203 lines
5.6 KiB
PHP
203 lines
5.6 KiB
PHP
@extends('layouts.app')
|
|
|
|
@section('title', 'Deteksi Real-Time')
|
|
|
|
@section('contents')
|
|
<section class="about section" id="about">
|
|
<h2 class="section-title text-center">Deteksi Pose Jurus 1 Tangan Kosong IPSI</h2>
|
|
<div class="about__container" style="display: flex; flex-wrap: wrap; justify-content: center; gap: 20px;">
|
|
<div class="video-container" style="position: relative;">
|
|
<video id="webcam" width="640" height="480" autoplay playsinline muted></video>
|
|
<canvas id="output-canvas" width="640" height="480"
|
|
style="position: absolute; top: 0; left: 0;"></canvas>
|
|
</div>
|
|
<div id="prediction-result" class="prediction-box">
|
|
<p>Prediksi: <span id="pose-label">-</span></p>
|
|
<p>Probability: <span id="pose-accuracy">-</span></p>
|
|
</div>
|
|
</div>
|
|
</section>
|
|
@endsection
|
|
|
|
@section('script')
|
|
<script src="https://code.jquery.com/jquery-3.6.0.min.js" defer></script>
|
|
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
|
|
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/pose"></script>
|
|
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/camera_utils"></script>
|
|
|
|
<script>
|
|
const poseClasses = [
|
|
'A1_benar', 'A1_salah','A2_benar', 'A2_salah', 'A3_benar', 'A3_salah',
|
|
'A4_benar', 'A4_salah', 'A5_benar', 'A5_salah', 'A6_benar', 'A6_salah',
|
|
'A7_benar', 'A7_salah'
|
|
];
|
|
|
|
const videoElement = document.getElementById('webcam');
|
|
const canvasElement = document.getElementById('output-canvas');
|
|
const ctx = canvasElement.getContext('2d');
|
|
const poseLabelElement = document.getElementById('pose-label');
|
|
const poseAccuracyElement = document.getElementById('pose-accuracy');
|
|
|
|
let model = null;
|
|
let poseDetector = null;
|
|
let camera = null;
|
|
|
|
async function loadModel() {
|
|
try {
|
|
model = await tf.loadLayersModel('/models/model.json');
|
|
console.log('✅ Model loaded');
|
|
} catch (err) {
|
|
console.error('❌ Gagal load model:', err);
|
|
alert('Model gagal dimuat');
|
|
}
|
|
}
|
|
|
|
function setupPose() {
|
|
poseDetector = new Pose({
|
|
locateFile: (file) => `https://cdn.jsdelivr.net/npm/@mediapipe/pose/${file}`
|
|
});
|
|
|
|
poseDetector.setOptions({
|
|
modelComplexity: 1,
|
|
smoothLandmarks: true,
|
|
enableSegmentation: false,
|
|
minDetectionConfidence: 0.5,
|
|
minTrackingConfidence: 0.5
|
|
});
|
|
|
|
poseDetector.onResults(onPoseResults);
|
|
}
|
|
|
|
function onPoseResults(results) {
|
|
if (!results.poseLandmarks) return;
|
|
|
|
ctx.clearRect(0, 0, canvasElement.width, canvasElement.height);
|
|
ctx.drawImage(results.image, 0, 0, canvasElement.width, canvasElement.height);
|
|
|
|
drawLandmarks(results.poseLandmarks);
|
|
|
|
const landmarks = results.poseLandmarks.map(landmark => [
|
|
landmark.x * canvasElement.height,
|
|
landmark.y * canvasElement.height,
|
|
