176 lines
5.8 KiB
Python
176 lines
5.8 KiB
Python
from django.shortcuts import render
|
|
import cv2
|
|
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
from django.http import HttpResponse
|
|
from scipy import stats
|
|
|
|
from django.http import JsonResponse
|
|
from django.views.decorators.csrf import csrf_exempt
|
|
from PIL import Image
|
|
import os
|
|
|
|
def crop_image(image, x, y, width, height):
|
|
cropped_image = image[y:y+height, x:x+width]
|
|
return cropped_image
|
|
|
|
def calculate_normalized_lbp_histogram(img_gray):
|
|
height, width = img_gray.shape
|
|
lbp_histogram = np.zeros(256, dtype=int)
|
|
|
|
for i in range(1, height - 1):
|
|
for j in range(1, width - 1):
|
|
lbp_val = lbp_calculated_pixel(img_gray, i, j)
|
|
lbp_histogram[lbp_val] += 1
|
|
|
|
# Normalize the histogram
|
|
lbp_histogram = lbp_histogram / sum(lbp_histogram)
|
|
|
|
return lbp_histogram
|
|
|
|
def get_pixel(img, center, x, y):
|
|
new_value = 0
|
|
try:
|
|
if img[x][y] >= center:
|
|
new_value = 1
|
|
except:
|
|
pass
|
|
return new_value
|
|
|
|
def lbp_calculated_pixel(img, x, y):
|
|
center = img[x][y]
|
|
val_ar = []
|
|
val_ar.append(get_pixel(img, center, x-1, y-1))
|
|
val_ar.append(get_pixel(img, center, x-1, y))
|
|
val_ar.append(get_pixel(img, center, x-1, y + 1))
|
|
val_ar.append(get_pixel(img, center, x, y + 1))
|
|
val_ar.append(get_pixel(img, center, x + 1, y + 1))
|
|
val_ar.append(get_pixel(img, center, x + 1, y))
|
|
val_ar.append(get_pixel(img, center, x + 1, y-1))
|
|
val_ar.append(get_pixel(img, center, x, y-1))
|
|
power_val = [1, 2, 4, 8, 16, 32, 64, 128]
|
|
val = 0
|
|
for i in range(len(val_ar)):
|
|
val += val_ar[i] * power_val[i]
|
|
return val
|
|
|
|
def find_mode_pixel_value(img):
|
|
img_flat = img.ravel()
|
|
mode_value = int(np.median(img_flat))
|
|
return mode_value
|
|
|
|
def calculate_lbp_image(img_gray):
|
|
height, width = img_gray.shape
|
|
lbp_image = np.zeros((height-2, width-2), dtype=np.uint8)
|
|
|
|
for i in range(1, height - 1):
|
|
for j in range(1, width - 1):
|
|
lbp_val = lbp_calculated_pixel(img_gray, i, j)
|
|
lbp_image[i-1, j-1] = lbp_val
|
|
|
|
return lbp_image
|
|
|
|
def save_lbp_to_txt(lbp_image, filename):
|
|
with open(filename, 'w') as f:
|
|
for row in lbp_image:
|
|
row_str = ' '.join(map(str, row))
|
|
f.write(row_str + '\n')
|
|
|
|
def save_normalized_lbp_histogram_to_txt(lbp_histogram, filename):
|
|
with open(filename, 'w') as f:
|
|
for bin_val, freq in enumerate(lbp_histogram):
|
|
f.write(f"LBP Code: {bin_val}, Normalized Frequency: {freq}\n")
|
|
|
|
def find_mode_lbp_histogram(lbp_histogram):
|
|
mode_value = np.argmax(lbp_histogram)
|
|
mode_frequency = lbp_histogram[mode_value]
|
|
return mode_value, mode_frequency
|
|
|
|
def lbp(request):
|
|
# Proses Memasukkan Image
|
|
path = 'media/lahan 5 50cm.jpeg'
|
|
img_bgr = cv2.imread(path, 1)
|
|
plt.imshow(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB))
|
|
plt.title('Original Image')
|
|
plt.axis('off') # Tidak menampilkan sumbu x dan y
