TIF_E41200329/Python/Corynebacterium.py

111 lines
3.2 KiB
Python

import cv2
import os
import numpy as np
import xlsxwriter
from skimage.measure import regionprops, label
# Path folder gambar
image_folder = 'D:/Skripsi/ekstraksi fitur/Corynebacterium Diphteriae'
# Cek apakah folder gambar ada
if not os.path.isdir(image_folder):
print(f"Folder {image_folder} tidak ditemukan.")
exit()
# Jumlah gambar dalam folder
image_files = [f for f in os.listdir(image_folder) if f.endswith('.jpg')]
num_images = len(image_files)
# Fungsi untuk menghitung eccentricity
def calculate_eccentricity(region):
if region.minor_axis_length == 0:
return 0
else:
return np.sqrt(1 - (region.minor_axis_length / region.major_axis_length)**2)
# Membuat workbook dan worksheet
output_file = 'D:/Skripsi/ekstraksi fitur/data_fitur.xlsx'
workbook = xlsxwriter.Workbook(output_file)
worksheet = workbook.add_worksheet()
# Menulis header
headers = ['File Name', 'Jumlah Objek', 'Eccentricity Rata-Rata', 'Metric Rata-Rata', 'Mean Hue Rata-Rata', 'Mean Saturation Rata-Rata', 'Mean Value Rata-Rata']
for col, header in enumerate(headers):
worksheet.write(0, col, header)
row = 1
# Ekstraksi fitur
for i in range(num_images):
file_name = f'{image_folder}/{image_files[i]}'
# Preprocessing
img = cv2.imread(file_name, 1)
if img is None:
print(f"Gagal membaca file: {file_name}")
continue
blue, green, red = cv2.split(img)
# Thresholding
ret, img1 = cv2.threshold(green, 115, 255, cv2.THRESH_BINARY_INV)
img1 = cv2.dilate(img1.copy(), None, iterations=1)
img1 = cv2.erode(img1.copy(), None, iterations=4)
# Labeling
labeled_img = label(img1)
regions = regionprops(labeled_img)
num_objects = len(regions)
if num_objects == 0:
continue
# Inisialisasi variabel untuk agregasi
total_eccentricity = 0
total_metric = 0
total_hue = 0
total_saturation = 0
total_value = 0
for region in regions:
# Fitur bentuk
eccentricity = calculate_eccentricity(region)
area = region.area
perimeter = region.perimeter
metric = (4 * np.pi * area) / (perimeter ** 2) if perimeter != 0 else 0
# Fitur warna HSV
mask = np.zeros(img.shape[:2], dtype="uint8")
mask[labeled_img == region.label] = 255
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mean_val = cv2.mean(hsv_img, mask=mask)[:3]
# Agregasi fitur
total_eccentricity += eccentricity
total_metric += metric
total_hue += mean_val[0]
total_saturation += mean_val[1]
total_value += mean_val[2]
# Hitung rata-rata
mean_eccentricity = total_eccentricity / num_objects
mean_metric = total_metric / num_objects
mean_hue = total_hue / num_objects
mean_saturation = total_saturation / num_objects
mean_value = total_value / num_objects
# Menulis hasil ke worksheet
worksheet.write(row, 0, image_files[i])
worksheet.write(row, 1, num_objects)
worksheet.write(row, 2, mean_eccentricity)
worksheet.write(row, 3, mean_metric)
worksheet.write(row, 4, mean_hue)
worksheet.write(row, 5, mean_saturation)
worksheet.write(row, 6, mean_value)
row += 1
# Menutup workbook
workbook.close()
print(f"Hasil ekstraksi fitur disimpan di {output_file}")