upload app.py
This commit is contained in:
commit
854b6efce8
|
@ -0,0 +1,123 @@
|
||||||
|
from flask import Flask, request, jsonify, render_template, redirect, url_for
|
||||||
|
from keras.models import load_model
|
||||||
|
from PIL import Image
|
||||||
|
from keras.preprocessing import image as keras_image
|
||||||
|
from PIL import Image
|
||||||
|
import numpy as np
|
||||||
|
from datetime import datetime
|
||||||
|
import io
|
||||||
|
import cv2
|
||||||
|
from werkzeug.utils import secure_filename
|
||||||
|
from PIL import ImageOps
|
||||||
|
import os
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
|
||||||
|
# Muat model dari file .h5
|
||||||
|
model = load_model('model/klasifikasi-Parkinson-93.13.h5')
|
||||||
|
|
||||||
|
UPLOAD_FOLDER = 'static/upload/'
|
||||||
|
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
||||||
|
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif', 'tiff', 'webp', 'jfif'}
|
||||||
|
MIN_FILE_SIZE_KB = 20
|
||||||
|
MAX_FILE_SIZE_MB = 5
|
||||||
|
|
||||||
|
def allowed_file(filename):
|
||||||
|
return (
|
||||||
|
'.' in filename and
|
||||||
|
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS and
|
||||||
|
request.content_length >= MIN_FILE_SIZE_KB * 1024 and
|
||||||
|
request.content_length <= MAX_FILE_SIZE_MB * 1024 * 1024
|
||||||
|
)
|
||||||
|
|
||||||
|
@app.route('/', methods=['GET', 'POST'])
|
||||||
|
def home():
|
||||||
|
return render_template('home.html', judul='Home')
|
||||||
|
|
||||||
|
@app.route('/informasi/', methods=['GET', 'POST'])
|
||||||
|
def informasi():
|
||||||
|
return render_template('informasi.html', judul='Informasi')
|
||||||
|
|
||||||
|
@app.route('/klasifikasi', methods=['GET', 'POST'])
|
||||||
|
def klasifikasi():
|
||||||
|
return render_template('klasifikasi.html', judul='Klasifikasi')
|
||||||
|
|
||||||
|
@app.route('/submit', methods=['POST'])
|
||||||
|
def predict():
|
||||||
|
if 'file' not in request.files:
|
||||||
|
resp = jsonify({'message': 'No image in the request'})
|
||||||
|
resp.status_code = 400
|
||||||
|
return resp
|
||||||
|
|
||||||
|
files = request.files.getlist('file')
|
||||||
|
filename = "temp_image.png"
|
||||||
|
errors = {}
|
||||||
|
success = False
|
||||||
|
|
||||||
|
for file in files:
|
||||||
|
if file and allowed_file(file.filename):
|
||||||
|
file.save(os.path.join('static/upload/', filename))
|
||||||
|
success = True
|
||||||
|
elif file and not allowed_file(file.filename):
|
||||||
|
errors["message"] = 'File size of {} exceeds the maximum allowed size of {} MB or below the minimum allowed size of {} KB'.format(file.filename, MAX_FILE_SIZE_MB, MIN_FILE_SIZE_KB)
|
||||||
|
success = False
|
||||||
|
|
||||||
|
if not success:
|
||||||
|
resp = jsonify(errors)
|
||||||
|
resp.status_code = 400
|
||||||
|
return resp
|
||||||
|
|
||||||
|
img_url = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
||||||
|
|
||||||
|
img = Image.open(img_url).convert('RGB')
|
||||||
|
|
||||||
|
# Convert image to numpy array
|
||||||
|
img_array = np.array(img)
|
||||||
|
|
||||||
|
# Preprocessing image using OpenCV
|
||||||
|
blur = cv2.GaussianBlur(img_array, (5, 5), 0)
|
||||||
|
gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
|
||||||
|
kernel = np.ones((3, 3), np.uint8)
|
||||||
|
edges = cv2.erode(gray, kernel, iterations=1)
|
||||||
|
_, imfill = cv2.threshold(edges, 220, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
||||||
|
imgResize = cv2.resize(imfill, (224, 224))
|
||||||
|
|
||||||
|
# Save preprocessed image
|
||||||
|
# now = datetime.now()
|
||||||
|
# predict_image_path = 'static/upload/' + now.strftime("%d%m%y-%H%M%S") + ".png"
|
||||||
|
predict_image_path = 'static/upload/process_image.png'
|
||||||
|
cv2.imwrite(predict_image_path, imgResize)
|
||||||
|
|
||||||
|
img.close()
|
||||||
|
|
||||||
|
img = keras_image.load_img(predict_image_path, target_size=(224, 224, 3))
|
||||||
|
x = keras_image.img_to_array(img)
|
||||||
|
x = x / 127.5 - 1
|
||||||
|
x = np.expand_dims(x, axis=0)
|
||||||
|
images = np.vstack([x])
|
||||||
|
|
||||||
|
prediction_tremor = model.predict(images)
|
||||||
|
|
||||||
|
class_names = {0: 'non tremor', 1: 'tremor'}
|
||||||
|
predicted_class_index = np.argmax(prediction_tremor)
|
||||||
|
predicted_class_name = class_names[predicted_class_index]
|
||||||
|
|
||||||
|
if predicted_class_index == 0:
|
||||||
|
saran = "Stay healthy and exercise often, avoid alcohol-containing drinks"
|
||||||
|
else:
|
||||||
|
saran = "Immediately consult a Neurologist for further treatment."
|
||||||
|
|
||||||
|
predict_image_path = 'static/upload/process_image.png'
|
||||||
|
|
||||||
|
return render_template("klasifikasi.html", img_path=img_url,
|
||||||
|
predictiontremor=predicted_class_name,
|
||||||
|
confidencetremor='{:.2%}'.format(np.max(prediction_tremor)),
|
||||||
|
saran=saran,
|
||||||
|
predict_image_path=predict_image_path)
|
||||||
|
|
||||||
|
@app.route('/refresh', methods=['GET', 'POST'])
|
||||||
|
def refresh():
|
||||||
|
return redirect(url_for('klasifikasi'))
|
||||||
|
|
||||||
|
if __name__=='__main__':
|
||||||
|
app.run(debug=True)
|
Loading…
Reference in New Issue