from flask import Flask, render_template, url_for, request, flash import tweepy import re, string, csv, pickle, os from os.path import join, dirname, realpath import pandas as pd import numpy as np from Sastrawi.Stemmer.StemmerFactory import StemmerFactory from Sastrawi.StopWordRemover.StopWordRemoverFactory import StopWordRemoverFactory, StopWordRemover, ArrayDictionary import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from googletrans import Translator from textblob import TextBlob from sklearn.metrics import accuracy_score, precision_score, recall_score from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.feature_extraction.text import TfidfVectorizer from PIL import Image import urllib.request import matplotlib.pyplot as plt from wordcloud import WordCloud from sklearn.naive_bayes import MultinomialNB nltk.download('punkt') nltk.download('stopwords') #Preprocessing Twitter hasil_preprocessing = [] def preprocessing_twitter(): # Membuat File CSV file = open('static/files/Data Preprocessing.csv', 'w', newline='', encoding='utf-8') writer = csv.writer(file) hasil_preprocessing.clear() with open("static/files/Data Scraping.csv", "r",encoding='utf-8') as csvfile: readCSV = csv.reader(csvfile, delimiter =',') hasil_labeling.clear() for row in readCSV: # proses cleansing #remove mention, link,hashtag clean = ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)"," ", row[2]).split()) # remove number clean = re.sub("\d+", "", clean) # remove single char clean = re.sub(r"\b[a-zA-Z]\b", "", clean) # remove multiple whitespace menjadi satu spasi clean = re.sub('\s+', ' ', clean) # remove punctuation (emoji) clean = clean.translate(clean.maketrans("", "", string.punctuation)) # proses casefolding casefold = clean.casefold() #proses normalisasi normalized_text = normalize_text(casefold) # proses tokenizing tokenizing = nltk.tokenize.word_tokenize(normalized_text) # proses stopword # mengambil data stop word dari library stop_factory = StopWordRemoverFactory().get_stop_words() # menambah stopword sendiri more_stop_word = ['&', 'ad', 'ada', 'ae', 'ah', 'aja', 'ajar', 'ajar', 'amp', 'apa', 'aya', 'bab', 'bajo', 'bar', 'bbrp', 'beda', 'begini', 'bgmn', 'bgt', 'bhw', 'biar', 'bikin', 'bilang', 'bkh', 'bkn', 'bln', 'bnyk', 'brt', 'buah', 'cc', 'cc', 'ckp', 'com', 'cuy', 'd', 'dab', 'dah', 'dan', 'dg', 'dgn', 'di', 'dih', 'dlm', 'dm', 'dpo', 'dr', 'dr', 'dri', 'duga', 'duh', 'enth', 'er', 'et', 'ga', 'gak', 'gal', 'gin', 'gitu', 'gk', 'gmn', 'gs', 'gt', 'gue', 'gw', 'hah', 'hallo', 'halo', 'hehe', 'hello', 'hha', 'hrs', 'https', 'ia', 'iii', 'in', 'ini', 'iw', 'jadi', 'jadi', 'jangn', 'jd', 'jg', 'jgn', 'jls', 'kak', 'kali', 'kalo', 'kan', 'kch', 'ke', 'kena', 'ket', 'kl', 'kll', 'klo', 'km', 'kmrn', 'knp', 'kok', 'kpd', 'krn', 'kui', 'lagi', 'lah', 'lahh', 'lalu', 'lbh', 'lewat', 'loh', 'lu', 'mah', 'mau', 'min', 'mlkukan', 'mls', 'mnw', 'mrk', 'n', 'nan', 'ni', 'nih', 'no', 'nti', 'ntt', 'ny', 'nya', 'nyg', 'oleh', 'ono', 'ooooo', 'op', 'org', 'pen', 'pk', 'pun', 'qq', 'rd', 'rt', 'sama', 'sbg', 'sdh', 'sdrhn', 'segera', 'sgt', 'si', 'si', 'sih', 'sj', 'so', 'sy', 't', 'tak', 'tak', 'tara', 'tau', 'td', 'tdk', 'tdk', 'thd', 'thd', 'thn', 'tindkn', 'tkt', 'tp', 'tsb', 'ttg', 'ttp', 'tuh', 'tv', 'u', 'upa', 'utk', 'uyu', 'viral', 'vm', 'wae', 'wah', 'wb', 'wes', 'wk', 'wkwk', 'wkwkwk', 'wn', 'woiii', 'xxxx', 'ya', 'yaa', 'yah', 'ybs', 'ye', 'yg', 'ykm'] # menggabungkan stopword library + milik sendiri data = stop_factory + more_stop_word dictionary = ArrayDictionary(data) str = StopWordRemover(dictionary) stop_wr = nltk.tokenize.word_tokenize(str.remove(normalized_text)) # proses stemming kalimat = ' '.join(stop_wr) factory = StemmerFactory() # mamanggil fungsi stemming stemmer = factory.create_stemmer() stemming = stemmer.stem(kalimat) tweets =[row[0], row[1], row[2], clean, casefold, normalized_text, tokenizing, stop_wr, stemming] hasil_preprocessing.append(tweets) writer.writerow(tweets) flash('Preprocessing