|
|
plt.show()
|
|
|
|
# Melakukan Cropping Image
|
|
# Tentukan koordinat titik awal dan dimensi untuk cropping
|
|
x = 0 # Koordinat x titik awal
|
|
y = 0 # Koordinat y titik awal
|
|
width = 640 # Lebar area yang akan dipotong
|
|
height = 480 # Tinggi area yang akan dipotong
|
|
|
|
# Lakukan cropping pada gambar
|
|
cropped_image = crop_image(img_bgr, x, y, width, height) # Ganti nilai x, y, width, dan height sesuai kebutuhan
|
|
plt.imshow(cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB))
|
|
plt.title('Preview Gambar Crop 640 * 480 Pixel')
|
|
plt.axis('off') # Tidak menampilkan sumbu x dan y
|
|
plt.show()
|
|
|
|
# Konversi Image Ke Grayscale
|
|
img_gray = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2GRAY)
|
|
plt.imshow(img_gray, cmap='gray')
|
|
plt.title('Grayscale Image')
|
|
plt.axis('off')
|
|
plt.show()
|
|
|
|
|
|
# Equalisasi histogram Gaussian Blur
|
|
equalized_image = cv2.equalizeHist(img_gray)
|
|
|
|
# Filter tapis (Gaussian Blur)
|
|
blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)
|
|
|
|
# Menampilkan gambar hasil Gaussian Blur
|
|
plt.imshow(blurred_image, cmap='gray')
|
|
plt.title('Blurred Image (Gaussian Blur)')
|
|
plt.axis('off')
|
|
plt.show()
|
|
|
|
# Hitung dan tampilkan gambar LBP
|
|
lbp_image = calculate_lbp_image(blurred_image)
|
|
plt.imshow(lbp_image, cmap='gray')
|
|
plt.title('LBP Image')
|
|
plt.axis('off')
|
|
plt.show()
|
|
|
|
# Simpan hasil LBP ke file teks
|
|
save_lbp_to_txt(lbp_image, 'media/lbp_result.txt')
|
|
print("Hasil LBP telah disimpan dalam file 'lbp_result.txt'")
|
|
|
|
# Hitung histogram normalisasi LBP
|
|
lbp_histogram = calculate_normalized_lbp_histogram(blurred_image)
|
|
|
|
plt.figure(figsize=(10, 6))
|
|
plt.bar(range(len(lbp_histogram)), lbp_histogram, color='b', width=1)
|
|
plt.title('Normalized LBP Histogram')
|
|
plt.xlabel('LBP Code')
|
|
plt.ylabel('Normalized Frequency')
|
|
plt.grid(True)
|
|
plt.show()
|
|
|
|
# Simpan histogram normalisasi LBP ke file teks
|
|
save_normalized_lbp_histogram_to_txt(lbp_histogram, 'media/lbp_normalized_histogram.txt')
|
|
print("Histogram normalisasi LBP telah disimpan dalam file 'lbp_normalized_histogram.txt'")
|
|
|
|
# Temukan nilai yang paling sering muncul dalam histogram
|
|
mode_lbp_value, mode_lbp_frequency = find_mode_lbp_histogram(lbp_histogram)
|
|
print(f"Nilai histogram normalisasi yang paling sering muncul: {mode_lbp_value}")
|
|
print(f"Frekuensi ternormalisasi dari nilai yang paling sering muncul: {mode_lbp_frequency}")
|
|
|
|
hasil_operasi_Natrium = mode_lbp_frequency * 0.1928 + 0.021
|
|
round_natrium = round(hasil_operasi_Natrium, 2)
|
|
print(f"hasil Nilai N (Natrium): {round_natrium}")
|
|
|
|
hasil_operasi_fosfor = (mode_lbp_frequency * -10.725) + 16.533
|
|
round_fosfor = round(hasil_operasi_fosfor, 2)
|
|
print(f"hasil Nilai P (Fosfor): {round_fosfor}")
|
|
|
|
hasil_operasi_Kalium = mode_lbp_frequency * -0.1864 + 0.2471
|
|
round_kalium = round(hasil_operasi_Kalium, 2)
|
|
|
|
|
|
lbp(None)
|