import numpy as np import cv2 import os import joblib from skimage.feature import local_binary_pattern from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score # Fungsi ekstraksi fitur LBP def extract_lbp_features(image, radius=1, n_points=8, method='uniform'): lbp = local_binary_pattern(image, n_points, radius, method) (hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, n_points + 3), range=(0, n_points + 2)) # Normalize the histogram hist = hist.astype("float") hist /= (hist.sum() + 1e-7) return hist # Fungsi deteksi wajah dan pemotongan def detect_and_crop_faces(image_path): # Baca gambar original_image = cv2.imread(image_path) gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) # Peningkatan kontras gray_image = cv2.equalizeHist(gray_image) # Muat pre-trained Haar Cascade untuk deteksi wajah face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # Deteksi wajah pada gambar dengan parameter yang disesuaikan faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.2, minNeighbors=10, minSize=(50, 50)) # Cek jumlah wajah yang terdeteksi print(f'{image_path}: {len(faces)} face(s) detected') # Loop melalui setiap wajah yang terdeteksi, potong, dan tampilkan for i, (x, y, w, h) in enumerate(faces, 1): # Pemotongan (Cropping) wajah cropped_face = original_image[y:y + h, x:x + w] # # Tampilkan gambar wajah yang terpotong # cv2.imshow(f'Cropped Face {i}', cropped_face) # # # Tunggu 1 detik sebelum menampilkan gambar berikutnya # cv2.waitKey(1000) return faces # Persiapkan data latih dan label X_train = [] # Menampung fitur-fitur ekstraksi y_train = [] # Menampung label kelas # Path root folder root_folder = 'images/trainface/' # Iterasi melalui setiap folder for person_folder in os.listdir(root_folder): person_folder_path = os.path.join(root_folder, person_folder) # Pastikan path adalah direktori if os.path.isdir(person_folder_path): # Iterasi melalui setiap gambar dalam folder for image_name in os.listdir(person_folder_path): image_path = os.path.join(person_folder_path, image_name) # Pastikan path adalah file gambar if os.path.isfile(image_path): # Deteksi wajah dan cropping faces = detect_and_crop_faces(image_path) # Baca kembali gambar setelah deteksi wajah original_image = cv2.imread(image_path) # Loop melalui setiap wajah yang terdeteksi, potong, dan ekstraksi LBP for i, (x, y, w, h) in enumerate(faces, 1): # Pemotongan (Cropping) wajah cropped_face = original_image[y:y + h, x:x + w] # Resize gambar menjadi 100x100 piksel resized_face = cv2.resize(cropped_face, (100, 100)) # Konversi gambar resized ke grayscale gray_resized_face = cv2.cvtColor(resized_face, cv2.COLOR_BGR2GRAY) # Normalisasi intensitas normalized_face = cv2.normalize(gray_resized_face, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX) # Ekstraksi fitur LBP lbp_features = extract_lbp_features(normalized_face, radius=1, n_points=8, method='uniform') # Tampilkan nilai ekstraksi LBP ke konsol print(f'LBP Features for face {i}: {lbp_features}') # Tambahkan fitur dan label ke data latih X_train.append(lbp_features) y_train.append(person_folder) # Label kelas adalah nama folder # Inisialisasi dan latih model K-NN knn_classifier = KNeighborsClassifier(n_neighbors=1) # Atur parameter K sesuai kebutuhan knn_classifier.fit(X_train, y_train) # Prediksi kelas pada data latih y_train_pred = knn_classifier.predict(X_train) # Hitung dan cetak akurasi pada data latih train_accuracy = accuracy_score(y_train, y_train_pred) print(f"Training Accuracy: {train_accuracy:.2f}") # Simpan model ke file joblib.dump(knn_classifier, 'facemodel.joblib')