Berhasil', 'preprocessing_data') def normalize_text(text): # Contoh normalisasi: mengganti singkatan-singkatan menjadi kata lengkap text = re.sub(r'dn', 'dan', text) text = re.sub(r'km', 'kamu', text) text = re.sub(r'pake', 'pakai', text) text = re.sub(r'mksh', 'terima kasih', text) text = re.sub(r'krg', 'kurang', text) text = re.sub(r'sm', 'sama', text) text = re.sub(r'bljr', 'belajar', text) text = re.sub(r'blajar', 'belajar', text) text = re.sub(r'meept', 'mepet', text) text = re.sub(r'dr', 'dari', text) text = re.sub(r'jg', 'juga', text) # Tambahkan normalisasi lainnya sesuai kebutuhan return text # Labeling hasil_labeling = [] def labeling_twitter(): # Membuat File CSV file = open('static/files/Data Labeling.csv', 'w', newline='', encoding='utf-8') writer = csv.writer(file) translator = Translator() with open("static/files/Data Preprocessing.csv", "r",encoding='utf-8') as csvfile: readCSV = csv.reader(csvfile, delimiter =',') hasil_labeling.clear() for row in readCSV: tweet = {} try: value = translator.translate(row[8], dest='en') except: print("Terjadi kesalahan", flush=True) terjemahan = value.text data_label = TextBlob(terjemahan) if data_label.sentiment.polarity > 0.0 : tweet['sentiment'] = "Positif" else : tweet['sentiment'] = "Negatif" labeling = tweet['sentiment'] tweets =[row[1], row[8], labeling] hasil_labeling.append(tweets) writer.writerow(tweets) flash('Labeling Berhasil', 'labeling_data') #Klasifikasi # Membuat variabel df df = None df2 = None # menentukan akurasi 0 akurasi = 0 def proses_klasifikasi(): global df global df2 global akurasi tweet = [] y = [] with open("static/files/Data Labeling.csv", encoding='utf-8') as csvfile: readCSV = csv.reader(csvfile, delimiter=',') for row in readCSV: tweet.append(row[1]) y.append(row[2]) vectorizer = TfidfVectorizer() vectorizer.fit(tweet) # tfidf = vectorizer.fit_transform(X_train) x = vectorizer.transform(tweet) # split data training dan testing 80:20 x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=42) # metode NB clf = MultinomialNB() clf.fit(x_train, y_train) predict = clf.predict(x_test) report = classification_report(y_test, predict, output_dict=True) # simpan ke csv clsf_report = pd.DataFrame(report).transpose() clsf_report.to_csv( 'static/files/Data Klasifikasi.csv', index=True) pickle.dump(vectorizer, open('static/files/vec.pkl', 'wb')) pickle.dump(x, open('static/files/tfidf.pkl', 'wb')) pickle.dump(clf, open('static/files/model.pkl', 'wb')) #Confusion Matrix unique_label = np.unique([y_test, predict]) cmtx = pd.DataFrame( confusion_matrix(y_test, predict, labels=unique_label), index=['pred:{:}'.format(x) for x in unique_label], columns=['true:{:}'.format(x) for x in unique_label] ) cmtx.to_csv( 'static/files/Data Confusion Matrix.csv', index=True) df = pd.read_csv( 'static/files/Data Confusion Matrix.csv', sep=",") df.rename(columns={'Unnamed: 0': ''}, inplace=True) df2 = pd.read_csv( 'static/files/Data Klasifikasi.csv', sep=",") df2.rename(columns={'Unnamed: 0': ''}, inplace=True) akurasi = round(accuracy_score(y_test, predict) * 100, 2) kalimat = "" for i in tweet: s = ("".join(i)) kalimat += s urllib.request.urlretrieve( "https://firebasestorage.googleapis.com/v0/b/sentimen-97d49.appspot.com/o/Circle-icon.png?alt=media&token=b9647ca7-dfdb-46cd-80a9-cfcaa45a1ee4", 'circle.png') mask = np.array(Image.open("circle.png")) wordcloud = WordCloud(width=1600, height=800, max_font_size=200, background_color='white', mask=mask) wordcloud.generate(kalimat) plt.figure(figsize=(12, 10)) plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.savefig('static/files/wordcloud.png') flash('Klasifikasi Berhasil', 'klasifikasi_data') app = Flask(__name__) app.config['SECRET_KEY'] = 'farez' # Upload folder UPLOAD_FOLDER = 'static/files' ALLOWED_EXTENSION = set(['csv']) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSION @app.route('/') def