import cv2 # Membaca gambar asli original_image = cv2.imread('images/backup/testface/Akshay Kumar/Akshay Kumar_40.jpg') cv2.imshow('Original Image', original_image) # Mengonversi gambar ke grayscale gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) cv2.imshow('Grayscale Image', gray_image) # Meningkatkan kontras gambar grayscale contrastpic = cv2.equalizeHist(gray_image) cv2.imshow('Contrast Enhanced Image', contrastpic) # Memuat classifier Haar Cascade untuk deteksi wajah face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # Mendeteksi wajah dalam gambar grayscale faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.2, minNeighbors=10, minSize=(50, 50)) # Inisialisasi variabel cropped_face dengan nilai kosong cropped_face = None for i, (x, y, w, h) in enumerate(faces, 1): # Memotong wajah dari gambar asli cropped_face = original_image[y:y + h, x:x + w] cv2.imshow(f'Cropped Face {i}', cropped_face) # Mengubah ukuran wajah terpotong if cropped_face is not None: resized_face = cv2.resize(cropped_face, (300, 300)) cv2.imshow('Resized Face', resized_face) # Mengonversi wajah yang diubah ukurannya ke grayscale gray_resized_face = cv2.cvtColor(resized_face, cv2.COLOR_BGR2GRAY) cv2.imshow('Grayscale Resized Face', gray_resized_face) # Melakukan normalisasi pada wajah grayscale yang diubah ukurannya normalized_face = cv2.normalize(gray_resized_face, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX) cv2.imshow('Normalized Face', normalized_face) cv2.waitKey(0) cv2.destroyAllWindows()