TIF_E41211115_Genso_quiz_ba.../main.py

59 lines
1.7 KiB
Python

import numpy as np
class LSTM:
def __init__(self, input_dim, hidden_dim):
# Initialize weights and biases
self.Wf = np.random.rand(hidden_dim, hidden_dim + input_dim)
self.bf = np.random.rand(hidden_dim, 1)
self.Wi = np.random.rand(hidden_dim, hidden_dim + input_dim)
self.bi = np.random.rand(hidden_dim, 1)
self.WC = np.random.rand(hidden_dim, hidden_dim + input_dim)
self.bC = np.random.rand(hidden_dim, 1)
self.Wo = np.random.rand(hidden_dim, hidden_dim + input_dim)
self.bo = np.random.rand(hidden_dim, 1)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def tanh(self, x):
return np.tanh(x)
def forward(self, x_t, h_prev, C_prev):
# Combine previous hidden state and current input
combined = np.vstack((h_prev, x_t))
# Forget gate
f_t = self.sigmoid(np.dot(self.Wf, combined) + self.bf)
# Input gate
i_t = self.sigmoid(np.dot(self.Wi, combined) + self.bi)
C_tilde = self.tanh(np.dot(self.WC, combined) + self.bC)
# Cell state
C_t = f_t * C_prev + i_t * C_tilde
# Output gate
o_t = self.sigmoid(np.dot(self.Wo, combined) + self.bo)
h_t = o_t * self.tanh(C_t)
return h_t, C_t
# Example usage
input_dim = 5 # Input feature size
hidden_dim = 3 # Number of hidden units
lstm = LSTM(input_dim, hidden_dim)
# Sample inputs
h_prev = np.zeros((hidden_dim, 1)) # Previous hidden state
C_prev = np.zeros((hidden_dim, 1)) # Previous cell state
x_t = np.random.rand(input_dim, 1) # Current input
# Forward pass
h_t, C_t = lstm.forward(x_t, h_prev, C_prev)
print("Current hidden state:", h_t)
print("Current cell state:", C_t)