{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "fcdce269", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2025-05-08 14:34:09.368546: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", "2025-05-08 14:34:09.369289: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", "2025-05-08 14:34:09.371530: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", "2025-05-08 14:34:09.377960: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "E0000 00:00:1746689649.388328 77963 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "E0000 00:00:1746689649.391591 77963 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", "W0000 00:00:1746689649.399815 77963 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", "W0000 00:00:1746689649.399831 77963 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", "W0000 00:00:1746689649.399832 77963 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", "W0000 00:00:1746689649.399833 77963 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", "2025-05-08 14:34:09.402412: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", "To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" ] } ], "source": [ "from keras.models import Model\n", "from keras.layers import Input, Embedding, Bidirectional, LSTM, TimeDistributed, Dense\n", "from keras.utils import to_categorical\n", "from keras.preprocessing.sequence import pad_sequences\n", "from sklearn.model_selection import train_test_split\n", "from seqeval.metrics import classification_report\n", "from sklearn.metrics import confusion_matrix\n", "\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "import nltk\n", "from nltk.corpus import stopwords\n", "from nltk.tokenize import word_tokenize\n", "\n", "from Sastrawi.Stemmer.StemmerFactory import StemmerFactory\n", "\n", "from collections import Counter\n", "import re\n", "import string\n", "import pickle\n", "import json\n", "import numpy as np\n" ] }, { "cell_type": "code", "execution_count": 2, "id": "92b6b57f", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[nltk_data] Downloading package stopwords to /home/akeon/nltk_data...\n", "[nltk_data] Package stopwords is already up-to-date!\n", "[nltk_data] Downloading package punkt to /home/akeon/nltk_data...\n", "[nltk_data] Package punkt is already up-to-date!\n", "[nltk_data] Downloading package punkt_tab to /home/akeon/nltk_data...\n", "[nltk_data] Package punkt_tab is already up-to-date!\n", "[nltk_data] Downloading package wordnet to /home/akeon/nltk_data...\n", "[nltk_data] Package wordnet is already up-to-date!\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nltk.download(\"stopwords\")\n", "nltk.download(\"punkt\")\n", "nltk.download(\"punkt_tab\")\n", "nltk.download(\"wordnet\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "d568e8f2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "158 sentences\n", "=== NER LABEL COUNTS ===\n", "O -> 1495 labels\n", "B-LOC -> 100 labels\n", "B-MISC -> 6 labels\n", "B-TIME -> 46 labels\n", "I-TIME -> 37 labels\n", "I-LOC -> 19 labels\n", "B-QUANT -> 4 labels\n", "I-QUANT -> 5 labels\n", "B-DATE -> 42 labels\n", "B-REL -> 2 labels\n", "B-ETH -> 2 labels\n", "I-ETH -> 2 labels\n", "B-ORG -> 9 labels\n", "I-ORG -> 5 labels\n", "B-MIN -> 6 labels\n", "B-TERM -> 2 labels\n", "I-TERM -> 3 labels\n", "B-RES -> 8 labels\n", "I-RES -> 2 labels\n", "B-PER -> 13 labels\n", "I-PER -> 16 labels\n", "I-DATE -> 34 labels\n", "I-MISC -> 4 labels\n", "B-EVENT -> 4 labels\n", "I-EVENT -> 4 labels\n", "\n", "=== SRL LABEL COUNTS ===\n", "ARG1 -> 421 labels\n", "ARGM-LOC -> 65 labels\n", "AM-NEG -> 2 labels\n", "V -> 196 labels\n", "ARGM-SRC -> 13 labels\n", "O -> 320 labels\n", "AM-QUE -> 5 labels\n", "ARGM-BNF -> 6 labels\n", "ARG2 -> 184 labels\n", "ARGM-MNR -> 9 labels\n", "ARG0 -> 129 labels\n", "AM-TMP -> 279 labels\n", "AM-PRP -> 1 labels\n", "AM-MOD -> 5 labels\n", "AM-ADV -> 1 labels\n", "AM-CAU -> 14 labels\n", "AM-EXT -> 6 labels\n", "AM-MNR -> 22 labels\n", "AM-DIS -> 2 labels\n", "AM-FRQ -> 2 labels\n", "ARGM-PNC -> 4 labels\n", "R-ARG1 -> 3 labels\n", "AM-LOC -> 78 labels\n", "AM-DIR -> 4 labels\n", "ARGM-CAU -> 17 labels\n", "ARGM-MOD -> 11 labels\n", "ARGM-EXT -> 2 labels\n", "ARGM-TMP -> 12 labels\n", "ARGM-DIS -> 9 labels\n", "ARG3 -> 12 labels\n", "ARGM-NEG -> 2 labels\n", "ARGM-COM -> 3 labels\n", "ARGM-PRP -> 10 labels\n", "ARGM-EX -> 4 labels\n", "ARGM-PRD -> 4 labels\n", "AM-COM -> 9 labels\n", "I-AM-LOC -> 1 labels\n", "AM-PNC -> 5 labels\n" ] } ], "source": [ "# === LOAD DATA ===\n", "with open(\"../dataset/dataset_ner_srl.json\", \"r\", encoding=\"utf-8\") as f:\n", " data = json.load(f)\n", "\n", "sentences = [[token.lower() for token in item[\"tokens\"]] for item in data]\n", "ner_labels = [item[\"labels_ner\"] for item in data]\n", "srl_labels = [item[\"labels_srl\"] for item in data]\n", "\n", "print(len(sentences), \"sentences\")\n", "\n", "# === COUNTERS ===\n", "ner_counter = Counter()\n", "srl_counter = Counter()\n", "\n", "for ner_seq in ner_labels:\n", " ner_counter.update(ner_seq)\n", "\n", "for srl_seq in srl_labels:\n", " srl_counter.update(srl_seq)\n", "\n", "# === PRINT RESULT ===\n", "print(\"=== NER LABEL COUNTS ===\")\n", "for label, count in ner_counter.items():\n", " print(f\"{label} -> {count} labels\")\n", "\n", "print(\"\\n=== SRL LABEL COUNTS ===\")\n", "for label, count in srl_counter.items():\n", " print(f\"{label} -> {count} labels\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "95f16969", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "old [['keberagaman', 'potensi', 'sumber', 'daya', 'alam', 'indonesia', 'tidak', 'lepas', 'dari', 'proses', 'geografis', 'yang', 'terjadi', '.'], ['bagaimana', 'proses', 'geografis', 'di', 'indonesia', '?'], ['bagaimana', 'pengaruh', 'proses', 'geografis', 'bagi', 'keragaman', 'alam', 'dan', 'keragaman', 'sosial', 'masyarakat', 'indonesia', '?'], ['bagaimana', 'mengoptimalkan', 'peranan', 'sumber', 'daya', 'manusia', 'dalam', 'mengelola', 'sumber', 'daya', 'alam', 'indonesia', '?'], ['apakah', 'sumber', 'daya', 'manusia', 'di', 'indonesia', 'sudah', 'memenuhi', 'syarat', 'untuk', 'mengolah', 'pariwisata', 'yang', 'dimilikinya', '?'], ['bagaimana', 'lembaga', 'sosial', 'yang', 'akan', 'mewadahi', 'untuk', 'mengolah', 'sumber', 'daya', 'alam', 'dan', 'sumber', 'daya', 'manusianya', '?'], ['kalian', 'juga', 'perlu', 'memahami', ',', 'bahwa', 'keragaman', 'sosial', 'dan', 'budaya', 'telah', 'menarik', 'kedatangan', 'bangsa-bangsa', 'asing', 'sejak', 'ribuan', 'tahun', 'yang', 'lalu', '.'], ['perkembangan', 'hindu-buddha', 'di', 'indonesia', 'tidak', 'lepas', 'dari', 'perkembangan', 'perdagangan', 'dan', 'pelayaran', 'pada', 'awal', 'abad', 'masehi', '.'], ['bangsa', 'indonesia', 'patut', 'bersyukur', 'karena', 'proses', 'geografis', 'dan', 'keragaman', 'alam', 'yang', 'dimiliki', '.'], ['indonesia', 'merupakan', 'negara', 'terluas', 'di', 'asia', 'tenggara', '.'], ['luas', 'daratan', 'indonesia', 'sebesar', '1.910.932,37', 'km2', '.'], ['dan', 'lautan', 'indonesia', 'mencapai', '5,8', 'juta', 'km2', '.'], ['letak', 'indonesia', 'sangat', 'menguntungkan', 'bagi', 'kehidupan', 'masyarakat', '.'], ['selain', 'memiliki', 'letak', 'geografis', 'yang', 'sangat', 'menguntungkan', ',', 'indonesia', 'juga', 'memiliki', 'letak', 'geologis', ',', 'iklim', ',', 'dan', 'cuaca', 'yang', 'sangat', 'menguntungkan', '.'], ['kalian', 'tentu', 'sering', 'membincangkan', 'tentang', 'musim', 'dan', 'hubungannya', 'dengan', 'aktivitas', 'sehari-hari', '.'], ['masyarakat', 'memiliki', 'kebiasaan', 'di', 'musim', 'hujan', 'dan', 'musim', 'kemarau', 'baik', 'berhubungan', 'dengan', 'mata', 'pencaharian', 'dan', 'kesenangan', '(', 'hobi', ')', '.'], ['kalian', 'juga', 'sering', 'memperhatikan', 'prakiraan', 'cuaca', 'untuk', 'merancang', 'kegiatan', 'harian', '.'], ['cuaca', 'dan', 'iklim', 'inilah', 'bagian', 'penting', 'yang', 'memengaruhi', 'aktivitas', 'masyarakat', 'indonesia', '.'], ['cuaca', 'adalah', 'kondisi', 'rata-rata', 'udara', 'pada', 'saat', 'tertentu', 'di', 'suatu', 'wilayah', 'yang', 'relatif', 'sempit', 'dan', 'dalam', 'waktu', 'yang', 'singkat', '.'], ['iklim', 'merupakan', 'kondisi', 'cuaca', 'rata-rata', 'tahunan', 'pada', 'suatu', 'wilayah', 'yang', 'luas', '.'], ['indonesia', 'memiliki', 'iklim', 'tropis', 'yang', 'memiliki', 'dua', 'musim', 'yaitu', 'musim', 'hujan', 'dan', 'musim', 'kemarau', '.'], ['musim', 'hujan', 'terjadi', 'pada', 'bulan', 'oktober', '-', 'maret', ',', 'sedangkan', 'musim', 'kemarau', 'terjadi', 'pada', 'bulan', 'april', '-', 'september', '.'], ['semakin', 'ke', 'timur', 'curah', 'hujan', 'semakin', 'sedikit', '.'], ['hal', 'ini', 'karena', 'hujan', 'telah', 'banyak', 'jatuh', 'dan', 'menguap', 'di', 'bagian', 'barat', '.'], ['keadaan', 'iklim', 'dapat', 'diamati', 'dengan', 'memperhatikan', 'unsur-unsur', 'cuaca', 'dan', 'iklim', '.'], ['unsur-unsur', 'tersebut', 'antara', 'lain', ',', 'penyinaran', 'matahari', ',', 'suhu', 'udara', ',', 'kelembaban', 'udara', ',', 'angin', ',', 'dan', 'hujan', '.'], ['tanaman', 'tropis', 'memiliki', 'banyak', 'varietas', 'yang', 'kaya', 'akan', 'hidrat', 'arang', 'terutama', 'tanaman', 'bahan', 'makanan', 'pokok', '.'], ['berikut', 'pengaruh', 'unsur-unsur', 'iklim', 'terhadap', 'tanaman'], ['penyinaran', 'matahari', 'memengaruhi', 'fotosintesis', 'tanaman', ',', 'dapat', 'meningkatkan', 'suhu', 'udara', '.'], ['suhu', 'mengurangi', 'kadar', 'air', 'sehingga', 'cenderung', 'menjadi', 'kering', '.'], ['kelembaban', 'membatasi', 'hilangnya', 