TIF_E41210373/RoboSoil/Robo_Soil/views.py

176 lines
5.8 KiB
Python

from django.shortcuts import render
import cv2
import numpy as np
from matplotlib import pyplot as plt
from django.http import HttpResponse
from scipy import stats
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
from PIL import Image
import os
def crop_image(image, x, y, width, height):
cropped_image = image[y:y+height, x:x+width]
return cropped_image
def calculate_normalized_lbp_histogram(img_gray):
height, width = img_gray.shape
lbp_histogram = np.zeros(256, dtype=int)
for i in range(1, height - 1):
for j in range(1, width - 1):
lbp_val = lbp_calculated_pixel(img_gray, i, j)
lbp_histogram[lbp_val] += 1
# Normalize the histogram
lbp_histogram = lbp_histogram / sum(lbp_histogram)
return lbp_histogram
def get_pixel(img, center, x, y):
new_value = 0
try:
if img[x][y] >= center:
new_value = 1
except:
pass
return new_value
def lbp_calculated_pixel(img, x, y):
center = img[x][y]
val_ar = []
val_ar.append(get_pixel(img, center, x-1, y-1))
val_ar.append(get_pixel(img, center, x-1, y))
val_ar.append(get_pixel(img, center, x-1, y + 1))
val_ar.append(get_pixel(img, center, x, y + 1))
val_ar.append(get_pixel(img, center, x + 1, y + 1))
val_ar.append(get_pixel(img, center, x + 1, y))
val_ar.append(get_pixel(img, center, x + 1, y-1))
val_ar.append(get_pixel(img, center, x, y-1))
power_val = [1, 2, 4, 8, 16, 32, 64, 128]
val = 0
for i in range(len(val_ar)):
val += val_ar[i] * power_val[i]
return val
def find_mode_pixel_value(img):
img_flat = img.ravel()
mode_value = int(np.median(img_flat))
return mode_value
def calculate_lbp_image(img_gray):
height, width = img_gray.shape
lbp_image = np.zeros((height-2, width-2), dtype=np.uint8)
for i in range(1, height - 1):
for j in range(1, width - 1):
lbp_val = lbp_calculated_pixel(img_gray, i, j)
lbp_image[i-1, j-1] = lbp_val
return lbp_image
def save_lbp_to_txt(lbp_image, filename):
with open(filename, 'w') as f:
for row in lbp_image:
row_str = ' '.join(map(str, row))
f.write(row_str + '\n')
def save_normalized_lbp_histogram_to_txt(lbp_histogram, filename):
with open(filename, 'w') as f:
for bin_val, freq in enumerate(lbp_histogram):
f.write(f"LBP Code: {bin_val}, Normalized Frequency: {freq}\n")
def find_mode_lbp_histogram(lbp_histogram):
mode_value = np.argmax(lbp_histogram)
mode_frequency = lbp_histogram[mode_value]
return mode_value, mode_frequency
def lbp(request):
# Proses Memasukkan Image
path = 'media/lahan 5 50cm.jpeg'
img_bgr = cv2.imread(path, 1)
plt.imshow(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB))
plt.title('Original Image')
plt.axis('off') # Tidak menampilkan sumbu x dan y
plt.show()
# Melakukan Cropping Image
# Tentukan koordinat titik awal dan dimensi untuk cropping
x = 0 # Koordinat x titik awal
y = 0 # Koordinat y titik awal
width = 640 # Lebar area yang akan dipotong
height = 480 # Tinggi area yang akan dipotong
# Lakukan cropping pada gambar
cropped_image = crop_image(img_bgr, x, y, width, height) # Ganti nilai x, y, width, dan height sesuai kebutuhan
plt.imshow(cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB))
plt.title('Preview Gambar Crop 640 * 480 Pixel')
plt.axis('off') # Tidak menampilkan sumbu x dan y
plt.show()
# Konversi Image Ke Grayscale
img_gray = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2GRAY)
plt.imshow(img_gray, cmap='gray')
plt.title('Grayscale Image')
plt.axis('off')
plt.show()
# Equalisasi histogram Gaussian Blur
equalized_image = cv2.equalizeHist(img_gray)
# Filter tapis (Gaussian Blur)
blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)
# Menampilkan gambar hasil Gaussian Blur
plt.imshow(blurred_image, cmap='gray')
plt.title('Blurred Image (Gaussian Blur)')
plt.axis('off')
plt.show()
# Hitung dan tampilkan gambar LBP
lbp_image = calculate_lbp_image(blurred_image)
plt.imshow(lbp_image, cmap='gray')
plt.title('LBP Image')
plt.axis('off')
plt.show()
# Simpan hasil LBP ke file teks
save_lbp_to_txt(lbp_image, 'media/lbp_result.txt')
print("Hasil LBP telah disimpan dalam file 'lbp_result.txt'")
# Hitung histogram normalisasi LBP
lbp_histogram = calculate_normalized_lbp_histogram(blurred_image)
plt.figure(figsize=(10, 6))
plt.bar(range(len(lbp_histogram)), lbp_histogram, color='b', width=1)
plt.title('Normalized LBP Histogram')
plt.xlabel('LBP Code')
plt.ylabel('Normalized Frequency')
plt.grid(True)
plt.show()
# Simpan histogram normalisasi LBP ke file teks
save_normalized_lbp_histogram_to_txt(lbp_histogram, 'media/lbp_normalized_histogram.txt')
print("Histogram normalisasi LBP telah disimpan dalam file 'lbp_normalized_histogram.txt'")
# Temukan nilai yang paling sering muncul dalam histogram
mode_lbp_value, mode_lbp_frequency = find_mode_lbp_histogram(lbp_histogram)
print(f"Nilai histogram normalisasi yang paling sering muncul: {mode_lbp_value}")
print(f"Frekuensi ternormalisasi dari nilai yang paling sering muncul: {mode_lbp_frequency}")
hasil_operasi_Natrium = mode_lbp_frequency * 0.1928 + 0.021
round_natrium = round(hasil_operasi_Natrium, 2)
print(f"hasil Nilai N (Natrium): {round_natrium}")
hasil_operasi_fosfor = (mode_lbp_frequency * -10.725) + 16.533
round_fosfor = round(hasil_operasi_fosfor, 2)
print(f"hasil Nilai P (Fosfor): {round_fosfor}")
hasil_operasi_Kalium = mode_lbp_frequency * -0.1864 + 0.2471
round_kalium = round(hasil_operasi_Kalium, 2)
lbp(None)