TIF_E41211115_Genso_quiz_ba.../app/services/lstm_service.py

59 lines
1.9 KiB
Python

from keras.models import load_model
import pickle
class LSTMService:
def predict(self, input_data, maxlen=50):
with open("QC/tokenizers.pkl", "rb") as f:
tokenizers = pickle.load(f)
model = load_model("QC/lstm_qg.keras")
tok_token = tokenizers["token"]
tok_ner = tokenizers["ner"]
tok_srl = tokenizers["srl"]
tok_q = tokenizers["question"]
tok_a = tokenizers["answer"]
tok_type = tokenizers["type"]
# Prepare input
tokens = input_data["tokens"]
ner = input_data["ner"]
srl = input_data["srl"]
x_tok = pad_sequences(
[tok_token.texts_to_sequences([tokens])[0]], maxlen=maxlen, padding="post"
)
x_ner = pad_sequences(
[tok_ner.texts_to_sequences([ner])[0]], maxlen=maxlen, padding="post"
)
x_srl = pad_sequences(
[tok_srl.texts_to_sequences([srl])[0]], maxlen=maxlen, padding="post"
)
# Predict
pred_q, pred_a, pred_type = model.predict([x_tok, x_ner, x_srl])
pred_q_ids = np.argmax(pred_q[0], axis=-1)
pred_a_ids = np.argmax(pred_a[0], axis=-1)
pred_type_id = np.argmax(pred_type[0])
# Decode
index2word_q = {v: k for k, v in tok_q.word_index.items()}
index2word_a = {v: k for k, v in tok_a.word_index.items()}
index2word_q[0] = "<PAD>"
index2word_a[0] = "<PAD>"
decoded_q = [index2word_q[i] for i in pred_q_ids if i != 0]
decoded_a = [index2word_a[i] for i in pred_a_ids if i != 0]
index2type = {v - 1: k for k, v in tok_type.word_index.items()}
decoded_type = index2type.get(pred_type_id, "unknown")
return {
"question": " ".join(decoded_q),
"answer": " ".join(decoded_a),
"type": decoded_type,
}