TIF_E41210003/RoboSoil/Robo_Soil/views.py

181 lines
5.7 KiB
Python

from django.shortcuts import render
import cv2
import numpy as np
from matplotlib import pyplot as plt
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import os
def get_pixel(img, center, x, y):
new_value = 0
try:
if img[x][y] >= center:
new_value = 1
except:
pass
return new_value
def lbp_calculated_pixel(img, x, y):
center = img[x][y]
val_ar = []
val_ar.append(get_pixel(img, center, x-1, y-1))
val_ar.append(get_pixel(img, center, x-1, y))
val_ar.append(get_pixel(img, center, x-1, y + 1))
val_ar.append(get_pixel(img, center, x, y + 1))
val_ar.append(get_pixel(img, center, x + 1, y + 1))
val_ar.append(get_pixel(img, center, x + 1, y))
val_ar.append(get_pixel(img, center, x + 1, y-1))
val_ar.append(get_pixel(img, center, x, y-1))
power_val = [1, 2, 4, 8, 16, 32, 64, 128]
val = 0
for i in range(len(val_ar)):
val += val_ar[i] * power_val[i]
return val
def calculate_normalized_lbp_histogram(img_gray):
height, width = img_gray.shape
lbp_histogram = np.zeros(256, dtype=int)
for i in range(1, height - 1):
for j in range(1, width - 1):
lbp_val = lbp_calculated_pixel(img_gray, i, j)
lbp_histogram[lbp_val] += 1
# Normalize the histogram
lbp_histogram = lbp_histogram / sum(lbp_histogram)
return lbp_histogram
def find_mode_pixel_value(img):
img_flat = img.ravel()
mode_value = int(np.median(img_flat))
return mode_value
@csrf_exempt
def upload_image(request):
if request.method == 'POST' and request.FILES['image']:
uploaded_image = request.FILES['image']
image_path = os.path.join('media', 'uploaded_images', uploaded_image.name)
with open(image_path, 'wb+') as destination:
for chunk in uploaded_image.chunks():
destination.write(chunk)
path = image_path
img_bgr = cv2.imread(path, 1)
img_gray = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)
mode_pixel = find_mode_pixel_value(img_gray)
print(f"Nilai pixel yang paling sering muncul: {mode_pixel}")
normalized_mode_pixel = mode_pixel / 255.0
print(f"Nilai yang sering muncul yang telah dinormalisasi: {normalized_mode_pixel}")
hasil_operasi_Natrium = (normalized_mode_pixel * 0.1928 + 0.021)
print(f"hasil Nilai N (Natrium): {hasil_operasi_Natrium}")
N = hasil_operasi_Natrium
if N < 1:
Kategori_N = 1
print(Kategori_N)
elif N >= 1 and N < 2:
Kategori_N = 2
print(Kategori_N)
elif N >= 2.001 and N < 3:
Kategori_N = 3
print(Kategori_N)
elif N >= 3.001 and N < 5:
Kategori_N = 4
print(Kategori_N)
elif N >= 5.001:
Kategori_N = 5
print(Kategori_N)
else:
Kategori_N = 6
print(Kategori_N)
hasil_operasi_fosfor = (normalized_mode_pixel * -10.725) + 16.533
print(f"hasil Nilai P (Fosfor): {hasil_operasi_fosfor}")
P = hasil_operasi_fosfor
if P < 10:
Kategori_P = 1
print(Kategori_P)
elif P >= 10 and P <= 25:
Kategori_P = 2
print(Kategori_P)
elif P >= 26 and P <= 45:
Kategori_P = 3
print(Kategori_P)
elif P >= 46 and P <= 60:
Kategori_P = 4
print(Kategori_P)
elif P > 60:
Kategori_P = 5
print(Kategori_P)
else:
Kategori_P = 6
print(Kategori_P)
hasil_operasi_Kalium = (normalized_mode_pixel * -0.1864 + 0.2471)
print(f"hasil Nilai K (Kalium): {hasil_operasi_Kalium}")
K = hasil_operasi_Kalium
if K < 0.1:
Kategori_K = 1
print(Kategori_K)
elif K >= 0.1 and K <= 0.3:
Kategori_K = 2
print(Kategori_K)
elif K >= 0.4 and K <= 0.5:
Kategori_K = 3
print(Kategori_K)
elif K >= 0.6 and K <= 1.0:
Kategori_K = 4
print(Kategori_K)
elif K > 1.0:
Kategori_K = 5
print(Kategori_K)
else:
Kategori_K = 6
print(Kategori_K)
# Hasil perhitungan NPK
N = hasil_operasi_Natrium
P = hasil_operasi_fosfor
K = hasil_operasi_Kalium
# Nilai N, P, dan K yang ingin Anda cocokkan
target_N = 1
target_P = 2
target_K = 2
# Mencocokkan dengan kategori yang dihitung
if N <= target_N :
print("Perlu Perbaikan Nilai N")
if N == target_N :
print("Perlu Perbaikan N")
else:
print("Hasil tidak cocok dengan data yang diberikan.")
if P <= target_P :
print("Perlu Perbaikan Nilai P")
else:
print("Hasil tidak cocok dengan data yang diberikan.")
if K <= target_K :
print("Perlu Perbaikan Nilai K")
else:
print("Hasil tidak cocok dengan data yang diberikan.")
# Rekomendasi_N = Kategori_N
# if Kategori_N <= 1:
# Rekomendasi_N = "S3"
# print(Rekomendasi_N)
# else:
# Kategori_K = 6
# print(Kategori_K)
# SaranTanaman = RekomendasiTanaman
lbp_histogram = calculate_normalized_lbp_histogram(img_gray)
print("Program LBP selesai")
return JsonResponse({'message': 'Gambar berhasil diunggah dan diproses'})
else:
return JsonResponse({'message': 'Permintaan tidak valid'})