landmark.z * canvasElement.width
|
|
]).flat();
|
|
|
|
predictPose(landmarks);
|
|
}
|
|
|
|
function drawLandmarks(landmarks) {
|
|
drawConnections(landmarks);
|
|
ctx.fillStyle = '#FF0000';
|
|
landmarks.forEach(landmark => {
|
|
ctx.beginPath();
|
|
ctx.arc(landmark.x * canvasElement.width, landmark.y * canvasElement.height, 4, 0, 2 * Math.PI);
|
|
ctx.fill();
|
|
});
|
|
}
|
|
|
|
function drawConnections(landmarks) {
|
|
const connections = [
|
|
[0, 1], [1, 2], [2, 3], [3, 7], [0, 4], [4, 5], [5, 6], [6, 8],
|
|
[11, 13], [13, 15], [15, 17], [15, 19], [15, 21],
|
|
[12, 14], [14, 16], [16, 18], [16, 20], [16, 22],
|
|
[11, 12], [11, 23], [12, 24], [23, 24],
|
|
[23, 25], [25, 27], [27, 29], [27, 31],
|
|
[24, 26], [26, 28], [28, 30], [28, 32]
|
|
];
|
|
|
|
ctx.strokeStyle = '#00FF00';
|
|
ctx.lineWidth = 2;
|
|
|
|
connections.forEach(([i, j]) => {
|
|
if (landmarks[i] && landmarks[j]) {
|
|
ctx.beginPath();
|
|
ctx.moveTo(landmarks[i].x * canvasElement.width, landmarks[i].y * canvasElement.height);
|
|
ctx.lineTo(landmarks[j].x * canvasElement.width, landmarks[j].y * canvasElement.height);
|
|
ctx.stroke();
|
|
}
|
|
});
|
|
}
|
|
|
|
async function predictPose(landmarks) {
|
|
if (!model) return;
|
|
|
|
const inputTensor = tf.tensor2d([landmarks]);
|
|
const prediction = model.predict(inputTensor);
|
|
const [predictedClass] = await prediction.argMax(1).data();
|
|
const confidence = await prediction.max(1).data();
|
|
|
|
poseLabelElement.textContent = poseClasses[predictedClass] || 'Unknown';
|
|
poseAccuracyElement.textContent = `${(confidence[0]).toFixed(4)}`;
|
|
|
|
inputTensor.dispose();
|
|
prediction.dispose();
|
|
}
|
|
|
|
function startCamera() {
|
|
camera = new Camera(videoElement, {
|
|
onFrame: async () => {
|
|
await poseDetector.send({ image: videoElement });
|
|
},
|
|
width: 640,
|
|
height: 480
|
|
});
|
|
camera.start();
|
|
}
|
|
|
|
async function init() {
|
|
await loadModel();
|
|
setupPose();
|
|
startCamera();
|
|
}
|
|
|
|
document.addEventListener('DOMContentLoaded', init);
|
|
</script>
|
|
|
|
<style>
|
|
.section-title {
|
|
text-align: center;
|
|
font-size: 1.8rem;
|
|
margin-bottom: 20px;
|
|
color: #001f3f; /* biru dongker */
|
|
}
|
|
|
|
.about__container {
|
|
display: flex;
|
|
flex-wrap: wrap;
|
|
justify-content: center;
|
|
gap: 20px;
|
|
}
|
|
|
|
.video-container {
|
|
position: relative;
|
|
width: 640px;
|
|
height: 480px;
|
|
border: 2px solid #ccc;
|
|
border-radius: 10px;
|
|
overflow: hidden;
|
|
}
|
|
|
|
.prediction-box {
|
|
flex-shrink: 0;
|
|
width: 280px;
|
|
height: fit-content;
|
|
padding: 20px;
|
|
background: #f4f4f4;
|
|
text-align: center;
|
|
border-radius: 10px;
|
|
font-size: 1.2rem;
|
|
box-shadow: 0 2px 6px rgba(0,0,0,0.1);
|
|
}
|
|
|
|
#pose-label {
|
|
font-weight: bold;
|
|
color: #2c3e50;
|
|
}
|
|
|
|
#pose-accuracy {
|
|
font-weight: bold;
|
|
color: #27ae60;
|
|
}
|
|
</style>
|
|
@endsection
|