'air', '.'], ['angin', 'membantu', 'proses', 'penyerbukan', 'secara', 'alami', ',', 'mengurangi', 'kadar', 'air', '.'], ['hujan', 'meningkatkan', 'kadar', 'air', ',', 'mengikis', 'tanah', '.'], ['kalian', 'menemukan', 'berbagai', 'perbedaan', 'sosial', 'budaya', 'masyarakat', 'di', 'sekitar', 'tempat', 'tinggalmu', '.'], ['apabila', 'kalian', 'tinggal', 'di', 'perkotaan', ',', 'perbedaan', 'sosial', 'budaya', 'akan', 'semakin', 'banyak', '.'], ['perbedaan', 'sosial', 'budaya', 'meliputi', 'perbedaan', 'nilai-nilai', ',', 'norma', ',', 'dan', 'karakteristik', 'dari', 'suatu', 'kelompok', '.'], ['keragaman', 'sosial', 'budaya', 'di', 'masyarakat', 'dapat', 'terjadi', 'saat', 'berbagai', 'jenis', 'suku', 'dan', 'agama', 'yang', 'ada', 'di', 'suatu', 'ruang', 'bertemu', 'dan', 'berinteraksi', 'setiap', 'harinya', '.'], ['ruang', 'tersebut', 'adalah', 'ruang', 'yang', 'ada', 'pada', 'masyarakat', '.'], ['budaya', 'dapat', 'berupa', 'cara', 'hidup', 'masyarakat', ',', 'cara', 'berpakaian', ',', 'adat', 'istiadat', ',', 'jenis', 'mata', 'pecaharian', ',', 'dan', 'tata', 'upacara', 'keagamaan', '.'], ['keragaman', 'budaya', 'juga', 'mencakup', 'barang-barang', 'yang', 'dihasilkan', 'oleh', 'masyarakat', ',', 'seperti', 'senjata', ',', 'alat', 'bajak', 'sawah', ',', 'kitab', 'hukum', 'adat', ',', 'dan', 'tempat', 'tinggal', '.'], ['budaya', 'dapat', 'dianggap', 'sebagai', 'serangkaian', 'rancangan', 'untuk', 'bertahan', 'hidup', 'atau', 'alat', 'dari', 'praktik', ',', 'pengetahuan', ',', 'dan', 'simbol', 'yang', 'diperoleh', 'melalui', 'pembelajaran', ',', 'bukan', 'oleh', 'naluri', ',', 'yang', 'memungkinkan', 'orang', 'untuk', 'hidup', 'dalam', 'masyarakat', '.'], ['masyarakat', 'terdiri', 'dari', 'orang-orang', 'yang', 'berinteraksi', 'dan', 'berbagi', 'budaya', 'yang', 'sama', '.'], ['perbedaan', 'budaya', 'dapat', 'disebabkan', 'oleh', 'berbagai', 'hal', 'seperti', 'sejarah', ',', 'keturunan', ',', 'keyakinan', ',', 'dan', 'faktor', 'geografis', '.'], ['salah', 'satu', 'penyebab', 'perbedaan', 'budaya', 'adalah', 'faktor', 'geografis', '.'], ['faktor', 'geografis', 'yang', 'memengaruhi', 'keragaman', 'budaya', 'yang', 'akan', 'dibahas', 'berikut', 'ini'], ['dari', 'teks', 'tersebut', 'dapat', 'kita', 'pelajari', 'bahwa', 'budaya', 'yang', 'ada', 'di', 'masyarakat', 'dapat', 'dipengaruhi', 'oleh', 'lingkungan', 'yang', 'ada', 'di', 'sekitarnya', ','], ['misalnya', 'suku', 'lawu', 'dan', 'suku', 'bugis', 'yang', 'bermata', 'pencaharian', 'sebagai', 'nelayan', 'dengan', 'kapal', 'pinisinya', ','], ['sehingga', 'menjadi', 'sebuah', 'simbol', 'bahwa', 'indonesia', 'merupakan', 'negara', 'maritim', 'yang', 'kuat', 'dan', 'disegani', 'di', 'lautan', '.'], ['keragaman', 'budaya', 'dipengaruhi', 'oleh', 'lingkungan', 'fisik', '.'], ['manusia', 'sebagai', 'individu', 'adalah', 'kesatuan', 'jiwa', ',', 'raga', 'dan', 'kegiatan', 'atau', 'perilaku', 'pribadi', 'itu', 'sendiri', '.'], ['sebagai', 'individu', ',', 'dalam', 'pribadi', 'manusia', 'terdapat', 'tiga', 'unsur', ',', 'yaitu', 'nafsu', ',', 'semangat', ',', 'dan', 'intelegensi', '.'], ['kombinasi', 'dari', 'unsur', 'tersebut', 'menghasilkan', 'tingkah', 'laku', 'seseorang', 'yang', 'mencerminkan', 'karakter', 'atau', 'budayaanya', '.'], ['kesatuan', 'dari', 'kepribadian-kepribadian', 'seseorang', 'pada', 'suatu', 'daerah', 'yang', 'mempunyai', 'pola', 'yang', 'sama', 'dapat', 'membentuk', 'budaya', 'daerah', 'tersebut', 'yang', 'membedakan', 'dengan', 'tempat', 'lain', '.'], ['indonesia', 'memiliki', 'kebudayaan', 'yang', 'beragam', '.'], ['indonesia', 'memiliki', 'kekayaan', 'yang', 'begitu', 'besar', '.'], ['bukan', 'hanya', 'pemandangan', 'alam', 'budaya', ',', 'jauh', 'di', 'kedalaman', 'tanahnya', 'begitu', 'banyak', 'kandungan', 'mineral', 'berharga', '.'], ['selama', 'puluhan', 'tahun', ',', 'freeport', 'mengelola', 'tambang', 'mineral', 'di', 'tanah', 'papua', ',', 'indonesia', '.'], ['berdasarkan', 'laporan', 'keuangan', 'freeport', 'mcmorran', 'inc', 'periode', '2017', ',', 'freeport', 'indonesia', 'di', 'papua', 'tercatat', 'memiliki', '6', 'tambang', ',', 'yakni', 'grasberg', 'block', 'cave', ',', 'dmlz', ',', 'tambang', 'kucing', 'liar', ',', 'doz', ',', 'big', 'gossan', ',', 'dan', 'grasberg', 'open', 'pit', '.'], ['tambang', 'freeport', 'memiliki', 'beberapa', 'kandungan', 'cadangan', 'mineral', ',', 'yaitu', 'tembaga', ',', 'emas', ',', 'dan', 'perak', '.'], ['sumber', 'daya', 'alam', 'yang', 'terdapat', 'pada', 'pertambangan', 'freeport', 'di', 'atas', 'merupakan', 'salah', 'satu', 'contoh', 'dari', 'berbagai', 'sumber', 'daya', 'yang', 'ada', 'di', 'indonesia', 'yang', 'memiliki', 'beberapa', 'kandungan', 'cadangan', 'mineral', ',', 'seperti', 'tembaga', ',', 'emas', ',', 'dan', 'perak', '.'], ['kemudian', 'apa', 'sih', 'sumber', 'daya', 'alam', 'itu', '?'], ['apakah', 'ada', 'manfaatnya', 'untuk', 'kita', '?'], ['yuk', 'silahkan', 'simak', 'penjelasan', 'di', 'bawah', 'ini', '.'], ['sumber', 'daya', 'alam', 'merupakan', 'segala', 'sesuatu', 'yang', 'ada', 'di', 'permukaan', 'bumi', 'dan', 'dapat', 'dimanfaatkan', 'untuk', 'memenuhi', 'kebutuhan', 'manusia', '.'], ['potensi', 'sumber', 'daya', 'ini', 'mencakup', 'hal', 'yang', 'ada', 'di', 'udara', ',', 'daratan', ',', 'dan', 'perairan', '.'], ['berdasarkan', 'kelestariannya', ',', 'sumber', 'daya', 'alam', 'dapat', 'dibedakan', 'menjadi', 'dua', 'yaitu', 'sumber', 'daya', 'alam', 'yang', 'dapat', 'diperbarui', '(', 'renewable', 'resources', ')', 'dan', 'tidak', 'dapat', 'diperbarui', '(', 'non', 'renewable', 'resource', ')', '.'], ['contoh', 'sumber', 'daya', 'alam', 'yang', 'dapat', 'diperbarui', 'yaitu', 'seperti', 'air', ',', 'tanah', ',', 'dan', 'hutan', '.'], ['sedangkan', 'sumber', 'daya', 'alam', 'yang', 'tidak', 'dapat', 'diperbarui', 'seperti', 'minyak', 'bumi', 'dan', 'batu', 'bara', '.'], ['berikut', 'ini', 'merupakan', 'potensi', 'sumber', 'daya', 'alam', 'di', 'indonesia', 'yang', 'dirinci', 'menjadi', 'tiga', 'yaitu', 'sumber', 'daya', 'alam', 'hutan', ',', 'sumber', 'daya', 'alam', 'tambang', ',', 'dan', 'sumber', 'daya', 'alam', 'kemaritiman', '.'], ['indonesia', 'termasuk', 'negara', 'yang', 'memiliki', 'kekayaan', 'alam', 'yang', 'berlimpah', 'dibandingkan', 'negara-negara', 'yang', 'lain', '.'], ['potensi', 'sumber', 'daya', 'alam', 'indonesia', 'sangat', 'beraneka', 'ragam', '.'], ['bangsa', 'indonesia', 'memiliki', 'modal', 'penting', 'dalam', 'pembangunan', '.'], ['jumlah', 'penduduk', 'indonesia', 'yang', 'lebih', 'dari', '270', 'juta', 'merupakan', 'potensi', 'penting', 'dalam', 'pembangunan', '.'], ['pada', 'tahun', '2016', 'badan', 'pusat', 'statistik', 'mencatat', 'bahwa', 'di', 'indonesia', 'terdapat', 'angkatan', 'kerja', '127,67', 'juta', 'jiwa', '.'], ['di', 'antara', 'negara', 'asean', ',', 'kualitas', 'sdm', 'dan', 'ketenagakerjaan', 'indonesia', 'masih', 'berada', 'di', 'peringkat', 'bawah', '.'], ['kualitas', 'sdm', 'dan', 'ketenagakerjaan', 'indonesia', 'menempati', 'urutan', 'kelima', '.'], ['peringkat', 'ini', 'masih', 'kalah', 'jika', 'dibandingkan', 'singapura', ',', 'brunei', 'darussalam', ',', 'malaysia', ',', 'dan', 'thailand', '.'], ['kualitas', 'sumber', 'daya', 'manusia', 'di', 'indonesia', 'memengaruhi', 'terhadap', 'kemajuan', 'sebuah', 'bangsa', '.'], ['peristiwa', 'itu', 'dilatarbelakangi', 'oleh', 'peristiwa', 'yang', 'jauh', 'dari', 'indonesia', ',', 'misalnya', 'peristiwa', 'jatuhnya', 'konstantinopel', 'di', 'kawasan', 'laut', 'tengah', 'pada', 'tahun', '1453', '.'], ['kehidupan', 'global', 'semakin', 'berkembang', 'dengan', 'maraknya', 'penjelajahan', 'samudera', 'orang-orang', 'eropa', 'ke', 'dunia', 'timur', '.'], ['begitu', 'juga', 'peristiwa', 'kedatangan', 'bangsa', 'eropa', 'ke', 'indonesia', ',', 'telah', 'ikut', 'meningkatkan', 'kehidupan', 'global', '.'], ['pada', 'tahun', '1488', 'karena', 'serangan', 'ombak', 'besar', 'terpaksa', 'bartholomeus', 'diaz', 'mendarat', 'di', 'suatu', 'ujung', 'selatan', 'benua', 'afrika', '.'], ['pada', 'juli', '1497', 'vasco', 'da', 'gama', 'berangkat', 'dari', 'pelabuhan', 'lisabon', 'untuk', 'memulai', 'penjelajahan', 'samudra', '.'], ['berdasarkan', 'pengalaman', 'bartholomeus', 'diaz', 'tersebut', ',', 'vasco', 'da', 'gama', 'juga', 'berlayar', 'mengambil', 'rute', 'yang', 'pernah', 'dilayari', 'bartholomeus', 'diaz', '.'], ['rombongan', 'vasco', 'da', 'gama', 'juga', 'singgah', 'di', 'tanjung', 'harapan', '.'], ['atas', 'petunjuk', 'dari', 'pelaut', 'bangsa', 'moor', 'yang', 'telah', 'disewanya', ',', 'rombongan', 'vasco', 'da', 'gama', 'melanjutkan', 'penjelajahan', ',', 'berlayar', 'menelusuri', 'pantai', 'timur', 'afrika', 'kemudian', 'berbelok', 'ke', 'kanan', 'untuk', 'mengarungi', 'lautan', 'hindia', '(', 'samudra', 'indonesia', ')', '.'], ['pada', 'tahun', '1498', 'rombongan', 'vasco', 'da', 'gama', 'mendarat', 'sampai', 'di', 'kalikut', 'dan', 'juga', 'goa', 'di', 'pantai', 'barat', 'india', '.'], ['pada', 'tahun', '1511', 'armada', 'portugis', 'berhasil', 'menguasai', 'malaka', '.'], ['proklamasi', 'kemerdekaan', 'indonesia', 'terjadi', 'pada', '17', 'agustus', '1945', '.'], ['barack', 'obama', 'lahir', 'pada', '4', 'agustus', '1961', 'di', 'hawaii', '.'], ['reformasi', 'indonesia', 'dimulai', 'tahun', '1998', 'setelah', 'soeharto', 'mundur', '.'], ['perang', 'dunia', 'ii', 'berakhir', 'pada', '2', 'september', '1945', '.'], ['indonesia', 'menjadi', 'anggota', 'pbb', 'sejak', '28', 'september', '1950', '.'], ['banjir', 'bandang', 'terjadi', 'pada', '5', 'januari', '2021', 'di', 'bandung', '.'], ['hari', 