from flask import Flask, request, jsonify import joblib import numpy as np app = Flask(__name__) # Load model dan scaler scaler = joblib.load('svm_model/scaler.joblib') model = joblib.load('svm_model/model_svm_bestacc.joblib') @app.route('/predict', methods=['POST']) def predict(): try: data = request.get_json() features = [data['kd'], data['win_ratio'], data['accuracy'], data['headshot_rate']] scaled = scaler.transform([features]) pred = model.predict(scaled) hasil = "Layak" if pred[0] == 0 else "Tidak Layak" confidence = None if hasattr(model, "predict_proba"): try: proba = model.predict_proba(scaled)[0] print("Probabilities:", proba) # 🔍 Cek output proba confidence = float(max(proba)) except Exception as e: print("Error saat predict_proba:", e) return jsonify({ 'hasil': hasil, 'confidence': confidence }) except Exception as e: return jsonify({'error': str(e)}), 500 if __name__ == '__main__': app.run(port=5000, debug=True)