181 lines
5.7 KiB
Python
181 lines
5.7 KiB
Python
from django.shortcuts import render
|
|
import cv2
|
|
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
from django.http import JsonResponse
|
|
from django.views.decorators.csrf import csrf_exempt
|
|
import os
|
|
|
|
def get_pixel(img, center, x, y):
|
|
new_value = 0
|
|
try:
|
|
if img[x][y] >= center:
|
|
new_value = 1
|
|
except:
|
|
pass
|
|
return new_value
|
|
|
|
def lbp_calculated_pixel(img, x, y):
|
|
center = img[x][y]
|
|
val_ar = []
|
|
val_ar.append(get_pixel(img, center, x-1, y-1))
|
|
val_ar.append(get_pixel(img, center, x-1, y))
|
|
val_ar.append(get_pixel(img, center, x-1, y + 1))
|
|
val_ar.append(get_pixel(img, center, x, y + 1))
|
|
val_ar.append(get_pixel(img, center, x + 1, y + 1))
|
|
val_ar.append(get_pixel(img, center, x + 1, y))
|
|
val_ar.append(get_pixel(img, center, x + 1, y-1))
|
|
val_ar.append(get_pixel(img, center, x, y-1))
|
|
power_val = [1, 2, 4, 8, 16, 32, 64, 128]
|
|
val = 0
|
|
for i in range(len(val_ar)):
|
|
val += val_ar[i] * power_val[i]
|
|
return val
|
|
|
|
def calculate_normalized_lbp_histogram(img_gray):
|
|
height, width = img_gray.shape
|
|
lbp_histogram = np.zeros(256, dtype=int)
|
|
|
|
for i in range(1, height - 1):
|
|
for j in range(1, width - 1):
|
|
lbp_val = lbp_calculated_pixel(img_gray, i, j)
|
|
lbp_histogram[lbp_val] += 1
|
|
|
|
# Normalize the histogram
|
|
lbp_histogram = lbp_histogram / sum(lbp_histogram)
|
|
|
|
return lbp_histogram
|
|
|
|
def find_mode_pixel_value(img):
|
|
img_flat = img.ravel()
|
|
mode_value = int(np.median(img_flat))
|
|
return mode_value
|
|
|
|
@csrf_exempt
|
|
def upload_image(request):
|
|
if request.method == 'POST' and request.FILES['image']:
|
|
uploaded_image = request.FILES['image']
|
|
image_path = os.path.join('media', 'uploaded_images', uploaded_image.name)
|
|
|
|
with open(image_path, 'wb+') as destination:
|
|
for chunk in uploaded_image.chunks():
|
|
destination.write(chunk)
|
|
|
|
path = image_path
|
|
img_bgr = cv2.imread(path, 1)
|
|
img_gray = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)
|
|
mode_pixel = find_mode_pixel_value(img_gray)
|
|
print(f"Nilai pixel yang paling sering muncul: {mode_pixel}")
|
|
normalized_mode_pixel = mode_pixel / 255.0
|
|
print(f"Nilai yang sering muncul yang telah dinormalisasi: {normalized_mode_pixel}")
|
|
|
|
hasil_operasi_Natrium = (normalized_mode_pixel * 0.1928 + 0.021)
|
|
print(f"hasil Nilai N (Natrium): {hasil_operasi_Natrium}")
|
|
N = hasil_operasi_Natrium
|
|
if N < 1:
|
|
Kategori_N = 1
|
|
print(Kategori_N)
|
|
elif N >= 1 and N < 2:
|
|
Kategori_N = 2
|
|
print(Kategori_N)
|
|
elif N >= 2.001 and N < 3:
|
|
Kategori_N = 3
|
|
print(Kategori_N)
|
|
elif N >= 3.001 and N < 5:
|
|
Kategori_N = 4
|
|
print(Kategori_N)
|
|
elif N >= 5.001:
|
|
Kategori_N = 5
|
|
print(Kategori_N)
|
|
else:
|
|
Kategori_N = 6
|
|
print(Kategori_N)
|
|
|
|
hasil_operasi_fosfor = (normalized_mode_pixel * -10.725) + 16.533
|
|
print(f"hasil Nilai P (Fosfor): {hasil_operasi_fosfor}")
|
|
P = hasil_operasi_fosfor
|
|
if P < 10:
|
|
Kategori_P = 1
|
|
print(Kategori_P)
|
|
elif P >= 10 and P <= 25:
|
|
Kategori_P = 2
|
|
print(Kategori_P)
|
|
elif P >= 26 and P <= 45:
|
|
Kategori_P = 3
|
|
print(Kategori_P)
|
|
elif P >= 46 and P <= 60:
|
|
Kategori_P = 4
|
|
print(Kategori_P)
|
|
elif P > 60:
|
|
Kategori_P = 5
|
|
print(Kategori_P)
|
|
else:
|
|
Kategori_P = 6
|
|
print(Kategori_P)
|
|
|
|
hasil_operasi_Kalium = (normalized_mode_pixel * -0.1864 + 0.2471)
|
|
print(f"hasil Nilai K (Kalium): {hasil_operasi_Kalium}")
|
|
K = hasil_operasi_Kalium
|
|
if K < 0.1:
|
|
Kategori_K = 1
|
|
print(Kategori_K)
|
|
elif K >= 0.1 and K <= 0.3:
|
|
Kategori_K = 2
|
|
print(Kategori_K)
|
|
elif K >= 0.4 and K <= 0.5:
|
|
Kategori_K = 3
|
|
print(Kategori_K)
|
|
elif K >= 0.6 and K <= 1.0:
|
|
Kategori_K = 4
|
|
print(Kategori_K)
|
|
elif K > 1.0:
|
|
Kategori_K = 5
|
|
print(Kategori_K)
|
|
else:
|
|
Kategori_K = 6
|
|
print(Kategori_K)
|
|
|
|
# Hasil perhitungan NPK
|
|
N = hasil_operasi_Natrium
|
|
P = hasil_operasi_fosfor
|
|
K = hasil_operasi_Kalium
|
|
|
|
# Nilai N, P, dan K yang ingin Anda cocokkan
|
|
target_N = 1
|
|
target_P = 2
|
|
target_K = 2
|
|
|
|
# Mencocokkan dengan kategori yang dihitung
|
|
if N <= target_N :
|
|
print("Perlu Perbaikan Nilai N")
|
|
if N == target_N :
|
|
print("Perlu Perbaikan N")
|
|
else:
|
|
print("Hasil tidak cocok dengan data yang diberikan.")
|
|
|
|
if P <= target_P :
|
|
print("Perlu Perbaikan Nilai P")
|
|
else:
|
|
print("Hasil tidak cocok dengan data yang diberikan.")
|
|
|
|
if K <= target_K :
|
|
print("Perlu Perbaikan Nilai K")
|
|
else:
|
|
print("Hasil tidak cocok dengan data yang diberikan.")
|
|
|
|
|
|
# Rekomendasi_N = Kategori_N
|
|
# if Kategori_N <= 1:
|
|
# Rekomendasi_N = "S3"
|
|
# print(Rekomendasi_N)
|
|
# else:
|
|
# Kategori_K = 6
|
|
# print(Kategori_K)
|
|
|
|
# SaranTanaman = RekomendasiTanaman
|
|
lbp_histogram = calculate_normalized_lbp_histogram(img_gray)
|
|
print("Program LBP selesai")
|
|
|
|
return JsonResponse({'message': 'Gambar berhasil diunggah dan diproses'})
|
|
else:
|
|
return JsonResponse({'message': 'Permintaan tidak valid'}) |