import streamlit as st # from backend import load_model_and_vectorizer, predict_sentiment def app(): # Dropdown untuk memilih model model_choice = st.selectbox('Pilih Model', ['SVM', 'Naive Bayes', 'KNN']) # Input teks dari user user_input = st.text_area('Masukkan teks untuk analisis sentimen') # Tombol untuk melakukan prediksi if st.button('Prediksi Sentimen'): # if model_choice == 'SVM': # model_path = 'models/svm_model.pkl' # vectorizer_path = 'models/datasets-tfidf.pkl' # elif model_choice == 'Naive Bayes': # model_path = 'models/nb_model.pkl' # vectorizer_path = 'models/datasets-tfidf.pkl' # elif model_choice == 'KNN': # model_path = 'models/knn_model.pkl' # vectorizer_path = 'models/datasets-tfidf.pkl' # Load model dan vectorizer # model, vectorizer = load_model_and_vectorizer(model_path, vectorizer_path) # Prediksi sentimen # prediction = predict_sentiment(model, vectorizer, user_input) st.write(f'#### Prediksi Sentimen:') if __name__ == '__main__': app()