'pahlawan', 'diperingati', 'setiap', '10', 'november', '.'], ['pada', 'tahun', '1511', 'portugis', 'menguasai', 'malaka', '.'], ['konferensi', 'asia-afrika', 'diselenggarakan', 'tahun', '1955', 'di', 'bandung', '.'], ['musim', 'kemarau', 'diperkirakan', 'mulai', 'april', '2025', '.'], ['rapat', 'dimulai', 'pukul', '09.00', 'pagi', '.'], ['kereta', 'akan', 'tiba', 'sekitar', 'jam', '3', 'sore', '.'], ['pertandingan', 'akan', 'dimulai', 'pada', 'pukul', '19.30', '.'], ['matahari', 'terbit', 'sekitar', '05.45', 'pagi', 'di', 'jakarta', '.'], ['makan', 'siang', 'biasanya', 'dilakukan', 'sekitar', 'jam', '12', 'siang', '.'], ['penerbangan', 'dijadwalkan', 'lepas', 'landas', 'pukul', '23.15', '.'], ['film', 'tayang', 'mulai', 'jam', '8', 'malam', 'nanti', '.'], ['pesawat', 'mendarat', 'tepat', 'pada', '00.30', 'dinihari', '.'], ['siaran', 'langsung', 'dimulai', 'pukul', '18.00', '.'], ['jam', 'kerja', 'dimulai', 'pukul', '08.00', 'dan', 'berakhir', 'pukul', '17.00', '.'], ['alarm', 'berbunyi', 'pada', 'pukul', '06.00', 'pagi', '.'], ['saya', 'bangun', 'sekitar', 'jam', '5', 'pagi', 'setiap', 'hari', '.'], ['konser', 'dimulai', 'sekitar', '20.00', 'malam', 'di', 'stadion', '.'], ['wawancara', 'dijadwalkan', 'pada', 'jam', '11', 'pagi', '.'], ['kami', 'tiba', 'di', 'bandara', 'sekitar', 'jam', '2', 'dinihari', '.'], ['dia', 'mengajar', 'kelas', 'pada', 'pukul', '13.00', '.'], ['peserta', 'diminta', 'hadir', 'sebelum', 'jam', '7', 'pagi', '.'], ['televisi', 'menayangkan', 'berita', 'malam', 'pada', '22.00', '.'], ['kami', 'akan', 'bertemu', 'jam', '10', 'malam', 'di', 'kafe', '.'], ['toko', 'buka', 'hingga', 'pukul', '21.00', '.'], ['dia', 'biasanya', 'berolahraga', 'pada', 'pagi', 'hari', '.'], ['kami', 'bertemu', 'lagi', 'pada', 'malam', 'hari', 'itu', '.'], ['upacara', 'dilaksanakan', 'pada', 'sore', 'hari', 'di', 'lapangan', '.'], ['ia', 'pulang', 'setiap', 'malam', 'sekitar', 'jam', '9', '.'], ['kami', 'berangkat', 'di', 'pagi', 'hari', 'menggunakan', 'mobil', '.'], ['acara', 'berlangsung', 'hingga', 'malam', 'hari', '.'], ['kami', 'tiba', 'di', 'bandara', 'pada', 'dinihari', '.'], ['pintu', 'gerbang', 'dibuka', 'setiap', 'pagi', '.'], ['ia', 'selalu', 'belajar', 'di', 'malam', '.'], ['waktu', 'bermain', 'dimulai', 'sore', 'hari', '.'], ['pelajaran', 'kedua', 'dimulai', 'sekitar', 'jam', 'tujuh', 'lebih', 'sepuluh', 'menit', '.'], ['bus', 'berangkat', 'kurang', 'lebih', 'jam', 'delapan', 'malam', '.'], ['pertemuan', 'terakhir', 'dilaksanakan', 'sebelum', 'matahari', 'terbenam', '.'], ['kereta', 'berangkat', 'sekitar', 'tengah', 'malam', 'dari', 'stasiun', 'gambir', '.'], ['jadwal', 'sholat', 'dimulai', 'pukul', 'empat', 'lebih', 'lima', 'menit', '.'], ['pemadaman', 'listrik', 'akan', 'dimulai', 'menjelang', 'malam', '.'], ['layanan', 'pelanggan', 'dibuka', 'setiap', 'hari', 'kerja', 'jam', 'sembilan', '.'], ['ia', 'terjaga', 'di', 'tengah', 'malam', 'karena', 'petir', '.'], ['kelas', 'selesai', 'sekitar', 'jam', 'dua', 'kurang', 'seperempat', '.'], ['waktu', 'sarapan', 'dimulai', 'pukul', '6.30', 'hingga', '7.30', '.'], ['proklamasi', 'kemerdekaan', 'terjadi', 'pada', '17', 'agustus', '1945', '.'], ['indonesia', 'merdeka', 'pada', 'tahun', '1945', '.'], ['pemilu', 'diadakan', 'pada', '14', 'februari', '2024', '.'], ['tanggal', '1', 'januari', '2023', 'merupakan', 'hari', 'libur', '.'], ['barack', 'obama', 'lahir', 'pada', '4', 'agustus', '1961', '.'], ['hari', 'bumi', 'diperingati', 'setiap', '22', 'april', '.'], ['musim', 'kemarau', 'terjadi', 'antara', 'bulan', 'april', 'hingga', 'oktober', '.'], ['reformasi', '1998', 'mengubah', 'sistem', 'politik', 'indonesia', '.'], ['konferensi', 'asia-afrika', 'digelar', 'pada', 'tahun', '1955', 'di', 'bandung', '.'], ['perang', 'dunia', 'kedua', 'berakhir', 'tahun', '1945', '.'], ['sumpah', 'pemuda', 'diperingati', 'setiap', '28', 'oktober', '.'], ['habibie', 'dilantik', 'menjadi', 'presiden', 'pada', '21', 'mei', '1998', '.'], ['hari', 'kemerdekaan', 'indonesia', 'dirayakan', 'setiap', '17', 'agustus', '.'], ['pada', 'tahun', '1949', ',', 'belanda', 'mengakui', 'kemerdekaan', 'indonesia', '.'], ['tsunami', 'aceh', 'terjadi', 'pada', '26', 'desember', '2004', '.'], ['bung', 'karno', 'meninggal', 'pada', '21', 'juni', '1970', '.'], ['jakarta', 'ditetapkan', 'sebagai', 'ibu', 'kota', 'negara', 'pada', 'tahun', '1961', '.'], ['pada', '1955', ',', 'indonesia', 'menjadi', 'tuan', 'rumah', 'konferensi', 'asia-afrika', '.'], ['pemerintah', 'mengumumkan', 'kebijakan', 'psbb', 'pada', 'april', '2020', 'di', 'jakarta', '.'], ['undang-undang', 'dasar', '1945', 'disahkan', 'pada', 'tanggal', '18', 'agustus', '1945', '.']]\n", "new [['keberagaman', 'potensi', 'sumber', 'daya', 'alam', 'indonesia', 'tidak', 'lepas', 'dari', 'proses', 'geografis', 'yang', 'terjadi', '.'], ['bagaimana', 'proses', 'geografis', 'di', 'indonesia', '?'], ['bagaimana', 'pengaruh', 'proses', 'geografis', 'bagi', 'keragaman', 'alam', 'dan', 'keragaman', 'sosial', 'masyarakat', 'indonesia', '?'], ['bagaimana', 'mengoptimalkan', 'peranan', 'sumber', 'daya', 'manusia', 'dalam', 'mengelola', 'sumber', 'daya', 'alam', 'indonesia', '?'], ['apakah', 'sumber', 'daya', 'manusia', 'di', 'indonesia', 'sudah', 'memenuhi', 'syarat', 'untuk', 'mengolah', 'pariwisata', 'yang', 'dimilikinya', '?'], ['bagaimana', 'lembaga', 'sosial', 'yang', 'akan', 'mewadahi', 'untuk', 'mengolah', 'sumber', 'daya', 'alam', 'dan', 'sumber', 'daya', 'manusianya', '?'], ['kalian', 'juga', 'perlu', 'memahami', ',', 'bahwa', 'keragaman', 'sosial', 'dan', 'budaya', 'telah', 'menarik', 'kedatangan', 'bangsa-bangsa', 'asing', 'sejak', 'ribuan', 'tahun', 'yang', 'lalu', '.'], ['perkembangan', 'hindu-buddha', 'di', 'indonesia', 'tidak', 'lepas', 'dari', 'perkembangan', 'perdagangan', 'dan', 'pelayaran', 'pada', 'awal', 'abad', 'masehi', '.'], ['bangsa', 'indonesia', 'patut', 'bersyukur', 'karena', 'proses', 'geografis', 'dan', 'keragaman', 'alam', 'yang', 'dimiliki', '.'], ['indonesia', 'merupakan', 'negara', 'terluas', 'di', 'asia', 'tenggara', '.'], ['luas', 'daratan', 'indonesia', 'sebesar', '1.910.932,37', 'km2', '.'], ['dan', 'lautan', 'indonesia', 'mencapai', '5,8', 'juta', 'km2', '.'], ['letak', 'indonesia', 'sangat', 'menguntungkan', 'bagi', 'kehidupan', 'masyarakat', '.'], ['selain', 'memiliki', 'letak', 'geografis', 'yang', 'sangat', 'menguntungkan', ',', 'indonesia', 'juga', 'memiliki', 'letak', 'geologis', ',', 'iklim', ',', 'dan', 'cuaca', 'yang', 'sangat', 'menguntungkan', '.'], ['kalian', 'tentu', 'sering', 'membincangkan', 'tentang', 'musim', 'dan', 'hubungannya', 'dengan', 'aktivitas', 'sehari-hari', '.'], ['masyarakat', 'memiliki', 'kebiasaan', 'di', 'musim', 'hujan', 'dan', 'musim', 'kemarau', 'baik', 'berhubungan', 'dengan', 'mata', 'pencaharian', 'dan', 'kesenangan', '(', 'hobi', ')', '.'], ['kalian', 'juga', 'sering', 'memperhatikan', 'prakiraan', 'cuaca', 'untuk', 'merancang', 'kegiatan', 'harian', '.'], ['cuaca', 'dan', 'iklim', 'inilah', 'bagian', 'penting', 'yang', 'memengaruhi', 'aktivitas', 'masyarakat', 'indonesia', '.'], ['cuaca', 'adalah', 'kondisi', 'rata-rata', 'udara', 'pada', 'saat', 'tertentu', 'di', 'suatu', 'wilayah', 'yang', 'relatif', 'sempit', 'dan', 'dalam', 'waktu', 'yang', 'singkat', '.'], ['iklim', 'merupakan', 'kondisi', 'cuaca', 'rata-rata', 'tahunan', 'pada', 'suatu', 'wilayah', 'yang', 'luas', '.'], ['indonesia', 'memiliki', 'iklim', 'tropis', 'yang', 'memiliki', 'dua', 'musim', 'yaitu', 'musim', 'hujan', 'dan', 'musim', 'kemarau', '.'], ['musim', 'hujan', 'terjadi', 'pada', 'bulan', 'oktober', '-', 'maret', ',', 'sedangkan', 'musim', 'kemarau', 'terjadi', 'pada', 'bulan', 'april', '-', 'september', '.'], ['semakin', 'ke', 'timur', 'curah', 'hujan', 'semakin', 'sedikit', '.'], ['hal', 'ini', 'karena', 'hujan', 'telah', 'banyak', 'jatuh', 'dan', 'menguap', 'di', 'bagian', 'barat', '.'], ['keadaan', 'iklim', 'dapat', 'diamati', 'dengan', 'memperhatikan', 'unsur-unsur', 'cuaca', 'dan', 'iklim', '.'], ['unsur-unsur', 'tersebut', 'antara', 'lain', ',', 'penyinaran', 'matahari', ',', 'suhu', 'udara', ',', 'kelembaban', 'udara', ',', 'angin', ',', 'dan', 'hujan', '.'], ['tanaman', 'tropis', 'memiliki', 'banyak', 'varietas', 'yang', 'kaya', 'akan', 'hidrat', 'arang', 'terutama', 'tanaman', 'bahan', 'makanan', 'pokok', '.'], ['berikut', 'pengaruh', 'unsur-unsur', 'iklim', 'terhadap', 'tanaman'], ['penyinaran', 'matahari', 'memengaruhi', 'fotosintesis', 'tanaman', ',', 'dapat', 'meningkatkan', 'suhu', 'udara', '.'], ['suhu', 'mengurangi', 'kadar', 'air', 'sehingga', 'cenderung', 'menjadi', 'kering', '.'], ['kelembaban', 'membatasi', 'hilangnya', 'air', '.'], ['angin', 'membantu', 'proses', 'penyerbukan', 'secara', 'alami', ',', 'mengurangi', 'kadar', 'air', '.'], ['hujan', 'meningkatkan', 'kadar', 'air', ',', 'mengikis', 'tanah', '.'], ['kalian', 'menemukan', 'berbagai', 'perbedaan', 'sosial', 'budaya', 'masyarakat', 'di', 'sekitar', 'tempat', 'tinggalmu', '.'], ['apabila', 'kalian', 'tinggal', 'di', 'perkotaan', ',', 'perbedaan', 'sosial', 'budaya', 'akan', 'semakin', 'banyak', '.'], ['perbedaan', 'sosial', 'budaya', 'meliputi', 'perbedaan', 'nilai-nilai', ',', 'norma', ',', 'dan', 'karakteristik', 'dari', 'suatu', 'kelompok', '.'], ['keragaman', 'sosial', 'budaya', 'di', 'masyarakat', 'dapat', 'terjadi', 'saat', 'berbagai', 'jenis', 'suku', 'dan', 'agama', 'yang', 'ada', 'di', 'suatu', 'ruang', 'bertemu', 'dan', 'berinteraksi', 'setiap', 'harinya', '.'], ['ruang', 'tersebut', 'adalah', 'ruang', 'yang', 'ada', 