index(): return render_template('index.html') @app.route('/preprocessing', methods=['GET', 'POST']) def preprocessing(): if request.method == 'POST': if request.form.get('upload') == 'Upload Data': hasil_preprocessing.clear() file = request.files['file'] if not allowed_file(file.filename): flash('Format file tidak diperbolehkan', 'upload_gagal') return render_template('preprocessing.html', value=hasil_preprocessing) if 'file' not in request.files: flash('File tidak boleh kosong', 'upload_gagal') return render_template('preprocessing.html', value=hasil_preprocessing) if file.filename == '': flash('File tidak boleh kosong', 'upload_gagal') return render_template('preprocessing.html', value=hasil_preprocessing) if file and allowed_file(file.filename): file.filename = "Data Scraping.csv" file.save(os.path.join(app.config['UPLOAD_FOLDER'], file.filename)) hasil_preprocessing.clear() flash('File Berhasil di upload', 'upload_berhasil') return render_template('preprocessing.html') if request.form.get('preprocess') == 'Preprocessing Data': preprocessing_twitter() return render_template('preprocessing.html', value=hasil_preprocessing) return render_template('preprocessing.html', value=hasil_preprocessing) @app.route('/labeling', methods=['GET', 'POST']) def labeling(): if request.method == 'POST': if request.form.get('upload') == 'Upload Data': hasil_labeling.clear() file = request.files['file'] if not allowed_file(file.filename): flash('Format file tidak diperbolehkan', 'upload_gagal') return render_template('labeling.html', value=hasil_labeling) if 'file' not in request.files: flash('File tidak boleh kosong', 'upload_gagal') return render_template('labeling.html', value=hasil_labeling) if file.filename == '': flash('File tidak boleh kosong', 'upload_gagal') return render_template('labeling.html', value=hasil_labeling) if file and allowed_file(file.filename): file.filename = "Data Preprocessing.csv" file.save(os.path.join(app.config['UPLOAD_FOLDER'], file.filename)) hasil_labeling.clear() flash('File Berhasil di upload', 'upload_berhasil') return render_template('labeling.html') if request.form.get('labeling') == 'Labeling Data': labeling_twitter() return render_template('labeling.html', value=hasil_labeling) return render_template('labeling.html', value=hasil_labeling) @app.route('/klasifikasi', methods=['GET', 'POST']) def klasifikasi(): if request.method == 'POST': if request.form.get('upload') == 'Upload Data': file = request.files['file'] if not allowed_file(file.filename): flash('Format file tidak diperbolehkan', 'upload_gagal') return render_template('klasifikasi.html') if 'file' not in request.files: flash('File tidak boleh kosong', 'upload_gagal') return render_template('klasifikasi.html',) if file.filename == '': flash('File tidak boleh kosong', 'upload_gagal') return render_template('klasifikasi.html') if file and allowed_file(file.filename): file.filename = "Data Labeling.csv" file.save(os.path.join(app.config['UPLOAD_FOLDER'], file.filename)) flash('File Berhasil di upload', 'upload_berhasil') return render_template('klasifikasi.html') if request.form.get('klasifikasi') == 'Klasifikasi Data': proses_klasifikasi() return render_template('klasifikasi.html', accuracy=akurasi, tables=[df.to_html(classes='table table-bordered', index=False, justify='left')], titles=df.columns.values, tables2=[df2.to_html(classes='table table-bordered', index=False, justify='left')], titles2=df2.columns.values) if akurasi == 0: return render_template('klasifikasi.html') else: return render_template('klasifikasi.html', accuracy=akurasi, tables=[df.to_html(classes='table table-bordered', index=False, justify='left')], titles=df.columns.values, tables2=[df2.to_html(classes='table table-bordered', index=False, justify='left')], titles2=df2.columns.values) @app.route('/visualisasi') def visualisasi(): return render_template('visualisasi.html') if __name__ == "__main__": app.run(debug=True)