feat: repository pattern

This commit is contained in:
akhdanre 2024-10-10 10:53:13 +07:00
parent 27f29d7632
commit ddcf4d0c90
19 changed files with 111 additions and 64 deletions

Binary file not shown.

12
blueprints/user.py Normal file
View File

@ -0,0 +1,12 @@
# /blueprints/user.py
from flask import Blueprint, jsonify
from controllers.user_controller import UserController
user_blueprint = Blueprint("user", __name__)
user_controller = UserController()
@user_blueprint.route("/users", methods=["GET"])
def get_users():
return user_controller.get_users()

0
controllers/__init__.py Normal file
View File

Binary file not shown.

View File

@ -0,0 +1,17 @@
# # Sample Data Preparation
# input_dim = 3 # Example input dimension
# hidden_dim = 5 # Example hidden dimension
# num_samples = 1000
# sequence_length = 10
# # Generate dummy data for training
# X = np.random.randn(num_samples, input_dim, 1) # Shape (num_samples, input_dim, 1)
# y = np.random.randn(
# num_samples, hidden_dim, 1
# ) # Shape (num_samples, hidden_dim, 1)
# # Initialize and train the LSTM
# lstm = LSTM(input_dim, hidden_dim)
# lstm.train(X, y, num_epochs=10, learning_rate=0.01)

View File

@ -0,0 +1,12 @@
# /controllers/user_controller.py
from flask import jsonify
from services.user_service import UserService
class UserController:
def __init__(self):
self.user_service = UserService()
def get_users(self):
users = self.user_service.get_all_users()
return jsonify(users)

58
lstm.py
View File

@ -1,58 +0,0 @@
import numpy as np
class LSTM:
def __init__(self, input_dim, hidden_dim):
# Initialize weights and biases
self.Wf = np.random.rand(hidden_dim, hidden_dim + input_dim)
self.bf = np.random.rand(hidden_dim, 1)
self.Wi = np.random.rand(hidden_dim, hidden_dim + input_dim)
self.bi = np.random.rand(hidden_dim, 1)
self.WC = np.random.rand(hidden_dim, hidden_dim + input_dim)
self.bC = np.random.rand(hidden_dim, 1)
self.Wo = np.random.rand(hidden_dim, hidden_dim + input_dim)
self.bo = np.random.rand(hidden_dim, 1)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def tanh(self, x):
return np.tanh(x)
def forward(self, x_t, h_prev, C_prev):
# Combine previous hidden state and current input
combined = np.vstack((h_prev, x_t))
# Forget gate
f_t = self.sigmoid(np.dot(self.Wf, combined) + self.bf)
# Input gate
i_t = self.sigmoid(np.dot(self.Wi, combined) + self.bi)
C_tilde = self.tanh(np.dot(self.WC, combined) + self.bC)
# Cell state
C_t = f_t * C_prev + i_t * C_tilde
# Output gate
o_t = self.sigmoid(np.dot(self.Wo, combined) + self.bo)
h_t = o_t * self.tanh(C_t)
return h_t, C_t
# Example usage
input_dim = 5 # Input feature size
hidden_dim = 3 # Number of hidden units
lstm = LSTM(input_dim, hidden_dim)
# Sample inputs
h_prev = np.zeros((hidden_dim, 1)) # Previous hidden state
C_prev = np.zeros((hidden_dim, 1)) # Previous cell state
x_t = np.random.rand(input_dim, 1) # Current input
# Forward pass
h_t, C_t = lstm.forward(x_t, h_prev, C_prev)
print("Current hidden state:", h_t)
print("Current cell state:", C_t)

View File

@ -1,12 +1,9 @@
from flask import Flask
from blueprints.user import user_blueprint
app = Flask(__name__)
@app.route('/')
def home():
return "Hello, World!"
app.register_blueprint(user_blueprint, url_prefix="/api")
if __name__ == '__main__':
if __name__ == "__main__":
app.run(debug=True)

0
models/__init__.py Normal file
View File

0
repositories/__init__.py Normal file
View File

Binary file not shown.

View File

@ -0,0 +1,3 @@
class UserRepository:
def get_all_users(self):
return [{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}]

0
services/__init__.py Normal file
View File

Binary file not shown.

Binary file not shown.

53
services/lstm.py Normal file
View File

@ -0,0 +1,53 @@
import numpy as np
class LSTM:
def __init__(self, input_dim, hidden_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.Wf = np.random.randn(hidden_dim, input_dim + hidden_dim) * 0.01
self.Wi = np.random.randn(hidden_dim, input_dim + hidden_dim) * 0.01
self.Wc = np.random.randn(hidden_dim, input_dim + hidden_dim) * 0.01
self.Wo = np.random.randn(hidden_dim, input_dim + hidden_dim) * 0.01
self.bf = np.zeros((hidden_dim, 1))
self.bi = np.zeros((hidden_dim, 1))
self.bc = np.zeros((hidden_dim, 1))
self.bo = np.zeros((hidden_dim, 1))
self.h = np.zeros((hidden_dim, 1))
self.c = np.zeros((hidden_dim, 1))
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def tanh(self, x):
return np.tanh(x)
def forward(self, x_t):
combined = np.vstack((self.h, x_t))
f_t = self.sigmoid(np.dot(self.Wf, combined) + self.bf)
i_t = self.sigmoid(np.dot(self.Wi, combined) + self.bi)
C_tilde_t = self.tanh(np.dot(self.Wc, combined) + self.bc)
self.c = f_t * self.c + i_t * C_tilde_t
o_t = self.sigmoid(np.dot(self.Wo, combined) + self.bo)
self.h = o_t * self.tanh(self.c)
return self.h
def backward(self, x_t, h_t, y_t, learning_rate):
# Your backward pass implementation here
pass
def train(self, X, y, num_epochs, learning_rate):
for epoch in range(num_epochs):
for i in range(len(X)):
x_t = X[i]
y_t = y[i]
# Forward pass
h_t = self.forward(x_t)
# Calculate loss and perform backward pass
loss = np.mean((h_t - y_t) ** 2) # Example loss
self.backward(x_t, h_t, y_t, learning_rate)
if i % 100 == 0: # Print loss every 100 samples
print(f"Epoch {epoch}, Sample {i}, Loss: {loss}")

11
services/user_service.py Normal file
View File

@ -0,0 +1,11 @@
# /services/user_service.py
from repositories.user_repository import UserRepository
class UserService:
def __init__(self):
self.user_repository = UserRepository()
def get_all_users(self):
return self.user_repository.get_all_users()