'pada', 'masyarakat', '.'], ['budaya', 'dapat', 'berupa', 'cara', 'hidup', 'masyarakat', ',', 'cara', 'berpakaian', ',', 'adat', 'istiadat', ',', 'jenis', 'mata', 'pecaharian', ',', 'dan', 'tata', 'upacara', 'keagamaan', '.'], ['keragaman', 'budaya', 'juga', 'mencakup', 'barang-barang', 'yang', 'dihasilkan', 'oleh', 'masyarakat', ',', 'seperti', 'senjata', ',', 'alat', 'bajak', 'sawah', ',', 'kitab', 'hukum', 'adat', ',', 'dan', 'tempat', 'tinggal', '.'], ['budaya', 'dapat', 'dianggap', 'sebagai', 'serangkaian', 'rancangan', 'untuk', 'bertahan', 'hidup', 'atau', 'alat', 'dari', 'praktik', ',', 'pengetahuan', ',', 'dan', 'simbol', 'yang', 'diperoleh', 'melalui', 'pembelajaran', ',', 'bukan', 'oleh', 'naluri', ',', 'yang', 'memungkinkan', 'orang', 'untuk', 'hidup', 'dalam', 'masyarakat', '.'], ['masyarakat', 'terdiri', 'dari', 'orang-orang', 'yang', 'berinteraksi', 'dan', 'berbagi', 'budaya', 'yang', 'sama', '.'], ['perbedaan', 'budaya', 'dapat', 'disebabkan', 'oleh', 'berbagai', 'hal', 'seperti', 'sejarah', ',', 'keturunan', ',', 'keyakinan', ',', 'dan', 'faktor', 'geografis', '.'], ['salah', 'satu', 'penyebab', 'perbedaan', 'budaya', 'adalah', 'faktor', 'geografis', '.'], ['faktor', 'geografis', 'yang', 'memengaruhi', 'keragaman', 'budaya', 'yang', 'akan', 'dibahas', 'berikut', 'ini'], ['dari', 'teks', 'tersebut', 'dapat', 'kita', 'pelajari', 'bahwa', 'budaya', 'yang', 'ada', 'di', 'masyarakat', 'dapat', 'dipengaruhi', 'oleh', 'lingkungan', 'yang', 'ada', 'di', 'sekitarnya', ','], ['misalnya', 'suku', 'lawu', 'dan', 'suku', 'bugis', 'yang', 'bermata', 'pencaharian', 'sebagai', 'nelayan', 'dengan', 'kapal', 'pinisinya', ','], ['sehingga', 'menjadi', 'sebuah', 'simbol', 'bahwa', 'indonesia', 'merupakan', 'negara', 'maritim', 'yang', 'kuat', 'dan', 'disegani', 'di', 'lautan', '.'], ['keragaman', 'budaya', 'dipengaruhi', 'oleh', 'lingkungan', 'fisik', '.'], ['manusia', 'sebagai', 'individu', 'adalah', 'kesatuan', 'jiwa', ',', 'raga', 'dan', 'kegiatan', 'atau', 'perilaku', 'pribadi', 'itu', 'sendiri', '.'], ['sebagai', 'individu', ',', 'dalam', 'pribadi', 'manusia', 'terdapat', 'tiga', 'unsur', ',', 'yaitu', 'nafsu', ',', 'semangat', ',', 'dan', 'intelegensi', '.'], ['kombinasi', 'dari', 'unsur', 'tersebut', 'menghasilkan', 'tingkah', 'laku', 'seseorang', 'yang', 'mencerminkan', 'karakter', 'atau', 'budayaanya', '.'], ['kesatuan', 'dari', 'kepribadian-kepribadian', 'seseorang', 'pada', 'suatu', 'daerah', 'yang', 'mempunyai', 'pola', 'yang', 'sama', 'dapat', 'membentuk', 'budaya', 'daerah', 'tersebut', 'yang', 'membedakan', 'dengan', 'tempat', 'lain', '.'], ['indonesia', 'memiliki', 'kebudayaan', 'yang', 'beragam', '.'], ['indonesia', 'memiliki', 'kekayaan', 'yang', 'begitu', 'besar', '.'], ['bukan', 'hanya', 'pemandangan', 'alam', 'budaya', ',', 'jauh', 'di', 'kedalaman', 'tanahnya', 'begitu', 'banyak', 'kandungan', 'mineral', 'berharga', '.'], ['selama', 'puluhan', 'tahun', ',', 'freeport', 'mengelola', 'tambang', 'mineral', 'di', 'tanah', 'papua', ',', 'indonesia', '.'], ['berdasarkan', 'laporan', 'keuangan', 'freeport', 'mcmorran', 'inc', 'periode', '2017', ',', 'freeport', 'indonesia', 'di', 'papua', 'tercatat', 'memiliki', '6', 'tambang', ',', 'yakni', 'grasberg', 'block', 'cave', ',', 'dmlz', ',', 'tambang', 'kucing', 'liar', ',', 'doz', ',', 'big', 'gossan', ',', 'dan', 'grasberg', 'open', 'pit', '.'], ['tambang', 'freeport', 'memiliki', 'beberapa', 'kandungan', 'cadangan', 'mineral', ',', 'yaitu', 'tembaga', ',', 'emas', ',', 'dan', 'perak', '.'], ['sumber', 'daya', 'alam', 'yang', 'terdapat', 'pada', 'pertambangan', 'freeport', 'di', 'atas', 'merupakan', 'salah', 'satu', 'contoh', 'dari', 'berbagai', 'sumber', 'daya', 'yang', 'ada', 'di', 'indonesia', 'yang', 'memiliki', 'beberapa', 'kandungan', 'cadangan', 'mineral', ',', 'seperti', 'tembaga', ',', 'emas', ',', 'dan', 'perak', '.'], ['kemudian', 'apa', 'sih', 'sumber', 'daya', 'alam', 'itu', '?'], ['apakah', 'ada', 'manfaatnya', 'untuk', 'kita', '?'], ['yuk', 'silahkan', 'simak', 'penjelasan', 'di', 'bawah', 'ini', '.'], ['sumber', 'daya', 'alam', 'merupakan', 'segala', 'sesuatu', 'yang', 'ada', 'di', 'permukaan', 'bumi', 'dan', 'dapat', 'dimanfaatkan', 'untuk', 'memenuhi', 'kebutuhan', 'manusia', '.'], ['potensi', 'sumber', 'daya', 'ini', 'mencakup', 'hal', 'yang', 'ada', 'di', 'udara', ',', 'daratan', ',', 'dan', 'perairan', '.'], ['berdasarkan', 'kelestariannya', ',', 'sumber', 'daya', 'alam', 'dapat', 'dibedakan', 'menjadi', 'dua', 'yaitu', 'sumber', 'daya', 'alam', 'yang', 'dapat', 'diperbarui', '(', 'renewable', 'resources', ')', 'dan', 'tidak', 'dapat', 'diperbarui', '(', 'non', 'renewable', 'resource', ')', '.'], ['contoh', 'sumber', 'daya', 'alam', 'yang', 'dapat', 'diperbarui', 'yaitu', 'seperti', 'air', ',', 'tanah', ',', 'dan', 'hutan', '.'], ['sedangkan', 'sumber', 'daya', 'alam', 'yang', 'tidak', 'dapat', 'diperbarui', 'seperti', 'minyak', 'bumi', 'dan', 'batu', 'bara', '.'], ['berikut', 'ini', 'merupakan', 'potensi', 'sumber', 'daya', 'alam', 'di', 'indonesia', 'yang', 'dirinci', 'menjadi', 'tiga', 'yaitu', 'sumber', 'daya', 'alam', 'hutan', ',', 'sumber', 'daya', 'alam', 'tambang', ',', 'dan', 'sumber', 'daya', 'alam', 'kemaritiman', '.'], ['indonesia', 'termasuk', 'negara', 'yang', 'memiliki', 'kekayaan', 'alam', 'yang', 'berlimpah', 'dibandingkan', 'negara-negara', 'yang', 'lain', '.'], ['potensi', 'sumber', 'daya', 'alam', 'indonesia', 'sangat', 'beraneka', 'ragam', '.'], ['bangsa', 'indonesia', 'memiliki', 'modal', 'penting', 'dalam', 'pembangunan', '.'], ['jumlah', 'penduduk', 'indonesia', 'yang', 'lebih', 'dari', '270', 'juta', 'merupakan', 'potensi', 'penting', 'dalam', 'pembangunan', '.'], ['pada', 'tahun', '2016', 'badan', 'pusat', 'statistik', 'mencatat', 'bahwa', 'di', 'indonesia', 'terdapat', 'angkatan', 'kerja', '127,67', 'juta', 'jiwa', '.'], ['di', 'antara', 'negara', 'asean', ',', 'kualitas', 'sdm', 'dan', 'ketenagakerjaan', 'indonesia', 'masih', 'berada', 'di', 'peringkat', 'bawah', '.'], ['kualitas', 'sdm', 'dan', 'ketenagakerjaan', 'indonesia', 'menempati', 'urutan', 'kelima', '.'], ['peringkat', 'ini', 'masih', 'kalah', 'jika', 'dibandingkan', 'singapura', ',', 'brunei', 'darussalam', ',', 'malaysia', ',', 'dan', 'thailand', '.'], ['kualitas', 'sumber', 'daya', 'manusia', 'di', 'indonesia', 'memengaruhi', 'terhadap', 'kemajuan', 'sebuah', 'bangsa', '.'], ['peristiwa', 'itu', 'dilatarbelakangi', 'oleh', 'peristiwa', 'yang', 'jauh', 'dari', 'indonesia', ',', 'misalnya', 'peristiwa', 'jatuhnya', 'konstantinopel', 'di', 'kawasan', 'laut', 'tengah', 'pada', 'tahun', '1453', '.'], ['kehidupan', 'global', 'semakin', 'berkembang', 'dengan', 'maraknya', 'penjelajahan', 'samudera', 'orang-orang', 'eropa', 'ke', 'dunia', 'timur', '.'], ['begitu', 'juga', 'peristiwa', 'kedatangan', 'bangsa', 'eropa', 'ke', 'indonesia', ',', 'telah', 'ikut', 'meningkatkan', 'kehidupan', 'global', '.'], ['pada', 'tahun', '1488', 'karena', 'serangan', 'ombak', 'besar', 'terpaksa', 'bartholomeus', 'diaz', 'mendarat', 'di', 'suatu', 'ujung', 'selatan', 'benua', 'afrika', '.'], ['pada', 'juli', '1497', 'vasco', 'da', 'gama', 'berangkat', 'dari', 'pelabuhan', 'lisabon', 'untuk', 'memulai', 'penjelajahan', 'samudra', '.'], ['berdasarkan', 'pengalaman', 'bartholomeus', 'diaz', 'tersebut', ',', 'vasco', 'da', 'gama', 'juga', 'berlayar', 'mengambil', 'rute', 'yang', 'pernah', 'dilayari', 'bartholomeus', 'diaz', '.'], ['rombongan', 'vasco', 'da', 'gama', 'juga', 'singgah', 'di', 'tanjung', 'harapan', '.'], ['atas', 'petunjuk', 'dari', 'pelaut', 'bangsa', 'moor', 'yang', 'telah', 'disewanya', ',', 'rombongan', 'vasco', 'da', 'gama', 'melanjutkan', 'penjelajahan', ',', 'berlayar', 'menelusuri', 'pantai', 'timur', 'afrika', 'kemudian', 'berbelok', 'ke', 'kanan', 'untuk', 'mengarungi', 'lautan', 'hindia', '(', 'samudra', 'indonesia', ')', '.'], ['pada', 'tahun', '1498', 'rombongan', 'vasco', 'da', 'gama', 'mendarat', 'sampai', 'di', 'kalikut', 'dan', 'juga', 'goa', 'di', 'pantai', 'barat', 'india', '.'], ['pada', 'tahun', '1511', 'armada', 'portugis', 'berhasil', 'menguasai', 'malaka', '.'], ['proklamasi', 'kemerdekaan', 'indonesia', 'terjadi', 'pada', '17', 'agustus', '1945', '.'], ['barack', 'obama', 'lahir', 'pada', '4', 'agustus', '1961', 'di', 'hawaii', '.'], ['reformasi', 'indonesia', 'dimulai', 'tahun', '1998', 'setelah', 'soeharto', 'mundur', '.'], ['perang', 'dunia', 'ii', 'berakhir', 'pada', '2', 'september', '1945', '.'], ['indonesia', 'menjadi', 'anggota', 'pbb', 'sejak', '28', 'september', '1950', '.'], ['banjir', 'bandang', 'terjadi', 'pada', '5', 'januari', '2021', 'di', 'bandung', '.'], ['hari', 'pahlawan', 'diperingati', 'setiap', '10', 'november', '.'], ['pada', 'tahun', '1511', 'portugis', 'menguasai', 'malaka', '.'], ['konferensi', 'asia-afrika', 'diselenggarakan', 'tahun', '1955', 'di', 'bandung', '.'], ['musim', 'kemarau', 'diperkirakan', 'mulai', 'april', '2025', '.'], ['rapat', 'dimulai', 'pukul', '09.00', 'pagi', '.'], ['kereta', 'akan', 'tiba', 'sekitar', 'jam', '3', 'sore', '.'], ['pertandingan', 'akan', 'dimulai', 'pada', 'pukul', '19.30', '.'], ['matahari', 'terbit', 'sekitar', '05.45', 'pagi', 'di', 'jakarta', '.'], ['makan', 'siang', 'biasanya', 'dilakukan', 'sekitar', 'jam', '12', 'siang', '.'], ['penerbangan', 'dijadwalkan', 'lepas', 'landas', 'pukul', '23.15', '.'], ['film', 'tayang', 'mulai', 'jam', '8', 'malam', 'nanti', '.'], ['pesawat', 'mendarat', 'tepat', 'pada', '00.30', 'dinihari', '.'], ['siaran', 'langsung', 'dimulai', 