bV6xyf8DsqDUSxT4AAAAAAADUS6tWrdKLL76oTp06VVp/55136pNPPtH777+vxYsXa+/evbriiiuC2ysqKnThhReqtLRUS5cu1euvv67Zs2dr3Lhx1X0KAADUOXEhNl3cJlyjesWoT5JHTquh7OIKzdtaoOkrDui7X4rkLfObHbNGodgHAAAAAACAeqewsFDXXXedXn75ZUVFRQXX5+Xl6dVXX9XTTz+ts846S927d9esWbO0dOlSLV++XJI0f/58bdq0Sf/85z/VpUsXnX/++Xr44Yc1Y8YMlZaWmnVKAADUKWFOq85qHqrRvWN0TvNQhTst8pYF9M0vRZqx4oC++LlAOcUVZsesESj2AQAAAAAAoN4ZNWqULrzwQp1zzjmV1q9Zs0ZlZWWV1rdt21ZNmjTRsmXLJEnLli1Tx44dFR8fH9xnwIABys/P18aNG6vnBAAAqCecNot6JXk0smeMLm0brvhQm8r80pq9xXphVbY+3JSnvfllZsc0lc3sAAAAAAAAAEB1mjNnjr7//nutWrXqiG0ZGRlyOByKjIystD4+Pl4ZGRnBfX5d6Du8/fC2o/H5fPL5fMHl/Px8SVJZWZnKyk7+A8rDx6yKYwOoGly3wB9rHWVVq8hQ7cov16q9JdqRW64tB3zacsCnpDCbeiY61SLKLsMwqjxLVV+zx3Ncin0AAAAAAACoN3bv3q0xY8boyy+/lMvlqrb3nTJliiZOnHjE+vnz58vj8VTZ+3755ZdVdmwAVYPrFjg2HkktLG5luxKV52ig9IJypaeVy1FRrJiSvYos3S+LAlWeo6quWa/Xe8z7UuwDAAAAAABAvbFmzRplZWWpW7duwXUVFRX65ptvNH36dH3xxRcqLS1Vbm5updF9mZmZSkhIkCQlJCRo5cqVlY6bmZkZ3HY0DzzwgMaOHRtczs/PV+PGjXXuuecqPDz8ZJ1eUFlZmb788kv1799fdrv9pB8fwMnHdQv8eYWlfq3ZV6L1maXyya19IS2UF9lS3RKc6hLvlNt+8rvaVfU1e3gWgGNBsQ8AAAAAAAD1xtlnn60NGzZUWnfDDTeobdu2uu+++9S4cWPZ7XYtXLhQAwcOlCSlpaVp165dSk1NlSSlpqZq8uTJysrKUlxcnKRDn+oPDw9XSkrKUd/X6XTK6XQesd5ut1fpQ/2qPj6Ak4/rFjh+UXbpnJZOnZbs1/qMEq3c41W+z6/vdpdo+Z4SdU5wq1cjt6LcJ78sVlXX7PEck2IfAAAAAAAA6o2wsDB16NCh0rqQkBDFxMQE1w8bNkxjx45VdHS0wsPDddtttyk1NVV9+vSRJJ177rlKSUnRoEGD9PjjjysjI0N///vfNWrUqKMW9AAAQPVw2izqleRRj0Zubd7v04p0rzIKy7Vmb7G+31usNg2c6p3kUaPwulVQp9gHAAAAAAAA/Mozzzwji8WigQMHyufzacCAAZo5c2Zwu9Vq1aeffqqRI0cqNTVVISEhGjJkiCZNmmRiagAAcJjFMNQ+zqWUWKd+ySvTit1ebcsp1ZYDPm054FNSuF19GnvUKtohwzDMjnvCKPYBAAAAAACgXlu0aFGlZZfLpRkzZmjGjBm/+ZqmTZtq3rx5VZwMAACcCMMwlBzpUHKkQ1lF5VqZ7tWPWSVKzy/TvzbmKdptVe8kjzrEuWS31t6iH8U+AAAAAAAAAAAA1GlxITZd1CZcZySHaPX/T+t5sLhC/9laoMU7C9Uj0aNuiW557Bazox43in0AAAAAAAAAAACoF8KcVp3ZLFSnNPZofWaJVqV7lefz65tfirR0d5E6xbvVO8mtKHftKaHVnqQAAAAAAAAAAADASeC0WdSrkUc9Et3avN+nFeleZRSW6/t9xfp+X7HaNHCqT5JHjcLtZkf9QxT7AAAAAAAAAAAAUC9ZDEPt41xKiXVqV16Zlqd7te1gqdIO+JR2wKekcLv6JHnUKsYhwzjU188fCGhXXpny7DHalVemZjE2WQzzev5R7AMAAAAAAAAAAEC9ZhiGmkY61DTSof1F5VqZ7tWPWSVKzy/TvzblKdptVa9GHjlthr7aXqiCUr8U2lrvbipUmMOr/i1D1baBy5TsFPsAAAAAAAAAAACA/xcbYtOFbcJ1RnKIVu89NK3nweIKff5zwVH3Lyj168NN+boiRaYU/CzV/o4AAAAAAAAAAABADRfqtKpfs1CN7h2jc5qH6I8m6lywrVD+QKBasv0axT4AAAAAAAAAAADgNzisFsWH2vVHZbx8n1+788qqJdOvUewDAAAAAAAAAAAAfkdhqf+k7ncyUewDAAAAAAAAAAAAfkeo49hKase638lEsQ8AAAAAAAAAAAD4HY0j7Ar7g0JeuNOixhH2akr0XxT7AAAAAAAAAAAAgN9hMQz1bxn6u/uc0yJUFsOopkT/RbEPAAAAAAAAAAAA+ANtG7h0RUr4ESP8wp0WXZESrrYNXKbkspnyrgAAAAAAAAAAAEAt07aBS61jnNqRXawlK79X317d1CzGbcqIvsMY2QcAAAAAAAAAAAAcI4thqEmEXRFl2WoSYTe10CdR7AMAAAAAAAAAAABqLYp9AAAAAAAAAAAAQC1FsQ8AAAAAAAAAAACopSj2AQAAAAAAAAAAALUUxT4AAAAAAAAAAACglqLYBwAAAAAAAAAAANRSFPsAAAAAAAAAAACAWopiHwAAAAAAAAAAAFBLUewDAAAAAAAAAAAAaimKfQAAAAAAAAAAAEAtVWeKfTNmzFBycrJcLpd69+6tlStXmh0JAAAAAAAAAAAAqFJ1otj37rvvauzYsRo/fry+//57de7cWQMGDFBWVpbZ0QAAAAAAAAAAAIAqUyeKfU8//bRuuukm3XDDDUpJSdELL7wgj8ej1157zexoAAAAAAAAAAAAQJWxmR3gRJWWlmrNmjV64IEHgussFovOOeccLVu27Kiv8fl88vl8weW8vDxJUn5+fpVkLC4orJLjom6oqu+74+Ut8podATVYeQ35Pi0s8P3xTqi38p3Oqjv2/18DgUCgyt4DAAAA9cvhe8uqei5QVlYmr9er/Px82e32KnkPACcX1y1Qu1T1NXs8z6NqfbHvwIEDqqioUHx8fKX18fHx2rJly1FfM2XKFE2cOPGI9Y0bN66SjMDvGWF2AADAMSsoKFBERITZMQAAAFAHFBQUSOJ5FAAA+H3H8jyq1hf7/owHHnhAY8eODS77/X4dPHhQMTExMgzDxGR1X35+vho3bqzdu3crPDzc7DjAUfF9itqA79PqFQgEVFBQoMTERLOjAAAAoI5ITEzU7t27FRYWViXPo/idAah9uG6B2qWqr9njeR5V64t9DRo0kNVqVWZmZqX1mZmZSkhIOOprnE6nnP8z1VdkZGRVRcRRhIeH8wMLNR7fp6gN+D6tPozoAwAAwMlksViUlJRU5e/D7wxA7cN1C9QuVXnNHuvzKEuVvHs1cjgc6t69uxYuXBhc5/f7tXDhQqWmppqYDAAAAAAAAAAAAKhatX5knySNHTtWQ4YMUY8ePdSrVy9NnTpVRUVFuuGGG8yOBgAAAAAAAAAAAFSZOlHsu/rqq7V//36NGzdOGRkZ6tKliz7//HPFx8ebHQ3/w+l0avz48UdMowrUJHyfojbg+xQAAADA7+F3BqD24boFapeadM0agUAgYHYIAAAAAAAAAAAAAMev1vfsAwAAAAAAAAAAAOorin0AAAAAAAAAAABALUWxDwAAAAAAAAAAAKilKPahxisqKjI7AgDUerToBQAAAHA8JkyYoC5duhyxLj4+XoZhaO7cuabkAvD7hg4dqssuu8zsGEC9tGjRIhmGodzc3N/dLzk5WVOnTg0uZ2RkqH///goJCVFkZOSfem+KfajRLrroIn355ZdmxwCAWuvdd9+VJBmGYXISAAAAADXV0Yp3d999txYuXBhc3rx5syZOnKgXX3xR+/bt0/nnn1/NKYG66WiFdQC10ymnnKJ9+/YpIiJCkjR79uyjFu9WrVqlESNGBJefeeYZ7du3T+vWrdNPP/30p97b9qdeBVSDW2+9VRs3btSFF14YXFdRUSGr1WpiKuCQrKwsxcXFmR0D+F39+vXTwYMHdcUVV8hms1HwAwAAAHDMQkNDFRoaGlzetm2bJOnSSy/ldwvABGVlZbLb7WbHAPA7HA6HEhIS/nC/2NjYSsvbtm1T9+7d1apVqz/93ozsQ41UWFiotLQ03XLLLbLb7Zo4caL2799PoQ81wttvv62rrrpK69atMzsK8Js+/PBDbdu2TStWrJDdbv/TnwoCAAAAUHX69eun22+/Xffee6+io6OVkJCgCRMmBLfn5uZq+PDhio2NVXh4uM466yytX7++0jEeeeQRxcXFKSwsTMOHD9f9999faZTQqlWr1L9/fzVo0EARERE644wz9P333we3JycnS5Iuv/xyGYYRXP71aKMJEybo4osvliRZLBaKfcCvnMh1PHv2bE2cOFHr16+XYRgyDEOzZ8+WdGjE7fPPP69LLrlEISEhmjx5sioqKjRs2DA1a9ZMbrdbbdq00bPPPmvCWQO1V79+/TR69GiNHj1aERERatCggR566KFgC5ycnBwNHjxYUVFR8ng8Ov/887V169bg63/55RddfPHFioqKUkhIiNq3b6958+ZJqjyN56JFi3TDDTcoLy8veH0f/rfh19N4Jicn64MPPtAbb7whwzA0dOjQP3VeFPtQI4WGhur000/XAw88oCFDhmjixInKysoyOxYg6dAIU0maNGnSEb9kATVFfHy8QkJC9J///Ef33nuv7rvvPuXn55sdCwAAAMD/eP311xUSEqIVK1bo8ccf16RJk4ItTa688kplZWXpP//5j9asWaNu3brp7