import numpy as np import cv2 from skimage.feature import local_binary_pattern import os from joblib import load import sys def extract_lbp_features(image, radius=1, n_points=8, method='uniform'): lbp = local_binary_pattern(image, n_points, radius, method) (hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, n_points + 3), range=(0, n_points + 2)) # Normalize the histogram hist = hist.astype("float") hist /= (hist.sum() + 1e-7) return hist # Mendapatkan path lengkap ke file facemodel.joblib model_path = os.path.join(os.path.dirname(__file__), 'facemodel.joblib') # Memuat model dari file knn_model = load(model_path) # Path ke gambar wajah uji (diteruskan sebagai argumen command line) test_image_path = sys.argv[1] # Baca gambar original_image = cv2.imread(test_image_path) gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) # Peningkatan kontras gray_image = cv2.equalizeHist(gray_image) # Muat pre-trained Haar Cascade untuk deteksi wajah face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # Deteksi wajah pada gambar dengan parameter yang disesuaikan faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=8, minSize=(30, 30)) # Cek jumlah wajah yang terdeteksi print(f'{test_image_path}: {len(faces)} face(s) detected') # Loop melalui setiap wajah yang terdeteksi, potong, dan ekstraksi LBP for i, (x, y, w, h) in enumerate(faces, 1): # Pemotongan (Cropping) wajah cropped_face = original_image[y:y + h, x:x + w] # Resize gambar menjadi 100x100 piksel resized_face = cv2.resize(cropped_face, (100, 100)) # Konversi gambar resized ke grayscale gray_resized_face = cv2.cvtColor(resized_face, cv2.COLOR_BGR2GRAY) # Normalisasi intensitas normalized_face = cv2.normalize(gray_resized_face, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX) # Ekstraksi fitur LBP untuk gambar uji test_lbp_features = extract_lbp_features(normalized_face, radius=1, n_points=8, method='uniform') # Prediksi kelas menggunakan model K-NN predicted_class = knn_model.predict([test_lbp_features])[0] # Tampilkan hasil prediksi print(f'Predicted class for face {i}: {predicted_class}')