'pukul', '18.00', '.'], ['jam', 'kerja', 'dimulai', 'pukul', '08.00', 'dan', 'berakhir', 'pukul', '17.00', '.'], ['alarm', 'berbunyi', 'pada', 'pukul', '06.00', 'pagi', '.'], ['saya', 'bangun', 'sekitar', 'jam', '5', 'pagi', 'setiap', 'hari', '.'], ['konser', 'dimulai', 'sekitar', '20.00', 'malam', 'di', 'stadion', '.'], ['wawancara', 'dijadwalkan', 'pada', 'jam', '11', 'pagi', '.'], ['kami', 'tiba', 'di', 'bandara', 'sekitar', 'jam', '2', 'dinihari', '.'], ['dia', 'mengajar', 'kelas', 'pada', 'pukul', '13.00', '.'], ['peserta', 'diminta', 'hadir', 'sebelum', 'jam', '7', 'pagi', '.'], ['televisi', 'menayangkan', 'berita', 'malam', 'pada', '22.00', '.'], ['kami', 'akan', 'bertemu', 'jam', '10', 'malam', 'di', 'kafe', '.'], ['toko', 'buka', 'hingga', 'pukul', '21.00', '.'], ['dia', 'biasanya', 'berolahraga', 'pada', 'pagi', 'hari', '.'], ['kami', 'bertemu', 'lagi', 'pada', 'malam', 'hari', 'itu', '.'], ['upacara', 'dilaksanakan', 'pada', 'sore', 'hari', 'di', 'lapangan', '.'], ['ia', 'pulang', 'setiap', 'malam', 'sekitar', 'jam', '9', '.'], ['kami', 'berangkat', 'di', 'pagi', 'hari', 'menggunakan', 'mobil', '.'], ['acara', 'berlangsung', 'hingga', 'malam', 'hari', '.'], ['kami', 'tiba', 'di', 'bandara', 'pada', 'dinihari', '.'], ['pintu', 'gerbang', 'dibuka', 'setiap', 'pagi', '.'], ['ia', 'selalu', 'belajar', 'di', 'malam', '.'], ['waktu', 'bermain', 'dimulai', 'sore', 'hari', '.'], ['pelajaran', 'kedua', 'dimulai', 'sekitar', 'jam', 'tujuh', 'lebih', 'sepuluh', 'menit', '.'], ['bus', 'berangkat', 'kurang', 'lebih', 'jam', 'delapan', 'malam', '.'], ['pertemuan', 'terakhir', 'dilaksanakan', 'sebelum', 'matahari', 'terbenam', '.'], ['kereta', 'berangkat', 'sekitar', 'tengah', 'malam', 'dari', 'stasiun', 'gambir', '.'], ['jadwal', 'sholat', 'dimulai', 'pukul', 'empat', 'lebih', 'lima', 'menit', '.'], ['pemadaman', 'listrik', 'akan', 'dimulai', 'menjelang', 'malam', '.'], ['layanan', 'pelanggan', 'dibuka', 'setiap', 'hari', 'kerja', 'jam', 'sembilan', '.'], ['ia', 'terjaga', 'di', 'tengah', 'malam', 'karena', 'petir', '.'], ['kelas', 'selesai', 'sekitar', 'jam', 'dua', 'kurang', 'seperempat', '.'], ['waktu', 'sarapan', 'dimulai', 'pukul', '6.30', 'hingga', '7.30', '.'], ['proklamasi', 'kemerdekaan', 'terjadi', 'pada', '17', 'agustus', '1945', '.'], ['indonesia', 'merdeka', 'pada', 'tahun', '1945', '.'], ['pemilu', 'diadakan', 'pada', '14', 'februari', '2024', '.'], ['tanggal', '1', 'januari', '2023', 'merupakan', 'hari', 'libur', '.'], ['barack', 'obama', 'lahir', 'pada', '4', 'agustus', '1961', '.'], ['hari', 'bumi', 'diperingati', 'setiap', '22', 'april', '.'], ['musim', 'kemarau', 'terjadi', 'antara', 'bulan', 'april', 'hingga', 'oktober', '.'], ['reformasi', '1998', 'mengubah', 'sistem', 'politik', 'indonesia', '.'], ['konferensi', 'asia-afrika', 'digelar', 'pada', 'tahun', '1955', 'di', 'bandung', '.'], ['perang', 'dunia', 'kedua', 'berakhir', 'tahun', '1945', '.'], ['sumpah', 'pemuda', 'diperingati', 'setiap', '28', 'oktober', '.'], ['habibie', 'dilantik', 'menjadi', 'presiden', 'pada', '21', 'mei', '1998', '.'], ['hari', 'kemerdekaan', 'indonesia', 'dirayakan', 'setiap', '17', 'agustus', '.'], ['pada', 'tahun', '1949', ',', 'belanda', 'mengakui', 'kemerdekaan', 'indonesia', '.'], ['tsunami', 'aceh', 'terjadi', 'pada', '26', 'desember', '2004', '.'], ['bung', 'karno', 'meninggal', 'pada', '21', 'juni', '1970', '.'], ['jakarta', 'ditetapkan', 'sebagai', 'ibu', 'kota', 'negara', 'pada', 'tahun', '1961', '.'], ['pada', '1955', ',', 'indonesia', 'menjadi', 'tuan', 'rumah', 'konferensi', 'asia-afrika', '.'], ['pemerintah', 'mengumumkan', 'kebijakan', 'psbb', 'pada', 'april', '2020', 'di', 'jakarta', '.'], ['undang-undang', 'dasar', '1945', 'disahkan', 'pada', 'tanggal', '18', 'agustus', '1945', '.']] \n", " 158\n" ] } ], "source": [ "# text preprocessing\n", "stop_words = set(stopwords.words(\"indonesian\")) \n", "factory = StemmerFactory()\n", "stemmer = factory.create_stemmer()\n", "\n", "with open(\"../normalize_text/normalize.json\", \"r\", encoding=\"utf-8\") as file:\n", " normalization_dict = json.load(file)\n", " \n", "def text_preprocessing(text):\n", " \n", " # if(text == \"?\" or text == \".\" or text == \"!\"): return text\n", " # lowercase\n", " text = text.lower()\n", " \n", " # remove punctuation\n", " # text = text.translate(str.maketrans(\"\", \"\", string.punctuation))\n", " \n", " # remove extra spaces\n", " text = re.sub(r\"\\s+\", \" \", text).strip()\n", " \n", " # tokenize\n", " # tokens = word_tokenize(text)\n", " \n", " # normalization\n", " # tokens = normalization_dict.get(text, text) \n", " \n", " \n", " # stemming\n", " # tokens = stemmer.stem(tokens)\n", " \n", " \n", " # remove stopwords\n", " # tokens = [word for word in tokens if word not in stop_words]\n", " \n", " # print(f\"Original: {text}\")\n", " # print(f\"Normalized: {tokens}\")\n", " \n", " return text\n", "\n", "# sentences = [text_preprocessing(\" \".join(sentence)) for sentence in sentences]\n", "print(\"old\", sentences)\n", "preprocessing_sentences = []\n", "\n", "for text in sentences:\n", " result = []\n", " for i in range(len(text)):\n", " text[i] = text_preprocessing(text[i])\n", " result.append(text[i])\n", " preprocessing_sentences.append(result)\n", "\n", "print(\"new\", preprocessing_sentences, \"\\n\", len(preprocessing_sentences))\n", "\n", " " ] }, { "cell_type": "code", "execution_count": 5, "id": "e9653d99", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['alarm', 'sempit', 'sore', '05.45', 'pecaharian', 'alat', 'langsung', 'pantai', 'kebijakan', 'dipengaruhi', 'hidrat', 'perak', '11', 'membatasi', 'wilayah', 'perairan', 'kedatangan', 'diselenggarakan', 'jauh', 'penyerbukan', 'barang-barang', 'tiba', 'sama', 'diaz', 'ombak', 'terluas', 'negara-negara', 'menarik', 'kering', 'mewadahi', 'semakin', '1998', 'sendiri', 'keturunan', 'simbol', 'diminta', 'sekitarnya', 'kemarau', 'bartholomeus', 'februari', 'keberagaman', '?', 'kanan', 'pertambangan', 'pbb', 'harian', '1949', 'jatuhnya', 'curah', 'faktor', 'sangat', 'sistem', 'tropis', 'terdiri', 'anggota', 'perkembangan', 'ada', 'pengalaman', 'kapal', 'beraneka', 'resources', 'perang', 'penduduk', 'alami', 'geografis', 'disebabkan', 'nelayan', 'manusia', 'mengolah', 'luas', 'toko', 'lembaga', 'menjadi', 'waktu', 'suatu', '2004', 'ini', 'setelah', 'pit', '3', 'buka', 'agama', 'mengoptimalkan', 'rata-rata', 'terjadi', 'tentang', 'pemuda', 'permukaan', 'disegani', 'kelembaban', '1950', 'makanan', 'kandungan', 'politik', 'bagaimana', 'rapat', 'perilaku', 'sumpah', 'tentu', 'mineral', '2016', 'meningkatkan', 'budayaanya', '2021', 'konser', 'mempunyai', 'bukan', 'bara', 'terjaga', '2025', 'mengarungi', 'hilangnya', 'tanah', 'gerbang', '1497', 'menjelang', '127,67', 'bahan', 'sepuluh', 'rombongan', 'sesuatu', 'kebutuhan', 'hobi', 'pembangunan', 'terpaksa', 'lima', 'alam', 'ikut', 'geologis', 'puluhan', 'dinihari', 'bagian', 'tercatat', 'menayangkan', 'kondisi', 'unsur', 'kesenangan', 'tanggal', 'siang', 'kurang', 'ruang', 'jam', 'laku', 'memahami', 'diperoleh', 'kebiasaan', 'liar', 'bung', 'diamati', 'dasar', 'meninggal', 'maraknya', 'dimilikinya', 'sebuah', 'bermain', '(', 'berkembang', 'selama', 'bertemu', 'pelajaran', 'intelegensi', 'oktober', 'ketenagakerjaan', 'budaya', 'modal', 'keuangan', 'sdm', 'ujung', 'angin', 'lahir', 'kualitas', 'malaka', 'mobil', 'kekayaan', 'daratan', 'urutan', 'dilatarbelakangi', 'listrik', 'kehidupan', 'ke', 'lepas', 'asing', 'berhasil', 'bandara', 'afrika', 'renewable', 'dijadwalkan', 'pelabuhan', 'berupa', 'kota', '09.00', 'portugis', 'hadir', 'singgah', 'dalam', '10', 'naluri', 'selain', 'kedua', 'kelestariannya', 'km2', '1945', 'eropa', 'belanda', 'inc', 'bersyukur', 'brunei', 'mundur', 'kereta', 'kerja', 'jika', 'bus', 'berolahraga', 'terakhir', 'libur', 'dua', 'hindia', 'bangsa-bangsa', 'pertandingan', '23.15', 'belajar', 'memperhatikan', 'sejarah', 'tujuh', 'pariwisata', 'air', 'pemadaman', 'selesai', 'tayang', 'negara', 'angkatan', 'pemilu', 'petir', 'psbb', 'membentuk', 'gama', 'pelajari', 'matahari', 'samudera', '-', 'varietas', 'secara', 'hutan', '18.00', 'saya', 'kafe', 'pusat', 'tengah', 'mengelola', 'teks', 'stadion', 'januari', 'raga', 'landas', 'cara', 'mulai', 'diperbarui', 'asia-afrika', 'mendarat', 'inilah', 'darussalam', 'patut', '2', 'goa', 'diperingati', 'tidak', 'akan', 'hidup', 'tata', 'badan', 'bandang', 'saat', 'barat', 'hawaii', 'dimiliki', 'dilaksanakan', 'selatan', 'rumah', 'jenis', '2024', 'mata', 'baik', 'mei', 'film', 'berakhir', 'kombinasi', 'tanaman', 'sarapan', 'fisik', 'bugis', 'praktik', 'jiwa', 'biasanya', 'kelas', 'ibu', 'penyinaran', 'juga', 'memenuhi', 'melanjutkan', 'sudah', 'merupakan', 'kebudayaan', 'wawancara', 'asean', 'daerah', 'big', 'nanti', 'abad', 'norma', 'satu', 'prakiraan', 'presiden', 'laporan', 'udara', 'tsunami', 'besar', '1.910.932,37', 'bumi', 'acara', '.', 'kita', 'dilantik', '1511', 'bagi', 'bangun', 'pernah', '14', '6', 'dibuka', '7.30', 'harapan', 'berlangsung', 'jadwal', 'kelima', 'layanan', 'yang', 'masyarakat', 'sawah', 'ditetapkan', 'penjelajahan', 'tersebut', 'kedalaman', 'non', 'dibahas', 'terhadap', '9', 'hujan', 'meliputi', 'yaitu', 'dan', 'suhu', 'musim', 'harinya', '5,8', '00.30', 'dapat', 'pinisinya', 'salah', 'misalnya', 'bawah', 'oleh', 'statistik', 'adat', 'block', 'peristiwa', 'berpakaian', 'hingga', 'reformasi', 'sebagai', 'disahkan', 'perbedaan', 'seseorang', 'sebesar', 'berdasarkan', 'emas', 'perkotaan', 'dunia', 'dengan', 'mengikis', 'merancang', 'tingkah', 