LPP1sGDByVJb731liZPnqzHHntMa9asUZMmTfT8889XOn5BQYGGDBmi7777TsuXL1erVq10wQUXqKCgQNKhYqAkzZo1S/v27Qsu/9rdd9+tWbNmSZL27dunffv2VdnfB1Ab/dnr+Oqrr9Zdd92l9u3bB6+tq6++OnjcCRMm6PLLL9eGDRt04403yu/3KykpSe+//742bdqkcePG6W9/+5vee+89s04dqJVef/112Ww2rVy5Us8++6yefvppvfLKK5IO9b1cvXq1Pv74Yy1btkyBQEAXXHCBysrKJEmjRo2Sz+fTN998ow0bNuixxx6rNBL+sFNOOUVTp05VeHh48Pq+++67j9hv1apVOu+883TVVVdp3759f7qAzzSeqFHmzp0bbCA7fvx4vfnmm3rrrbc0a9YstW/fXuXl5bLZ+LaFuQYNGiS3260XXnhB48aN06RJk9S5c2ezYwGS/jutR4sWLdS3b1/de++92rVrlzZs2KDw8HD5/X5ZLHzWBwAAAKgpOnXqpPHjx0uSWrVqpenTp2vhwoVyu91auXKlsrKy5HQ6JUlPPvmk5s6dq3/9618aMWKEnnvuOQ0bNkw33HCDJGncuHGaP3++CgsLg8c/66yzKr3fSy+9pMjISC1evFgXXXRRcCqxyMjI35x6LDQ0NNhz6FimJwPqmxO5jkNDQ2Wz2Y56bf31r38NXt+HTZw4MfjnZs2aadmyZXrvvfd01VVXVeEZAnVL48aN9cwzz8gwDLVp00YbNmzQM888o379+unjjz/WkiVLdMopp0g69MGaxo0ba+7cubryyiu1a9cuDRw4UB07dpQkNW/e/Kjv4XA4FBERIcMwfvdnZ2xsrJxOp9xu9wn9jOVpH2qMZ599VrNmzQqOmvrmm2/kdDp13nnnacSIEfr2229ls9mC2wEzHB7O/Ze//EUjRoxQUVGRxo0bxwg/1AhDhw7V119/rUAgoISEBJWVlWn37t3q0qWLNmzYIOnQlDt+v9/kpAAAAAAO69SpU6Xlhg0bKisrS+vXr1dhYaFiYmKC/fNCQ0O1Y8eOYP+8tLQ09erVq9Lr/3c5MzNTN910k1q1aqWIiAiFh4ersLBQu3btqtoTA+qRE7mOf0+PHj2OWDdjxgx1795dsbGxCg0N1UsvvcT1DBynPn36VJqSOjU1VVu3btWmTZtks9nUu3fv4LaYmBi1adNGmzdvliTdfvvteuSRR9S3b1+NHz9eP/zwQ7XnPxqGSKHGuOKKKzR69GhZrVZt2LBBp59+upYsWaKKigrdeeedOuecc7Rw4UKdeuqpjEyBaX79Q+Cqq66S3+/XK6+8wgg/mK6iokJhYWE688wzg9+nvXr10mWXXab3339f06dPV3FxsQYNGhQs+PHvKAAAAGA+u91eadkwDPn9fhUWFqphw4ZatGjREa85PMruWAwZMkTZ2dl69tln1bRpUzmdTqWmpqq0tPQEkwM4rKqu45CQkErLc+bM0d13362nnnpKqampCgsL0xNPPKEVK1acSHwAx2H48OEaMGCAPvvsM82fP19TpkzRU089pdtuu83UXBT7UCP4/X41btxYkvTFF1/o2muv1eTJkzVy5EhJ0sMPPyzDMHT22Wfrq6++Ut++fVVRUSGr1WpmbNQjgUBAhmHo4MGD8vv9cjgcCg8P1zXXXKNAIKBXX32Vgh9M4/f7ZbVa9dxzz0mSnn/+eUVHR2vEiBFyOBxq3bq1JkyYoNdee02SKPgBAAAAtUC3bt2UkZEhm82m5OTko+7Tpk0brVq1SoMHDw6u+9+ee0uWLNHMmTN1wQUXSJJ2796tAwcOVNrHbrczkxJQBY7lOnY4HMd8/R2eWvDWW28NrjuWEYIAKvvfAvnhnrYpKSkqLy/XihUrgtN4ZmdnKy0tTSkpKcH9GzdurFtuuUW33HKLHnjgAb388stHLfYdz/V9onjCB9P5fL7gw+b09HT17NlT1113nWbMmBFsKt20aVNNmjRJ1157rfr376+vvvqKQh+qzeFC3yeffKK//OUv6tq1q26++Wa9+OKLkqRrr71Ww4YNU1FRkSZNmqQ1a9aYnBj1yeHvz197//33NWnSJM2dO1fFxcXq0KGDJk2apJiYGM2aNUv//Oc/JYlCHwAAAFCDnXPOOUpNTdVll12m+fPna+fOnVq6dKkefPBBrV69WpJ022236dVXX9Xrr7+urVu36pFHHtEPP/xQ6XeEVq1a6c0339TmzZu1YsUKXXfddXK73ZXeKzk5WQsXLlRGRoZycnKq9TyBuuxYruPk5GTt2LFD69at04EDB+Tz+X7zeK1atdLq1av1xRdf6KefftJDDz10RIEfwB/btWuXxo4dq7S0NL3zzjt67rnnNGbMGLVq1UqXXnqpbrrpJn333Xdav369rr/+ejVq1EiXXnqpJOmOO+7QF198oR07