TIF_E41210373/RoboSoil/Robo_Soil/views.py

185 lines
6.0 KiB
Python

from django.shortcuts import render
import cv2
import numpy as np
from matplotlib import pyplot as plt
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import os
def get_pixel(img, center, x, y):
new_value = 0
try:
if img[x][y] >= center:
new_value = 1
except:
pass
return new_value
def lbp_calculated_pixel(img, x, y):
center = img[x][y]
val_ar = []
val_ar.append(get_pixel(img, center, x-1, y-1))
val_ar.append(get_pixel(img, center, x-1, y))
val_ar.append(get_pixel(img, center, x-1, y + 1))
val_ar.append(get_pixel(img, center, x, y + 1))
val_ar.append(get_pixel(img, center, x + 1, y + 1))
val_ar.append(get_pixel(img, center, x + 1, y))
val_ar.append(get_pixel(img, center, x + 1, y-1))
val_ar.append(get_pixel(img, center, x, y-1))
power_val = [1, 2, 4, 8, 16, 32, 64, 128]
val = 0
for i in range(len(val_ar)):
val += val_ar[i] * power_val[i]
return val
def calculate_normalized_lbp_histogram(img_gray):
height, width = img_gray.shape
lbp_histogram = np.zeros(256, dtype=int)
for i in range(1, height - 1):
for j in range(1, width - 1):
lbp_val = lbp_calculated_pixel(img_gray, i, j)
lbp_histogram[lbp_val] += 1
# Normalize the histogram
lbp_histogram = lbp_histogram / sum(lbp_histogram)
return lbp_histogram
def find_mode_pixel_value(img):
img_flat = img.ravel()
mode_value = int(np.median(img_flat))
return mode_value
def lbp(request):
path = 'media/lahan 4 50 cm.jpeg'
img_bgr = cv2.imread(path, 1)
img_gray = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)
mode_pixel = find_mode_pixel_value(img_gray)
print(f"Nilai pixel yang paling sering muncul: {mode_pixel}")
normalized_mode_pixel = mode_pixel / 255.0
print(f"Nilai yang sering muncul yang telah dinormalisasi: {normalized_mode_pixel}")
hasil_operasi_Natrium = (normalized_mode_pixel * 0.1928 + 0.021)
print(f"hasil Nilai N (Natrium): {hasil_operasi_Natrium}")
N = hasil_operasi_Natrium
if N < 1:
print("Sangat rendah")
elif N >= 1 and N < 2:
print("Rendah")
elif N >= 2.001 and N < 3:
print("Sedang")
elif N >= 3.001 and N < 5:
print("Tinggi")
elif N >= 5.001:
print("Sangat Tinggi")
else:
print("Ketegori Tidak Ditemukan")
hasil_operasi_fosfor = (normalized_mode_pixel * -10.725) + 16.533
print(f"hasil Nilai P (Fosfor): {hasil_operasi_fosfor}")
P = hasil_operasi_fosfor
if P < 10:
print("Sangat rendah")
elif P >= 10 and P <= 25:
print("Rendah")
elif P >= 26 and P <= 45:
print("Sedang")
elif P >= 46 and P <= 60:
print("Tinggi")
elif P > 60:
print("Sangat Tinggi")
else:
print("Lebih dari atau sama dengan 2")
hasil_operasi_Kalium = (normalized_mode_pixel * -0.1864 + 0.2471)
print(f"hasil Nilai K (Kalium): {hasil_operasi_Kalium}")
K = hasil_operasi_Kalium
if K < 0.1:
print("Sangat rendah")
elif K >= 0.1 and K <= 0.3:
print("Rendah")
elif K >= 0.4 and K <= 0.5:
print("Sedang")
elif K >= 0.6 and K <= 1.0:
print("Tinggi")
elif K > 1.0:
print("Sangat Tinggi")
else:
print("Lebih dari atau sama dengan 2")
lbp_histogram = calculate_normalized_lbp_histogram(img_gray)
print("Program LBP selesai")
lbp(None)
@csrf_exempt
def upload_image(request):
if request.method == 'POST' and request.FILES['image']:
uploaded_image = request.FILES['image']
image_path = os.path.join('media', 'uploaded_images', uploaded_image.name)
with open(image_path, 'wb+') as destination:
for chunk in uploaded_image.chunks():
destination.write(chunk)
path = image_path
img_bgr = cv2.imread(path, 1)
img_gray = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)
mode_pixel = find_mode_pixel_value(img_gray)
print(f"Nilai pixel yang paling sering muncul: {mode_pixel}")
normalized_mode_pixel = mode_pixel / 255.0
print(f"Nilai yang sering muncul yang telah dinormalisasi: {normalized_mode_pixel}")
hasil_operasi_Natrium = (normalized_mode_pixel * 0.1928 + 0.021)
print(f"hasil Nilai N (Natrium): {hasil_operasi_Natrium}")
N = hasil_operasi_Natrium
if N < 1:
print("Sangat rendah")
elif N >= 1 and N < 2:
print("Rendah")
elif N >= 2.001 and N < 3:
print("Sedang")
elif N >= 3.001 and N < 5:
print("Tinggi")
elif N >= 5.001:
print("Sangat Tinggi")
else:
print("Ketegori Tidak Ditemukan")
hasil_operasi_fosfor = (normalized_mode_pixel * -10.725) + 16.533
print(f"hasil Nilai P (Fosfor): {hasil_operasi_fosfor}")
P = hasil_operasi_fosfor
if P < 10:
print("Sangat rendah")
elif P >= 10 and P <= 25:
print("Rendah")
elif P >= 26 and P <= 45:
print("Sedang")
elif P >= 46 and P <= 60:
print("Tinggi")
elif P > 60:
print("Sangat Tinggi")
else:
print("Lebih dari atau sama dengan 2")
hasil_operasi_Kalium = (normalized_mode_pixel * -0.1864 + 0.2471)
print(f"hasil Nilai K (Kalium): {hasil_operasi_Kalium}")
K = hasil_operasi_Kalium
if K < 0.1:
print("Sangat rendah")
elif K >= 0.1 and K <= 0.3:
print("Rendah")
elif K >= 0.4 and K <= 0.5:
print("Sedang")
elif K >= 0.6 and K <= 1.0:
print("Tinggi")
elif K > 1.0:
print("Sangat Tinggi")
else:
print("Lebih dari atau sama dengan 2")
lbp_histogram = calculate_normalized_lbp_histogram(img_gray)
print("Program LBP selesai")
return JsonResponse({'message': 'Gambar berhasil diunggah dan diproses'})
else:
return JsonResponse({'message': 'Permintaan tidak valid'})