'maritim', 'berbelok', 'keadaan', '12', 'kemaritiman', 'aceh', 'awal', 'periode', 'tenggara', 'digelar', 'keagamaan', 'kalikut', 'bangsa', 'sampai', 'unsur-unsur', '13.00', '18', 'da', '6.30', 'batu', 'masih', 'apakah', 'karena', 'contoh', 'memungkinkan', 'daya', 'lebih', 'menggunakan', ')', 'lapangan', 'individu', 'mengakui', 'delapan', 'atau', 'atas', 'membantu', 'berada', '4', 'armada', '22', 'adalah', 'dirinci', 'sumber', 'dari', 'cenderung', '21.00', ',', '17.00', 'kawasan', 'semangat', 'proses', 'menelusuri', 'berita', 'sholat', 'tinggal', 'serangkaian', 'jatuh', 'tambang', 'laut', 'moor', 'berinteraksi', 'rancangan', 'tanjung', '8', 'telah', '06.00', 'memulai', 'freeport', 'arang', 'manfaatnya', 'berbunyi', 'obama', 'proklamasi', 'tahunan', 'samudra', 'makan', 'setiap', 'penyebab', 'lawu', 'karakter', 'sebelum', 'april', 'kami', 'konstantinopel', 'pribadi', 'tiga', 'iklim', 'global', 'dihasilkan', 'bahwa', 'letak', 'mencakup', 'desember', 'hal', 'beberapa', 'november', 'mencapai', 'mencatat', '08.00', 'upacara', 'tuan', 'peringkat', 'mengurangi', 'mengumumkan', 'karakteristik', 'begitu', '270', 'dimanfaatkan', 'peserta', 'singkat', 'penjelasan', '2023', '21', '1955', 'sejak', 'grasberg', 'menguasai', 'orang', 'pemandangan', 'kemudian', 'ii', 'malam', 'kesatuan', 'lalu', 'nilai-nilai', 'perdagangan', 'pelaut', 'jumlah', 'berlayar', 'dianggap', 'tahun', 'cadangan', 'kitab', 'melalui', 'soeharto', 'menguntungkan', 'disewanya', '26', 'serangan', 'pencaharian', 'singapura', '2017', 'pagi', 'seperti', 'lingkungan', 'itu', 'nafsu', 'tepat', '22.00', 'benua', 'membincangkan', 'terutama', 'berhubungan', 'penerbangan', 'timur', 'dibedakan', 'sekitar', 'open', 'lisabon', 'kalah', 'tertentu', '1970', '1488', 'syarat', '28', 'tanahnya', 'juta', 'hanya', 'potensi', 'sehari-hari', 'minyak', 'menit', 'bajak', 'pola', 'pelayaran', 'sehingga', 'segala', 'mengajar', 'berbagi', 'bertahan', 'berbagai', 'berikut', 'sembilan', 'suku', 'dmlz', 'yuk', 'pulang', 'untuk', 'istiadat', '20.00', 'berharga', 'terdapat', 'pengaruh', 'terbit', 'karno', 'menghasilkan', 'keragaman', 'cave', 'ribuan', 'menemukan', 'bulan', 'apabila', 'memengaruhi', 'mencerminkan', 'pintu', 'dirayakan', 'pengetahuan', 'juli', 'lain', 'ragam', 'undang-undang', 'jakarta', '19.30', 'tempat', 'termasuk', 'kemajuan', 'asia', 'mengambil', '1453', 'masehi', 'pukul', 'dilakukan', 'sosial', 'kemerdekaan', 'pahlawan', 'vasco', 'penting', 'kuat', 'ia', '2020', 'simak', 'beragam', 'peranan', 'cuaca', 'maret', '1498', 'menempati', 'sih', 'memiliki', 'konferensi', 'hubungannya', '17', 'gambir', 'yakni', 'doz', 'sedangkan', 'mcmorran', 'berlimpah', 'juni', 'barack', '1961', 'apa', 'merdeka', 'habibie', 'hukum', 'aktivitas', 'keyakinan', 'terbenam', 'pada', 'malaysia', 'kucing', 'mengubah', 'empat', 'manusianya', 'menguap', 'tembaga', 'selalu', 'perlu', 'berangkat', 'fotosintesis', 'kepribadian-kepribadian', 'dilayari', 'agustus', 'kelompok', '5', '7', 'senjata', 'antara', 'orang-orang', 'siaran', 'dibandingkan', 'pertemuan', 'september', 'india', 'tinggalmu', 'di', 'sedikit', 'thailand', '1', 'pemerintah', 'pesawat', 'pembelajaran', 'membedakan', 'gossan', 'televisi', 'stasiun', 'kegiatan', 'banyak', 'kadar', 'sering', 'rute', 'dimulai', 'bandung', 'diadakan', 'pelanggan', 'kalian', 'diperkirakan', 'pokok', 'seperempat', 'dia', 'hindu-buddha', 'bermata', 'lautan', 'banjir', 'indonesia', 'kaya', 'hari', 'resource', 'lagi', 'papua', 'petunjuk', 'relatif', 'silahkan']\n", "{'alarm': 2, 'sempit': 3, 'sore': 4, '05.45': 5, 'pecaharian': 6, 'alat': 7, 'langsung': 8, 'pantai': 9, 'kebijakan': 10, 'dipengaruhi': 11, 'hidrat': 12, 'perak': 13, '11': 14, 'membatasi': 15, 'wilayah': 16, 'perairan': 17, 'kedatangan': 18, 'diselenggarakan': 19, 'jauh': 20, 'penyerbukan': 21, 'barang-barang': 22, 'tiba': 23, 'sama': 24, 'diaz': 25, 'ombak': 26, 'terluas': 27, 'negara-negara': 28, 'menarik': 29, 'kering': 30, 'mewadahi': 31, 'semakin': 32, '1998': 33, 'sendiri': 34, 'keturunan': 35, 'simbol': 36, 'diminta': 37, 'sekitarnya': 38, 'kemarau': 39, 'bartholomeus': 40, 'februari': 41, 'keberagaman': 42, '?': 43, 'kanan': 44, 'pertambangan': 45, 'pbb': 46, 'harian': 47, '1949': 48, 'jatuhnya': 49, 'curah': 50, 'faktor': 51, 'sangat': 52, 'sistem': 53, 'tropis': 54, 'terdiri': 55, 'anggota': 56, 'perkembangan': 57, 'ada': 58, 'pengalaman': 59, 'kapal': 60, 'beraneka': 61, 'resources': 62, 'perang': 63, 'penduduk': 64, 'alami': 65, 'geografis': 66, 'disebabkan': 67, 'nelayan': 68, 'manusia': 69, 'mengolah': 70, 'luas': 71, 'toko': 72, 'lembaga': 73, 'menjadi': 74, 'waktu': 75, 'suatu': 76, '2004': 77, 'ini': 78, 'setelah': 79, 'pit': 80, '3': 81, 'buka': 82, 'agama': 83, 'mengoptimalkan': 84, 'rata-rata': 85, 'terjadi': 86, 'tentang': 87, 'pemuda': 88, 'permukaan': 89, 'disegani': 90, 'kelembaban': 91, '1950': 92, 'makanan': 93, 'kandungan': 94, 'politik': 95, 'bagaimana': 96, 'rapat': 97, 'perilaku': 98, 'sumpah': 99, 'tentu': 100, 'mineral': 101, '2016': 102, 'meningkatkan': 103, 'budayaanya': 104, '2021': 105, 'konser': 106, 'mempunyai': 107, 'bukan': 108, 'bara': 109, 'terjaga': 110, '2025': 111, 'mengarungi': 112, 'hilangnya': 113, 'tanah': 114, 'gerbang': 115, '1497': 116, 'menjelang': 117, '127,67': 118, 'bahan': 119, 'sepuluh': 120, 'rombongan': 121, 'sesuatu': 122, 'kebutuhan': 123, 'hobi': 124, 'pembangunan': 125, 'terpaksa': 126, 'lima': 127, 'alam': 128, 'ikut': 129, 'geologis': 130, 'puluhan': 131, 'dinihari': 132, 'bagian': 133, 'tercatat': 134, 'menayangkan': 135, 'kondisi': 136, 'unsur': 137, 'kesenangan': 138, 'tanggal': 139, 'siang': 140, 'kurang': 141, 'ruang': 142, 'jam': 143, 'laku': 144, 'memahami': 145, 'diperoleh': 146, 'kebiasaan': 147, 'liar': 148, 'bung': 149, 'diamati': 150, 'dasar': 151, 'meninggal': 152, 'maraknya': 153, 'dimilikinya': 154, 'sebuah': 155, 'bermain': 156, '(': 157, 'berkembang': 158, 'selama': 159, 'bertemu': 160, 'pelajaran': 161, 'intelegensi': 162, 'oktober': 163, 'ketenagakerjaan': 164, 'budaya': 165, 'modal': 166, 'keuangan': 167, 'sdm': 168, 'ujung': 169, 'angin': 170, 'lahir': 171, 'kualitas': 172, 'malaka': 173, 'mobil': 174, 'kekayaan': 175, 'daratan': 176, 'urutan': 177, 'dilatarbelakangi': 178, 'listrik': 179, 'kehidupan': 180, 'ke': 181, 'lepas': 182, 'asing': 183, 'berhasil': 184, 'bandara': 185, 'afrika': 186, 'renewable': 187, 'dijadwalkan': 188, 'pelabuhan': 189, 'berupa': 190, 'kota': 191, '09.00': 192, 'portugis': 193, 'hadir': 194, 'singgah': 195, 'dalam': 196, '10': 197, 'naluri': 198, 'selain': 199, 'kedua': 200, 'kelestariannya': 201, 'km2': 202, '1945': 203, 'eropa': 204, 'belanda': 205, 'inc': 206, 'bersyukur': 207, 'brunei': 208, 'mundur': 209, 'kereta': 210, 'kerja': 211, 'jika': 212, 'bus': 213, 'berolahraga': 214, 'terakhir': 215, 'libur': 216, 'dua': 217, 'hindia': 218, 'bangsa-bangsa': 219, 'pertandingan': 220, '23.15': 221, 'belajar': 222, 'memperhatikan': 223, 'sejarah': 224, 'tujuh': 225, 'pariwisata': 226, 'air': 227, 'pemadaman': 228, 'selesai': 229, 'tayang': 230, 'negara': 231, 'angkatan': 232, 'pemilu': 233, 'petir': 234, 'psbb': 235, 'membentuk': 236, 'gama': 237, 'pelajari': 238, 'matahari': 239, 'samudera': 240, '-': 241, 'varietas': 242, 'secara': 243, 'hutan': 244, '18.00': 245, 'saya': 246, 'kafe': 247, 'pusat': 248, 'tengah': 249, 'mengelola': 250, 'teks': 251, 'stadion': 252, 'januari': 253, 'raga': 254, 'landas': 255, 'cara': 256, 'mulai': 257, 'diperbarui': 258, 'asia-afrika': 259, 'mendarat': 260, 'inilah': 261, 'darussalam': 262, 'patut': 263, '2': 264, 'goa': 265, 'diperingati': 266, 'tidak': 267, 'akan': 268, 'hidup': 269, 'tata': 270, 'badan': 271, 'bandang': 272, 'saat': 273, 'barat': 274, 'hawaii': 275, 'dimiliki': 276, 'dilaksanakan': 277, 'selatan': 278, 'rumah': 279, 'jenis': 280, '2024': 281, 'mata': 282, 'baik': 283, 'mei': 284, 'film': 285, 'berakhir': 286, 'kombinasi': 287, 'tanaman': 288, 'sarapan': 289, 'fisik': 290, 'bugis': 291, 'praktik': 292, 'jiwa': 293, 'biasanya': 294, 'kelas': 295, 'ibu': 296, 'penyinaran': 297, 'juga': 298, 'memenuhi': 299, 'melanjutkan': 300, 'sudah': 301, 'merupakan': 302, 'kebudayaan': 303, 'wawancara': 304, 'asean': 305, 'daerah': 306, 'big': 307, 'nanti': 308, 'abad': 309, 'norma': 310, 'satu': 311, 'prakiraan': 312, 'presiden': 313, 'laporan': 314, 'udara': 315, 'tsunami': 316, 'besar': 317, '1.910.932,37': 318, 'bumi': 319, 'acara': 320, '.': 321, 'kita': 322, 'dilantik': 323, '1511': 324, 'bagi': 325, 'bangun': 326, 'pernah': 327, '14': 328, '6': 329, 'dibuka': 330, '7.30': 331, 'harapan': 332, 'berlangsung': 333, 'jadwal': 334, 'kelima': 335, 'layanan': 336, 'yang': 337, 'masyarakat': 338, 'sawah': 339, 'ditetapkan': 340, 'penjelajahan': 341, 'tersebut': 342, 'kedalaman': 343, 'non': 344, 'dibahas': 345, 'terhadap': 346, '9': 347, 'hujan': 348, 'meliputi': 349, 'yaitu': 350, 'dan': 351, 'suhu': 352, 'musim': 353, 'harinya': 354, '5,8': 355, '00.30': 356, 'dapat': 357, 'pinisinya': 358, 'salah': 359, 'misalnya': 360, 'bawah': 361, 'oleh': 362, 'statistik': 363, 'adat': 364, 'block': 365, 'peristiwa': 366, 'berpakaian': 367, 'hingga': 368, 'reformasi': 369, 'sebagai': 370, 'disahkan': 371, 'perbedaan': 372, 'seseorang': 373, 'sebesar': 374, 'berdasarkan': 375, 'emas': 376, 'perkotaan': 377, 'dunia': 378, 'dengan': 379, 'mengikis': 380, 'merancang': 381, 'tingkah': 382, 'maritim': 383, 'berbelok': 384, 'keadaan': 385, '12': 386, 'kemaritiman': 387, 'aceh': 388, 'awal': 389, 'periode': 390, 'tenggara': 391, 'digelar': 392, 'keagamaan': 393, 'kalikut': 394, 