duj777/X119/rXbt2h31fZKTk1VYWKiFCxfqwIED8nq9VXZOPOWDqd5///1gQW/MmDEaMGCAoqOjdfvtt6t///569tlnNXPmTEn/Lfidc845mjRpkqT/9k8DqpJhGPr00091zTXXaMCAAXrxxRcVEhKihx9+WE888YSkQwW/m266Sb/88ouefvrp370xA06mDRs2BH+Rf+6557Rq1Sp9+eWXatmypaZMmaKPP/5YxcXFSklJ0aRJk9SgQQM99thj+uKLL0xODgAAAOD3GIahefPm6fTTT9cNN9yg1q1b65prrtEvv/yi+Ph4SdJ1112nBx54QHfffbe6deumHTt2aOjQoXK5XMHjvPrqq8rJyVG3bt00aNAg3X777YqLi6v0Xk899ZS+/PJLNW7cWF27dq3W8wTqsmO5jgcOHKjzzjtPZ555pmJjY/XOO+/85vFuvvlmXXHFFbr66qvVu3dvZWdnVxrlB+DYDB48WMXFxerVq5dGjRqlMWPGaMSIEZKkWbNmqXv37rrooouUmpqqQCCgefPmBafrraio0KhRo9SuXTudd955at26dbCG8b9OOeUU3XLLLbr66qsVGxurxx9/vMrOyQhQLYGJJk6cqIkTJ+rMM8/U2rVrtXjxYnXs2FGStHXrVs2cOVP/+c9/NGbMmOCUnpmZmYqNjWVECqrNL7/8oiuuuELDhw/XyJEjlZeXp3bt2ikxMVE5OTm65ZZbdM8990iSPvjgA/Xs2VNNmjQxOTXqg7S0NHXp0kUPPPCAvF6vpk+frlWrVqldu3YqLy/XZZddpj179uj+++/XJZdcIrfbrfXr1+u9997TpEmTGCENAAAA1EH9+/dXQkKC3nzzTbOjAABQ4/Tr109dunTR1KlTzY5yUtGzD6YaP368vvjiCy1evFh33313sNAnHRqWPmrUKBmGoenTp6uwsFD33HNP8FMv9JpCVTo8NeL+/fuVmJio8847T+eff7727t2rM888U5dffrnuu+8+3XDDDXr00UdVVFSkCRMmaODAgWZHRz2Qk5OjqKgoxcfH67nnntNtt90mh8OhLVu2KCkpScXFxXK73Zo7d64uu+wyPfbYYzIMQxdddJE6d+4c7CtJ71MAAACgdvN6vXrhhRc0YMAAWa1WvfPOO1qwYIG+/PJLs6MBAIBqRKUEpikvL5cktW3bVjfffLOeeOIJPfvssyosLJR0qNjSsmVL3XrrrerZs6fWrFlTadpOCn2oSoZh6MMPP9SQIUN04MABjRs3TsnJyZo2bZo6deqkyZMnq0mTJurWrZuio6O1cOFC7d+/n6llUeVGjBihQYMGSZIiIyMVHh6u0tJSBQIBzZo1S5LkdrtVUlIim82muXPnKikpSWPGjNGyZcsqHYtCHwAAAFC7/XqKwO7du+uTTz7RBx98oHPOOcfsaAAAoBoxsg/V6tej8Wy2Q99+r732miQpLi5OY8eOlSQNHz5cISEhkiSHw6EXXnhBDodDhmEER1wBVeHw91d6eroefvhhjRw5Ug0bNgxu37hxo0JCQhQZGSlJ8vl8uuWWW3TjjTcqKirKpNSoT/7+978Hvye9Xq8uv/xy/fDDD/ruu+90//33y+fz6ZFHHpHL5ZLf75fNZtO///1vPfTQQ+rXr5+54QEAAACcVG63WwsWLDA7BgAAtcaiRYvMjlAlKPah2vy60Ddv3jxlZ2fL4XDoggsuUFhYmMaPHy/DMHT33XertLRU559/vh544AHl5eXpm2++OeIYQFUwDEPz58/Xd999pw4dOujqq6+WdOh7zzAM9erVSx9//LEefPBBFRQU6O2339aqVaso9KHaHO4H+dprr+nee+/Vxo0b1b59e8XGxqqkpEQTJ06U1WrVxIkTZbFYdP/99+vKK6/UP/7xD0lM3QkAAAAAAADUNRT7UC0CgUCwSHf//fdr9uzZatGihdatW6eLLrpIo0eP1mmnnaZx48bJarVqypQpmjVrllwul1asWBE8DoU+nEy/Lh6XlZXJbrdLOjR675FHHlGDBg20f/9+RUREBPe7/PLLlZWVpU8//VQhISFasGCBmjVrZto5oP743w87nHrqqUpOTtYZZ5yhxYsXKz4+Xn/9619lGIb+/ve/68cff1R+fr62bdumyZMnB19HoQ8AAAAAAACoW4wADaZQjZ566ilNnTpVH374oXr27KmXXnpJt9xyiy666CLdfffdOv300yVJy5cvV2lpqfr27Sur1ary8vLgtJ/AyZSeni6Px6Po6Gh98sknys3N1aBBg/Tyyy/r5ptv1t///nfdddddioiICL6mpKREhmHI5/MpPDzcxPSoL35d6Fu+fLkSExPVpEkTbdu2Tddff73279+vJUuWKD4+Xrm5ufrqq6/06quvKiEhQS+88ILsdjsj+gAAAAAAAIA6imIfqk12drYefPBB9enTR0OHDtUHH3yg4cOHa/To0XrttdfUtm3bo/aU4gE1qkp+fr6uvvpqlZeX669//auGDRumd955Jzh151NPPaV77rlHjz/+uG6++WaFhYVJYjpZVK9ff7/97W9/06effqrx48fr/PPPl8fj0datWzV48GBlZWVpyZIlSkhIOOIYfGACAAAAAAAAqLt4Wo0q8791ZLfbrauuukqXXHKJ1q1bp3vvvVcTJkzQww8/rClTpmjJkiWaOHGi1q5dW+l1FPpQVUJCQnTzzTdr165duvnmmzV9+nRdffXV8vl8kqS77rpLjz/+uO6991698sorysvLk8R0sqheh7/fxo8fr9dee01PPfWUBgwYII/HI0lq1aqV5syZowYNGuiMM87Q3r17K70+EAhQ6AMAAAAAoArNnj1bkZGRJ3wcwzA0d+7cEz4OgPqHJ9aoEoFAQIZhSJL++c9/ateuXfJ4PEpNTVV0dLQWLVqk5ORkDRkyRJLk8/l0wQUXKCkpSZ07dzYzOuqJQCAgq9Wq9u3by+v1KjExUfPnz1d2dracTmew4Hf33XfrySef1F133aU33njjiCI2UB22b9+uDz74QC+++KL69++vkpISrVu3To8//rjee+89NW3aVP/6179UUVGhO++8s9JrD/9bDAAAAAAAjm7o0KG67LLLzI7xuwzD+N2vCRMm/Olj79y5U4ZhaN26dSctL4DqxUf9cdL9esq5devW6YknntAbb7yhN998U/Hx8fL7/crKylJhYaEOHDggl8ulTz/9VJdccomGDRt2xDGAqnC4ABIbG6svvvhCaWlpevzxxzV48GC98cYbiomJkc/nk9Pp1NixYxUaGqpTTz2VwglMYbVa5XA4lJeXpwULFuidd97R999/L5/PJ6/Xq5ycHN18881atGiRGjZsaHZcAAAAAABwku3bty/453fffVfjxo1TWlpacF1oaKgZsQDUEFRTcFIFAoFgke7RRx/VY489ptLSUn399dcaNGiQ9uzZI4vFossuu0xpaWm65JJLlJKSoh07dmjw4MFHHAM42Q6PzNu8ebOWLVumNWvWKCUlRZdffrnuuusu5eTkaOjQoTp48KCcTqemTp2qt956SyNGjFBKSorJ6VEf+P3+I9Y1bNhQiYmJevrppzVgwACFh4fr0Ucf1dKlS9WqVSsdPHhQkpSUlCSr1aqKiorqjg0AAAAAQJ319NNPq2PHjgoJCVHjxo116623qrCw8Ij95s6dq1atWsnlcmnAgAHavXt3pe0fffSRunXrJpfLpebNm2vixIkqLy8/pgwJCQnBr4iICBmGUWndnDlz1K5dO7lcLrVt21YzZ84MvvbGG29Up06dgjNZlZaWqmvXrsHnsc2aNZMkde3aVYZhqF+/fn/mrwmAiRjZh5Pq8KinJ598UpMnT9YHH3ygpKQkffbZZ/rggw80aNAgzZ49W7169dKCBQu0dOlSGYahkSNHymazqby8nN5SqDKHp5f98MMPNWbMGCUlJSktLU2nnHKKRo0apYEDB6qsrEzPP/+8TjvtNJ122ml66aWX9MMPP5gdHfXEr0c1f/PNNyosLJTdblf//v310UcfadWqVbJYLOrVq1fwNcXFxUf0NqXXKQAAAAAAJ4/FYtG0adPUrFkzbd++XbfeeqvuvffeSgU1r9eryZMn64033pDD4dCtt96qa665RkuWLJEkffvttxo8eLCmTZum0047Tdu2bdOIESMkSePHjz+hfG+99ZbGjRun6dOnq2vXrlq7dq1uuukmhYSEaMiQIZo2bZo6d+6s+++/X88884wefPBB5ebmavr06ZKklStXBp/Xtm/fXg6H44TyAKh+VFVw0pWUlOibb77RbbfdpnPPPVeSlJKSoqSkJD388MO66aab9Nprr6lHjx7q3r17sEBYUVFBoQ9VyjAMLV26VMOHD9fjjz+u4cOH6+uvv9bZZ5+tCy+8UIZh6Oqrr1ZcXJzeffdd7du3Tz/88IM6dOhgdnTUE4cLfffcc4/eeusthYaGatu2bbrgggt055136qyzzpIkFRQUaP/+/Ro1apQKCws1duxYM2MDAAAAAFCn3XHHHcE/Jycn65FHHtEtt9xSqdhXVlam6dOnq3fv3pKk119/Xe3atQsW0iZOnKj7779fQ4YMkSQ1b95cDz/8sO69994TLvaNHz9eTz31lK644gpJh0bqbdq0SS+++KKGDBmi0NBQ/fOf/9QZZ5yhsLAwTZ06VV9//bXCw8MlHWpzI0kxMTFKSEg4oSwAzEFlBSedy+WSzWarNGe0JF177bVavHixXnrpJQ0bNkyvvfaaEhMTg6OtGImC6rBy5UqdccYZGj58uLZu3aoRI0Zo+PDhGjlypKRDn8I6++yzdfbZZwd79gHV6dVXX9Ubb7yhTz75RC1atFB6erpGjhypp556Sna7XaeddprefPNNvfPOO3I4HFq1apVsNpsqKir4dxQAAAAAgCqwYMECTZkyRVu2bFF+fr7Ky8tVUlIir9crj8cjSbLZbOrZs2fwNW3btlVkZKQ2b96sXr16af369VqyZIkmT54c3KeiouKI4xyvoqIibdu2TcOGDdNNN90UXF9eXq6IiIjgcmpqqu6++249/PDDuu+++3Tqqaf+qfcDUDPRGA0n5Gi9pQKBgHr16qWff/5ZixcvrjTvdJcuXXTJJZfIarXq8ccfV1lZWXBkH1Ad9u7dq+TkZEnSmWeeqbPOOksvvviiJOn999/Xu+++q9LSUkliygKY4ocfftBpp52mXr16KSoqSp07d9Yrr7yi7du3680335QkDR8+XGPHjtX8+fNlt9tVXl5OoQ8AAAAAgCqwc+dOXXTRRerUqZM++OADrVmzRjNmzJCk4DOkY1FYWKiJEydq3bp1wa8NGzZo69atcrlcfzrf4d6BL7/8cqVj//jjj1q+fHlwP7/fryVLlshqternn3/+0+8HoGai2Ic/7de9pb744gvNmTNHc+bMUUlJie666y6FhYXpnnvu0RdffKHc3FwVFRXpiy++0Omnn67OnTtr3rx5KigoMPksUJcFAgFJ0sGDB+X1eiUdKvC98sorCg8P15VXXqnnn38+WHCeP3++vvvuO1VUVEgShWhUuf/9wEQgEFBBQYGKioqC68rKypSSkqJx48bpvffe065du+RwOHT55ZfLarUyBTIAAAAAAFVozZo18vv9euqpp9SnTx+1bt1ae/fuPWK/8vJyrV69Oriclpam3NxctWvXTpLUrVs3paWlqWXLlkd8HX7G+mfEx8crMTFR27dvP+K4zZo1C+73xBNPaMuWLVq8eLE+//xzzZo1K7jt8AfeDz8TA1D78HQQf9rhH0L33Xef3n77bbVp00ZbtmzRzJkz9eijj2rBggU677zz9MADD+jgwYOKioqSz+fTv//9by1cuFDvv/++fD6fyWeBuswwDM2dO1dPPvmksrKydO211+qMM87Q6NGj9dprr+n888+XxWJRTk6OnnzySX388cdavHix3G632dFRD/z6AxPbtm2T2+1WQkKChg4dqn79+umDDz7QwIEDg/vYbDa1aNGi0hQckhjRBwAAAADASZCXl6d169ZVWhcTE6OWLVuqrKxMzz33nC6++GItWbJEL7zwwhGvt9vtuu222zRt2jTZbDaNHj1affr0Ua9evSRJ48aN00UXXaQmTZroL3/5iywWi9avX68ff/xRjzzyyAllnzhxom6//XZFRETovPPOk8/n0+rVq5WTk6OxY8dq7dq1GjdunP71r3+pb9++evrppzVmzBidccYZat68ueLi4uR2u/X5558rKSlJLpfriOcPAGo2in04Ia+++qrefPNNffLJJ+revbtefPFFjRo1Sjk5OXK5XJo/f74WL16sjRs3Kjw8PNiA9v3331diYqLCwsJMPgPUZd9//72GDh2qu+66S9nZ2frss8+Ulpam7t276y9/+YsuuugipaSkyOVyad++ffr888/Vtm1bs2OjHggEAsEi3v3336+PPvpI+/fvV/v27XXllVfqiSee0PXXX6/CwkKde+65slqtmjVrluLj44PNswEAAAAAwMmzaNEide3atdK6YcOG6ZVXXtHTTz+txx57TA888IBOP/10TZkyRYMHD660r8fj0X333ae//vWv2rNnj0477TS9+uqrwe0DBgzQp59+qkmTJumxxx6T3W5X27ZtNXz48BPOPnz4cHk8Hj3xxBO65557FBISoo4dO+qOO+5QSUmJrr/+eg0dOlQXX3yxJGnEiBH67LPPNGjQIH3zzTey2WyaNm2aJk2apHHjxum0007TokWLTjgXgOpjBA7Pcwf8Cffcc498Pp+mTZumd999VzfffLOmTJmikSNHqqCgQH6/v9KnQFauXKk333xTb7/9tr7++mt16tTJxPSoy7Zt26Z33nlHhmHowQcflCR98skneu655xQVFaXrrrtOMTEx+vbbb9W0aVP17dtXTZo0MTk16oNfj+ibM2eO7rzzTr3wwgvKzc3Vpk2bNG3aNI0YMULt2rXTmDFjFB8fL7fbrdDQUC1fvlx2u73SMQAAAAAAAADUb4zswzELBAKVepj5/X7t2rVLffr00ffff6/hw4friSee0C233CK/369Zs2YpIiJC119/fXCaue3bt+v777/XokWL1LFjR7NOBXVcfn6+rrnmGu3atUs33nhjcP3FF1+sQCCgqVOn6vXXX9eDDz6o+++/38SkqI8OF+kWLVqkhQsX6t5779Wll14q6dD3bpMmTXT//fdrzpw52rBhg7Zs2SKbzaYBAwbIarWqvLycHn0AAAAAAAAAghjZh2Py61Ek27dvV2hoqOLi4vTee+9pyJAh8vl8euutt3TttddKkgoLC3XFFVeoV69eR8w5nZ+fzzR0qHJr167VNddco9jYWL344otq3759cNu8efP04IMPqn379nrppZfkdrsrFbKBqpaRkaFTTz1VWVlZuu+++4KjTyXp4MGDuvHGG9W4cWM999xzlV5XUVFBjz4AAAAAAAAAlTAHGI7J4ULf3/72N11yySVKSUnRvffeK7fbrdtuu00NGzZUfHy8iouLtW3bNl155ZU6ePCgJkyYcMSxKPShOnTt2lXvv/++ioqKNG3aNG3cuDG47YILLtBjjz2myZMny+PxUOhDtUtISNCHH36ouLg4ffjhh1q7dm1wW3R0tBo0aKCff/75iNdR6AMAAAAAAADwvxjZh9/16xF977//vu68805Nnz5dP/zwgz7//HM1adJE3bp10549ezRz5kwlJiYqKipKYWFh+uqrr2S32xmJAlOtXbtWw4cPV7du3XTnnXcqJSXF7EhA0A8//KDBgwerc+fOuvPOO9WlSxcVFBTovPPOC448BQAAAAAAAIDfQ7EPx+Sbb77RBx98oM6dOwd7oH388cd67rnnFBUVpZtuukmJiYnatGmTYmNjdfrpp8tisdBbCjXC2rVrdcstt6h58+YaP3682rZta3YkIGjt2rW6/vrrdfDgQfXo0UMOh0M7duzQ8uXL5XA4juiXCgAAAAAAAAC/xjSe+EMZGRm68cYbNXv2bOXn5wfXX3LJJbr99tuVnZ2tmTNnqqCgQFdeeaX69esni8WiiooKCn2oEbp27arp06dr3759ioiIMDsOUEnXrl317rvvyu12Ky8vT/3799f3338vh8OhsrIyCn0AAAAAAAAAfhfFPvyhw72lEhISNG/ePG3YsCG47eKLL9Zdd92ln3/+WR999JEk6fBgUabuRE3Ss2dPff7552rYsKHZUYAjdOjQQR9++KFKS0v1/fffB/v12e12k5MBAAAAAAAAqOmYxhPHbP369brhhhvUo0cPjRkzRu3btw9uW7p0qXr37k2BDwBOAFPOAgAAAAAAADhejOzDMevcubNeffVVrVmzRs8++6w2bdoU3HbKKafIarWqoqLCxIQAULsx5SwAAAAAAACA48XIPhy3tWvX6uabb1bTpk31+OOPq1mzZmZHAoA6paSkRC6Xy+wYAAAAAAAAAGoBRvbhuB0eeRIWFqamTZuaHQcA6hwKfQAAAAAAAACOFSP78KcFAgEZhiG/3y+LhboxAAAAAAAAAABAdaPYhxNyuOAHAAAAAAAAAACA6sdwLJwQCn0AAAAAAAAAAADmodgHAAAAAAAAAAAA1FIU+wAAAAAAAAAAAIBaimIfAAAAAAAAAAAAUEtR7AMAAAAAAAAAAABqKYp9AAAAAAAAAAAAQC1FsQ9AnTJ79mxFRkae8HEMw9DcuXNP+DgAAAAAAAAAAFQlin0AapShQ4fqsssuMzvG7zIM43e/JkyY8KePvXPnThmGoXXr1p20vAAAAAAAAACAustmdgAAqG327dsX/PO7776rcePGKS0tLbguNDTUjFgAAAAAAAAAgHqIkX0AapWnn35aHTt2VEhIiBo3bqxbb71VhYWFR+w3d+5ctWrVSi6XSwMGDNDu3bsrbf/oo4/UrVs3uVwuNW/eXBMnTlR5efkxZUhISAh+RUREyDCMSuvmzJmjdu3ayeVyqW3btpo5c2bwtTfeeKM6deokn88nSSotLVXXrl01ePBgSVKzZs0kSV27dpVhGOrXr9+f+WsCAAAAAAAAANQTFPsA1CoWi0XTpk3Txo0b9frrr+urr77SvffeW2kfr9eryZMn64033tCSJUuUm5ura665Jrj922+/1eDBgzVmzBht2rRJL774ombPnq3JkyefcL633npL48aN0+TJk7V582b94x//0EMPPaTXX39dkjRt2jQVFRXp/vvvlyQ9+OCDys3N1fTp0yVJK1eulCQtWLBA+/bt04cffnjCmQAAAAAAAAAAdRfTeAKoVe64447gn5OTk/XII4/olltuqTR6rqysTNOnT1fv3r0lSa+//rratWunlStXqlevXpo4caLuv/9+DRkyRJLUvHlzPfzww7r33ns1fvz4E8o3fvx4PfXUU7riiiskHRqpd7igOGTIEIWGhuqf//ynzjjjDIWFhWnq1Kn6+uuvFR4eLkmKjY2VJMXExCghIeGEsgAAAAAAAAAA6j6KfQBqlQULFmjKlCnasmWL8vPzVV5erpKSEnm9Xnk8HkmSzWZTz549g69p27atIiMjtXnzZvXq1Uvr16/XkiVLKo3kq6ioOOI4x6uoqEjbtm3TsGHDdNNNNwXXl5eXKyIiIricmpqqu+++Ww8//LDuu+8+nXrqqX/q/QAAAAAAAAAAoNgHoNbYuXOnLrroIo0cOVKTJ09WdHS0vvvuOw0bNkylpaXHXKQrLCzUxIkTg6Pvfs3lcv3pfId7B7788