TIF_E41200329/Python/main.py

145 lines
5.4 KiB
Python

import cv2
import os
import numpy as np
import xlsxwriter
from skimage.measure import regionprops, label
# Path folder gambar
folders = {
'Corynebacterium Diphteriae': 'D:/Skripsi/ekstraksi fitur/Corynebacterium Diphteriae',
'Mycobacterium Tuberculosis': 'D:/Skripsi/ekstraksi fitur/Mycobacterium Tuberculosis',
'Neiseria Gonorroea': 'D:/Skripsi/ekstraksi fitur/Neiseria Gonorroea',
'Staphylococcus Aureus': 'D:/Skripsi/ekstraksi fitur/Staphylococcus Aureus',
'Streptococcus Pneumoniae': 'D:/Skripsi/ekstraksi fitur/Streptococcus Pneumoniae'
}
# Fungsi untuk menghitung eccentricity
def calculate_eccentricity(region):
if region.minor_axis_length == 0:
return 0
else:
return np.sqrt(1 - (region.minor_axis_length / region.major_axis_length)**2)
# Membuat workbook dan worksheet
output_file = 'D:/Skripsi/ekstraksi fitur/data_fitur.xlsx'
workbook = xlsxwriter.Workbook(output_file)
worksheet = workbook.add_worksheet()
# Menulis header
headers = ['File Name', 'Jumlah Objek', 'Eccentricity Rata-Rata', 'Metric Rata-Rata', 'Area Total', 'Perimeter Total', 'Label']
for col, header in enumerate(headers):
worksheet.write(0, col, header)
row = 1
for label_name, image_folder in folders.items():
# Cek apakah folder gambar ada
if not os.path.isdir(image_folder):
print(f"Folder {image_folder} tidak ditemukan.")
continue
# Jumlah gambar dalam folder
image_files = [f for f in os.listdir(image_folder) if f.endswith('.jpg')]
num_images = len(image_files)
# Ekstraksi fitur
for i in range(num_images):
file_name = f'{image_folder}/{image_files[i]}'
# Preprocessing
img = cv2.imread(file_name, 1)
if img is None:
print(f"Gagal membaca file: {file_name}")
continue
blue, green, red = cv2.split(img)
# Thresholding
if label_name == 'Corynebacterium Diphteriae':
ret, img_bin = cv2.threshold(green, 115, 255, cv2.THRESH_BINARY_INV)
img_bin = cv2.erode(cv2.dilate(img_bin, None, iterations=1), None, iterations=4)
elif label_name == 'Mycobacterium Tuberculosis':
ret, img_bin = cv2.threshold(green, 135, 255, cv2.THRESH_BINARY_INV)
img_bin = cv2.dilate(img_bin, None, iterations=1)
# Labeling objek dan filtering berdasarkan ukuran
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img_bin, connectivity=8)
mask = np.zeros_like(img_bin)
min_size = 50
max_size = 400
for j in range(1, num_labels): # Mulai dari 1 untuk melewatkan background
if min_size <= stats[j, cv2.CC_STAT_AREA] <= max_size:
mask[labels == j] = 255
img_bin = mask
elif label_name == 'Neiseria Gonorroea':
ret, img_bin = cv2.threshold(green, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
img_bin = cv2.dilate(img_bin, None, iterations=1)
# Labeling objek dan filtering berdasarkan ukuran
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img_bin, connectivity=8)
mask = np.zeros_like(img_bin)
min_size = 200
max_size = 2500
for j in range(1, num_labels): # Mulai dari 1 untuk melewatkan background
if min_size <= stats[j, cv2.CC_STAT_AREA] <= max_size:
mask[labels == j] = 255
img_bin = mask
elif label_name == 'Staphylococcus Aureus':
ret, img1 = cv2.threshold(green, 110, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
img_bin = cv2.erode(cv2.dilate(img1.copy(), None, iterations=1), None, iterations=1)
img_bin = cv2.morphologyEx(img_bin.copy(), cv2.MORPH_OPEN, None)
elif label_name == 'Streptococcus Pneumoniae':
ret, img1 = cv2.threshold(green, 110, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
img_bin = cv2.erode(img1.copy(), None, iterations=1)
img_bin = cv2.dilate(img1.copy(), None, iterations=1)
# Labeling
labeled_img = label(img_bin)
regions = regionprops(labeled_img)
num_objects = len(regions)
if num_objects == 0:
continue
# Inisialisasi variabel untuk agregasi
total_eccentricity = 0
total_metric = 0
total_area = 0
total_perimeter = 0
for region in regions:
# Fitur bentuk
eccentricity = calculate_eccentricity(region)
area = region.area
perimeter = region.perimeter
metric = (4 * np.pi * area) / (perimeter ** 2) if perimeter != 0 else 0
# Agregasi fitur
total_eccentricity += eccentricity
total_metric += metric
total_area += area
total_perimeter += perimeter
# Hitung rata-rata
mean_eccentricity = total_eccentricity / num_objects
mean_metric = total_metric / num_objects
# Menulis hasil ke worksheet
worksheet.write(row, 0, image_files[i])
worksheet.write(row, 1, num_objects)
worksheet.write(row, 2, mean_eccentricity)
worksheet.write(row, 3, mean_metric)
worksheet.write(row, 4, total_area)
worksheet.write(row, 5, total_perimeter)
worksheet.write(row, 6, label_name) # Menambahkan label kelas
row += 1
# Menutup workbook
workbook.close()
print(f"Hasil ekstraksi fitur disimpan di {output_file}")