'bangsa': 395, 'sampai': 396, 'unsur-unsur': 397, '13.00': 398, '18': 399, 'da': 400, '6.30': 401, 'batu': 402, 'masih': 403, 'apakah': 404, 'karena': 405, 'contoh': 406, 'memungkinkan': 407, 'daya': 408, 'lebih': 409, 'menggunakan': 410, ')': 411, 'lapangan': 412, 'individu': 413, 'mengakui': 414, 'delapan': 415, 'atau': 416, 'atas': 417, 'membantu': 418, 'berada': 419, '4': 420, 'armada': 421, '22': 422, 'adalah': 423, 'dirinci': 424, 'sumber': 425, 'dari': 426, 'cenderung': 427, '21.00': 428, ',': 429, '17.00': 430, 'kawasan': 431, 'semangat': 432, 'proses': 433, 'menelusuri': 434, 'berita': 435, 'sholat': 436, 'tinggal': 437, 'serangkaian': 438, 'jatuh': 439, 'tambang': 440, 'laut': 441, 'moor': 442, 'berinteraksi': 443, 'rancangan': 444, 'tanjung': 445, '8': 446, 'telah': 447, '06.00': 448, 'memulai': 449, 'freeport': 450, 'arang': 451, 'manfaatnya': 452, 'berbunyi': 453, 'obama': 454, 'proklamasi': 455, 'tahunan': 456, 'samudra': 457, 'makan': 458, 'setiap': 459, 'penyebab': 460, 'lawu': 461, 'karakter': 462, 'sebelum': 463, 'april': 464, 'kami': 465, 'konstantinopel': 466, 'pribadi': 467, 'tiga': 468, 'iklim': 469, 'global': 470, 'dihasilkan': 471, 'bahwa': 472, 'letak': 473, 'mencakup': 474, 'desember': 475, 'hal': 476, 'beberapa': 477, 'november': 478, 'mencapai': 479, 'mencatat': 480, '08.00': 481, 'upacara': 482, 'tuan': 483, 'peringkat': 484, 'mengurangi': 485, 'mengumumkan': 486, 'karakteristik': 487, 'begitu': 488, '270': 489, 'dimanfaatkan': 490, 'peserta': 491, 'singkat': 492, 'penjelasan': 493, '2023': 494, '21': 495, '1955': 496, 'sejak': 497, 'grasberg': 498, 'menguasai': 499, 'orang': 500, 'pemandangan': 501, 'kemudian': 502, 'ii': 503, 'malam': 504, 'kesatuan': 505, 'lalu': 506, 'nilai-nilai': 507, 'perdagangan': 508, 'pelaut': 509, 'jumlah': 510, 'berlayar': 511, 'dianggap': 512, 'tahun': 513, 'cadangan': 514, 'kitab': 515, 'melalui': 516, 'soeharto': 517, 'menguntungkan': 518, 'disewanya': 519, '26': 520, 'serangan': 521, 'pencaharian': 522, 'singapura': 523, '2017': 524, 'pagi': 525, 'seperti': 526, 'lingkungan': 527, 'itu': 528, 'nafsu': 529, 'tepat': 530, '22.00': 531, 'benua': 532, 'membincangkan': 533, 'terutama': 534, 'berhubungan': 535, 'penerbangan': 536, 'timur': 537, 'dibedakan': 538, 'sekitar': 539, 'open': 540, 'lisabon': 541, 'kalah': 542, 'tertentu': 543, '1970': 544, '1488': 545, 'syarat': 546, '28': 547, 'tanahnya': 548, 'juta': 549, 'hanya': 550, 'potensi': 551, 'sehari-hari': 552, 'minyak': 553, 'menit': 554, 'bajak': 555, 'pola': 556, 'pelayaran': 557, 'sehingga': 558, 'segala': 559, 'mengajar': 560, 'berbagi': 561, 'bertahan': 562, 'berbagai': 563, 'berikut': 564, 'sembilan': 565, 'suku': 566, 'dmlz': 567, 'yuk': 568, 'pulang': 569, 'untuk': 570, 'istiadat': 571, '20.00': 572, 'berharga': 573, 'terdapat': 574, 'pengaruh': 575, 'terbit': 576, 'karno': 577, 'menghasilkan': 578, 'keragaman': 579, 'cave': 580, 'ribuan': 581, 'menemukan': 582, 'bulan': 583, 'apabila': 584, 'memengaruhi': 585, 'mencerminkan': 586, 'pintu': 587, 'dirayakan': 588, 'pengetahuan': 589, 'juli': 590, 'lain': 591, 'ragam': 592, 'undang-undang': 593, 'jakarta': 594, '19.30': 595, 'tempat': 596, 'termasuk': 597, 'kemajuan': 598, 'asia': 599, 'mengambil': 600, '1453': 601, 'masehi': 602, 'pukul': 603, 'dilakukan': 604, 'sosial': 605, 'kemerdekaan': 606, 'pahlawan': 607, 'vasco': 608, 'penting': 609, 'kuat': 610, 'ia': 611, '2020': 612, 'simak': 613, 'beragam': 614, 'peranan': 615, 'cuaca': 616, 'maret': 617, '1498': 618, 'menempati': 619, 'sih': 620, 'memiliki': 621, 'konferensi': 622, 'hubungannya': 623, '17': 624, 'gambir': 625, 'yakni': 626, 'doz': 627, 'sedangkan': 628, 'mcmorran': 629, 'berlimpah': 630, 'juni': 631, 'barack': 632, '1961': 633, 'apa': 634, 'merdeka': 635, 'habibie': 636, 'hukum': 637, 'aktivitas': 638, 'keyakinan': 639, 'terbenam': 640, 'pada': 641, 'malaysia': 642, 'kucing': 643, 'mengubah': 644, 'empat': 645, 'manusianya': 646, 'menguap': 647, 'tembaga': 648, 'selalu': 649, 'perlu': 650, 'berangkat': 651, 'fotosintesis': 652, 'kepribadian-kepribadian': 653, 'dilayari': 654, 'agustus': 655, 'kelompok': 656, '5': 657, '7': 658, 'senjata': 659, 'antara': 660, 'orang-orang': 661, 'siaran': 662, 'dibandingkan': 663, 'pertemuan': 664, 'september': 665, 'india': 666, 'tinggalmu': 667, 'di': 668, 'sedikit': 669, 'thailand': 670, '1': 671, 'pemerintah': 672, 'pesawat': 673, 'pembelajaran': 674, 'membedakan': 675, 'gossan': 676, 'televisi': 677, 'stasiun': 678, 'kegiatan': 679, 'banyak': 680, 'kadar': 681, 'sering': 682, 'rute': 683, 'dimulai': 684, 'bandung': 685, 'diadakan': 686, 'pelanggan': 687, 'kalian': 688, 'diperkirakan': 689, 'pokok': 690, 'seperempat': 691, 'dia': 692, 'hindu-buddha': 693, 'bermata': 694, 'lautan': 695, 'banjir': 696, 'indonesia': 697, 'kaya': 698, 'hari': 699, 'resource': 700, 'lagi': 701, 'papua': 702, 'petunjuk': 703, 'relatif': 704, 'silahkan': 705, 'PAD': 0, 'UNK': 1}\n", "['B-DATE', 'B-ETH', 'B-EVENT', 'B-LOC', 'B-MIN', 'B-MISC', 'B-ORG', 'B-PER', 'B-QUANT', 'B-REL', 'B-RES', 'B-TERM', 'B-TIME', 'I-DATE', 'I-ETH', 'I-EVENT', 'I-LOC', 'I-MISC', 'I-ORG', 'I-PER', 'I-QUANT', 'I-RES', 'I-TERM', 'I-TIME', 'O']\n", "['AM-ADV', 'AM-CAU', 'AM-COM', 'AM-DIR', 'AM-DIS', 'AM-EXT', 'AM-FRQ', 'AM-LOC', 'AM-MNR', 'AM-MOD', 'AM-NEG', 'AM-PNC', 'AM-PRP', 'AM-QUE', 'AM-TMP', 'ARG0', 'ARG1', 'ARG2', 'ARG3', 'ARGM-BNF', 'ARGM-CAU', 'ARGM-COM', 'ARGM-DIS', 'ARGM-EX', 'ARGM-EXT', 'ARGM-LOC', 'ARGM-MNR', 'ARGM-MOD', 'ARGM-NEG', 'ARGM-PNC', 'ARGM-PRD', 'ARGM-PRP', 'ARGM-SRC', 'ARGM-TMP', 'I-AM-LOC', 'O', 'R-ARG1', 'V']\n", "{'B-DATE': 0, 'B-ETH': 1, 'B-EVENT': 2, 'B-LOC': 3, 'B-MIN': 4, 'B-MISC': 5, 'B-ORG': 6, 'B-PER': 7, 'B-QUANT': 8, 'B-REL': 9, 'B-RES': 10, 'B-TERM': 11, 'B-TIME': 12, 'I-DATE': 13, 'I-ETH': 14, 'I-EVENT': 15, 'I-LOC': 16, 'I-MISC': 17, 'I-ORG': 18, 'I-PER': 19, 'I-QUANT': 20, 'I-RES': 21, 'I-TERM': 22, 'I-TIME': 23, 'O': 24}\n", "{'AM-ADV': 0, 'AM-CAU': 1, 'AM-COM': 2, 'AM-DIR': 3, 'AM-DIS': 4, 'AM-EXT': 5, 'AM-FRQ': 6, 'AM-LOC': 7, 'AM-MNR': 8, 'AM-MOD': 9, 'AM-NEG': 10, 'AM-PNC': 11, 'AM-PRP': 12, 'AM-QUE': 13, 'AM-TMP': 14, 'ARG0': 15, 'ARG1': 16, 'ARG2': 17, 'ARG3': 18, 'ARGM-BNF': 19, 'ARGM-CAU': 20, 'ARGM-COM': 21, 'ARGM-DIS': 22, 'ARGM-EX': 23, 'ARGM-EXT': 24, 'ARGM-LOC': 25, 'ARGM-MNR': 26, 'ARGM-MOD': 27, 'ARGM-NEG': 28, 'ARGM-PNC': 29, 'ARGM-PRD': 30, 'ARGM-PRP': 31, 'ARGM-SRC': 32, 'ARGM-TMP': 33, 'I-AM-LOC': 34, 'O': 35, 'R-ARG1': 36, 'V': 37}\n", "{0: 'B-DATE', 1: 'B-ETH', 2: 'B-EVENT', 3: 'B-LOC', 4: 'B-MIN', 5: 'B-MISC', 6: 'B-ORG', 7: 'B-PER', 8: 'B-QUANT', 9: 'B-REL', 10: 'B-RES', 11: 'B-TERM', 12: 'B-TIME', 13: 'I-DATE', 14: 'I-ETH', 15: 'I-EVENT', 16: 'I-LOC', 17: 'I-MISC', 18: 'I-ORG', 19: 'I-PER', 20: 'I-QUANT', 21: 'I-RES', 22: 'I-TERM', 23: 'I-TIME', 24: 'O'}\n", "{0: 'AM-ADV', 1: 'AM-CAU', 2: 'AM-COM', 3: 'AM-DIR', 4: 'AM-DIS', 5: 'AM-EXT', 6: 'AM-FRQ', 7: 'AM-LOC', 8: 'AM-MNR', 9: 'AM-MOD', 10: 'AM-NEG', 11: 'AM-PNC', 12: 'AM-PRP', 13: 'AM-QUE', 14: 'AM-TMP', 15: 'ARG0', 16: 'ARG1', 17: 'ARG2', 18: 'ARG3', 19: 'ARGM-BNF', 20: 'ARGM-CAU', 21: 'ARGM-COM', 22: 'ARGM-DIS', 23: 'ARGM-EX', 24: 'ARGM-EXT', 25: 'ARGM-LOC', 26: 'ARGM-MNR', 27: 'ARGM-MOD', 28: 'ARGM-NEG', 29: 'ARGM-PNC', 30: 'ARGM-PRD', 31: 'ARGM-PRP', 32: 'ARGM-SRC', 33: 'ARGM-TMP', 34: 'I-AM-LOC', 35: 'O', 36: 'R-ARG1', 37: 'V'}\n" ] } ], "source": [ "words = list(set(word for sentence in preprocessing_sentences for word in sentence))\n", "word2idx = {word: idx + 2 for idx, word in enumerate(words)}\n", "word2idx[\"PAD\"] = 0\n", "word2idx[\"UNK\"] = 1\n", "\n", "all_ner_tags = sorted(set(tag for seq in ner_labels for tag in seq))\n", "all_srl_tags = sorted(set(tag for seq in srl_labels for tag in seq))\n", "tag2idx_ner = {tag: idx for idx, tag in enumerate(all_ner_tags)}\n", "tag2idx_srl = {tag: idx for idx, tag in enumerate(all_srl_tags)}\n", "idx2tag_ner = {i: t for t, i in tag2idx_ner.items()}\n", "idx2tag_srl = {i: t for t, i in tag2idx_srl.items()}\n", "\n", "print(words)\n", "print(word2idx)\n", "print(all_ner_tags)\n", "print(all_srl_tags)\n", "print(tag2idx_ner)\n", "print(tag2idx_srl)\n", "print(idx2tag_ner)\n", "print(idx2tag_srl)" ] }, { "cell_type": "code", "execution_count": 6, "id": "9d3a37b3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 42 551 425 ... 0 0 0]\n", " [ 96 433 66 ... 0 0 0]\n", " [ 96 575 433 ... 0 0 0]\n", " ...\n", " [641 496 429 ... 0 0 0]\n", " [672 486 10 ... 0 0 0]\n", " [593 151 203 ... 0 0 0]]\n", "y_ner \n", " \n", "[[24 24 24 ... 24 24 24]\n", " [24 24 24 ... 24 24 24]\n", " [24 24 24 ... 24 24 24]\n", " ...\n", " [24 0 24 ... 24 24 24]\n", " [24 24 24 ... 24 24 24]\n", " [24 24 0 ... 24 24 24]]\n", "y_srl \n", " \n", "[[16 16 16 ... 35 35 35]\n", " [13 16 16 ... 35 35 35]\n", " [13 16 16 ... 35 35 35]\n", " ...\n", " [14 14 35 ... 35 35 35]\n", " [15 37 16 ... 35 35 35]\n", " [16 16 14 ... 35 35 35]]\n", "y_ner cat \n", " \n", "[array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 1., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 1., 0.],\n", " [0., 0., 0., ..., 0., 1., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 1., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 1., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 1., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]]), array([[0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.]])]