svBUYWHWa3W4J/9fr+WLFkiq9Wqn3/++U+/HwAAAAAAAAAAFPsA1Bpr1qyR3+/XU089JYvlUMvR995774j9ysvLtXr1avXq1UuSlJaWptzcXLVr106S1K1bN6Wlpally5YnNV98fLwSExO1fft2XXfddb+53xNPPKEtW7Zo8eLFGjBggGbNmqUbbrhBkuRwOCQdGmkIAAAAAAAAAMAfodgHoMbJy8vTunXrKq2LiYlRy5YtVVZWpueee04XX3yxlixZohdeeOGI19vtdt12222aNm2abDabRo8erT59+gSLf+PGjdNFF12kJk2a6C9/+YssFovWr1+vH3/8UY888sgJZZ84caJuv/12RURE6LzzzpPP59Pq1auVk5OjsWPHau3atRo3bpz+9a9/qW/fvnr66ac1ZswYnXHGGWrevLni4uLkdrv1+eefKykpSS6Xq9IUoAAAAAAAAAAA/JrF7AAA8L8WLVqkrl27VvqaOHGiOnfurKefflqPPfaYOnTooLfeektTpkw54vUej0f33Xef/vrXv6pv374KDQ3Vu+++G9w+YMAAffrpp5o/f7569uypPn366JlnnlHTpk1POPvw4cP1yiuvaNasWerYsaPOOOMMzZ49W82aNVNJSYmuv/56DR06VBdffLEkacSIETrzzDM1aNAgVVRUyGazadq0aXrxxReVmJioSy+99IQzAQAAAAAAAADqLiMQCATMDgEAAAAAAAAAAADg+DGyDwAAAAAAAAAAAKilKPYBAAAAAAAAAAAAtRTFPgAAAAAAAAAAAKCWotgHAAAAAAAAAAAA1FIU+wAAAAAAAAAAAIBaimIfAAAAAAAAAAAAUEtR7AMAAAAAAAAAAABqKYp9AAAAAAAAAAAAQC1FsQ8AAAAAAAAAAACopSj2AQAAAAAAAAAAALUUxT4AAAAAAAAAAACglqLYBwAAAAAAAAAAANRS/wdyyP53ASdv5AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "# Membaca data dari file CSV yang sudah diberi label\n", "labeled_df = pd.read_csv(\"combined_data_with_buzzer_type.csv\")\n", "\n", "# Menghitung jumlah tiap label_text\n", "label_count = labeled_df['label_text'].value_counts()\n", "\n", "# Membuat data untuk visualisasi\n", "labels = label_count.index.tolist()\n", "counts = label_count.values.tolist()\n", "\n", "# Warna yang lebih lembut\n", "colors = ['#a3e4d7', '#f5b7b1', '#d6eaf8', '#f7d6e0']\n", "\n", "# Membuat figure dengan 3 subplots (dalam satu baris)\n", "fig, axes = plt.subplots(1, 3, figsize=(18, 6))\n", "\n", "# Diagram Batang\n", "axes[0].bar(labels, counts, color=colors)\n", "axes[0].set_xlabel('Label Text')\n", "axes[0].set_ylabel('Jumlah')\n", "axes[0].set_title('Jumlah Tiap Label Text')\n", "axes[0].tick_params(axis='x', rotation=45)\n", "\n", "# Diagram Pie\n", "axes[1].pie(counts, labels=labels, autopct='%1.1f%%', colors=colors)\n", "axes[1].set_title('Proporsi Tiap Label Text')\n", "\n", "# Diagram Garis\n", "axes[2].plot(labels, counts, marker='o', linestyle='-', color='#85c1e9')\n", "axes[2].set_xlabel('Label Text')\n", "axes[2].set_ylabel('Jumlah')\n", "axes[2].set_title('Jumlah Tiap Label Text')\n", "axes[2].grid(True)\n", "\n", "# Menampilkan plot\n", "plt.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "e23f8c01-3e68-4c7c-998a-b7b9929d2bf6", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 5 }