import sys import joblib import numpy as np import os # Ambil input dari argument features = list(map(float, sys.argv[1:])) data_baru = np.array([features]) # Load scaler dan model (dibalik dari sebelumnya) BASE_DIR = os.path.dirname(__file__) scaler = joblib.load(os.path.join(BASE_DIR, 'scaler.joblib')) model = joblib.load(os.path.join(BASE_DIR, 'best_model_svm.joblib')) # Normalisasi & prediksi data_scaled = scaler.transform(data_baru) pred = model.predict(data_scaled) # Output hasil prediksi print("Layak" if pred[0] == 0 else "Tidak Layak")