\n", "y_srl cat \n", " \n", "[array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [1., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 1., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 1., 0., ..., 0., 0., 0.],\n", " [0., 1., 0., ..., 0., 0., 0.],\n", " [0., 1., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 1.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]]), array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.],\n", " [0., 0., 0., ..., 1., 0., 0.]])]\n" ] } ], "source": [ "\n", "# === ENCODING ===\n", "X = [[word2idx.get(w, word2idx[\"UNK\"]) for w in s] for s in sentences]\n", "y_ner = [[tag2idx_ner[t] for t in ts] for ts in ner_labels]\n", "y_srl = [[tag2idx_srl[t] for t in ts] for ts in srl_labels]\n", "\n", "maxlen = 50\n", "\n", "X = pad_sequences(X, maxlen=maxlen, padding=\"post\", value=word2idx[\"PAD\"])\n", "y_ner = pad_sequences(y_ner, maxlen=maxlen, padding=\"post\", value=tag2idx_ner[\"O\"])\n", "y_srl = pad_sequences(y_srl, maxlen=maxlen, padding=\"post\", value=tag2idx_srl[\"O\"])\n", "\n", "y_ner_cat = [to_categorical(seq, num_classes=len(tag2idx_ner)) for seq in y_ner]\n", "y_srl_cat = [to_categorical(seq, num_classes=len(tag2idx_srl)) for seq in y_srl]\n", "\n", "print(X)\n", "print(\"y_ner \\n \")\n", "print(y_ner)\n", "print(\"y_srl \\n \")\n", "print(y_srl)\n", "print(\"y_ner cat \\n \")\n", "print(y_ner_cat)\n", "print(\"y_srl cat \\n \")\n", "print(y_srl_cat)\n" ] }, { "cell_type": "code", "execution_count": 7, "id": "a5c264df", "metadata": {}, "outputs": [], "source": [ "# split dataset \n", "X_temp, X_test, y_ner_temp, y_ner_test, y_srl_temp, y_srl_test = train_test_split(\n", " X, y_ner_cat, y_srl_cat, test_size=0.1, random_state=42\n", ")\n", "X_train, X_val, y_ner_train, y_ner_val, y_srl_train, y_srl_val = train_test_split(\n", " X_temp, y_ner_temp, y_srl_temp, test_size=0.1111, random_state=42 # ~10% of total\n", ")" ] }, { "cell_type": "code", "execution_count": 8, "id": "712c1789", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2025-05-08 14:34:12.231050: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)\n" ] }, { "data": { "text/html": [ "
Model: \"functional\"\n",
"
\n"
],
"text/plain": [
"\u001b[1mModel: \"functional\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n", "┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃\n", "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n", "│ input_layer │ (None, 50) │ 0 │ - │\n", "│ (InputLayer) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ embedding │ (None, 50, 64) │ 45,184 │ input_layer[0][0] │\n", "│ (Embedding) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ bidirectional │ (None, 50, 128) │ 66,048 │ embedding[0][0] │\n", "│ (Bidirectional) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ ner_output │ (None, 50, 25) │ 3,225 │ bidirectional[0]… │\n", "│ (TimeDistributed) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ srl_output │ (None, 50, 38) │ 4,902 │ bidirectional[0]… │\n", "│ (TimeDistributed) │ │ │ │\n", "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n", "\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n", "│ input_layer │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ - │\n", "│ (\u001b[38;5;33mInputLayer\u001b[0m) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ embedding │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m45,184\u001b[0m │ input_layer[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mEmbedding\u001b[0m) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ bidirectional │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m66,048\u001b[0m │ embedding[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mBidirectional\u001b[0m) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ ner_output │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m, \u001b[38;5;34m25\u001b[0m) │ \u001b[38;5;34m3,225\u001b[0m │ bidirectional[\u001b[38;5;34m0\u001b[0m]… │\n", "│ (\u001b[38;5;33mTimeDistributed\u001b[0m) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ srl_output │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m, \u001b[38;5;34m38\u001b[0m) │ \u001b[38;5;34m4,902\u001b[0m │ bidirectional[\u001b[38;5;34m0\u001b[0m]… │\n", "│ (\u001b[38;5;33mTimeDistributed\u001b[0m) │ │ │ │\n", "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Total params: 119,359 (466.25 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m119,359\u001b[0m (466.25 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 119,359 (466.25 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m119,359\u001b[0m (466.25 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#training model\n", "input_layer = Input(shape=(maxlen,))\n", "embedding = Embedding(input_dim=len(word2idx), output_dim=64)(input_layer)\n", "bilstm = Bidirectional(LSTM(units=64, return_sequences=True))(embedding)\n", "out_ner = TimeDistributed(Dense(len(tag2idx_ner), activation=\"softmax\"), name=\"ner_output\")(bilstm)\n", "out_srl = TimeDistributed(Dense(len(tag2idx_srl), activation=\"softmax\"), name=\"srl_output\")(bilstm)\n", "\n", "model = Model(inputs=input_layer, outputs=[out_ner, out_srl])\n", "model.compile(\n", " optimizer=\"adam\",\n", " loss={\"ner_output\": \"categorical_crossentropy\", \"srl_output\": \"categorical_crossentropy\"},\n", " metrics={\"ner_output\": \"accuracy\", \"srl_output\": \"accuracy\"}\n", ")\n", "\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 9, "id": "98feee87", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 18ms/step - loss: 3.6158 - ner_output_accuracy: 0.9415 - ner_output_loss: 1.4945 - srl_output_accuracy: 0.7447 - srl_output_loss: 2.1213 - val_loss: 0.7665 - val_ner_output_accuracy: 0.9463 - val_ner_output_loss: 0.2785 - val_srl_output_accuracy: 0.8550 - val_srl_output_loss: 0.4881\n", "Epoch 2/10\n", "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 0.8915 - ner_output_accuracy: 0.9478 - ner_output_loss: 0.2724 - srl_output_accuracy: 0.8253 - srl_output_loss: 0.6190 - val_loss: 0.6997 - val_ner_output_accuracy: 0.9463 - val_ner_output_loss: 0.2667 - val_srl_output_accuracy: 0.8538 - val_srl_output_loss: 0.4330\n", "Epoch 3/10\n", "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 0.7365 - ner_output_accuracy: 0.9564 - ner_output_loss: 0.2132 - srl_output_accuracy: 0.8416 - srl_output_loss: 0.5233 - val_loss: 0.6682 - val_ner_output_accuracy: 0.9463 - val_ner_output_loss: 0.2577 - val_srl_output_accuracy: 0.8575 - val_srl_output_loss: 0.4105\n", "Epoch 4/10\n", "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 0.7311 - ner_output_accuracy: 0.9505 - ner_output_loss: 0.2344 - srl_output_accuracy: 0.8466 - srl_output_loss: 0.4967 - val_loss: 0.6193 - val_ner_output_accuracy: 0.9463 - val_ner_output_loss: 0.2365 - val_srl_output_accuracy: 0.8813 - val_srl_output_loss: 0.3828\n", "Epoch 5/10\n", "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 0.7166 - ner_output_accuracy: 0.9486 - ner_output_loss: 0.2280 - srl_output_accuracy: 0.8665 - srl_output_loss: 0.4886 - val_loss: 0.5963 - val_ner_output_accuracy: 0.9463 - val_ner_output_loss: 0.2299 - val_srl_output_accuracy: 0.8875 - val_srl_output_loss: 0.3664\n", "Epoch 6/10\n", "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 0.6772 - ner_output_accuracy: 0.9565 - ner_output_loss: 0.1832 - srl_output_accuracy: 0.8551 - srl_output_loss: 0.4940 - val_loss: 0.5593 - val_ner_output_accuracy: 0.9463 - val_ner_output_loss: 0.2167 - val_srl_output_accuracy: 0.8950 - val_srl_output_loss: 0.3426\n", "Epoch 7/10\n", "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - loss: 0.6840 - ner_output_accuracy: 0.9439 - ner_output_loss: 0.2195 - srl_output_accuracy: 0.8772 - srl_output_loss: 0.4646 - val_loss: 0.5333 - val_ner_output_accuracy: 0.9463 - val_ner_output_loss: 0.2071 - val_srl_output_accuracy: 0.8975 - val_srl_output_loss: 0.3262\n", "Epoch 8/10\n", "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 0.5664 - ner_output_accuracy: 0.9525 - ner_output_loss: 0.1749 - srl_output_accuracy: 0.8891 - srl_output_loss: 0.3915 - val_loss: 0.5044 - val_ner_output_accuracy: 0.9463 - val_ner_output_loss: 0.1980 - val_srl_output_accuracy: 0.9162 - val_srl_output_loss: 0.3064\n", "Epoch 9/10\n", "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 0.5864 - ner_output_accuracy: 0.9497 - ner_output_loss: 0.1924 - srl_output_accuracy: 0.8918 - srl_output_loss: 0.3941 - val_loss: 0.4887 - val_ner_output_accuracy: 0.9463 - val_ner_output_loss: 0.1913 - val_srl_output_accuracy: 0.9200 - val_srl_output_loss: 0.2974\n", "Epoch 10/10\n", "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 0.5106 - ner_output_accuracy: 0.9608 - ner_output_loss: 0.1370 - srl_output_accuracy: 0.8946 - srl_output_loss: 0.3736 - val_loss: 0.4705 - val_ner_output_accuracy: 0.9463 - val_ner_output_loss: 0.1820 - val_srl_output_accuracy: 0.9187 - val_srl_output_loss: 0.2885\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA9lNJREFUeJzs3Xd4FeW2x/HfpPfEhIQkECDSawhVRBAUiKAgIJ2joggeFdGDBVFEsGMFROHawAJSFTlKV5AqBCQiCghICZBQAuk9e98/SPZhExJCSLJTvp/nmQfn3e+eWTNnD17Xfdcaw2w2mwUAAAAAAACUITtbBwAAAAAAAICqh6QUAAAAAAAAyhxJKQAAAAAAAJQ5klIAAAAAAAAocySlAAAAAAAAUOZISgEAAAAAAKDMkZQCAAAAAABAmSMpBQAAAAAAgDJHUgoAAAAAAABljqQUAACoVAzD0OTJk6/5e0ePHpVhGJo7d26pxIXyZ/LkyTIMQ+fOnbN1KAAAVEkkpQAAQImbO3euDMOQYRjavHlzvs/NZrNCQkJkGIbuuusum8RYXBs2bJBhGFqyZImtQyn38pI+BW2xsbG2DhEAANiQg60DAAAAlZeLi4vmz5+vW265xWr8l19+0YkTJ+Ts7Gyz2FB2Zs2aJQ8Pj3zjPj4+NokHAACUDySlAABAqenVq5cWL16sGTNmyMHhf/9nx/z589W6dWvKpiqB1NRUubm5FTpnwIABqlatWpnFBAAAKgbK9wAAQKkZOnSo4uLitHbtWstYZmamlixZomHDhl3xOykpKXrqqacUEhIiZ2dnNWzYUO+8847MZrPVvIyMDP3nP/+Rv7+/PD091adPH504ceKKxzx58qQefPBBVa9eXc7OzmratKk+//zzEr5aa//8848GDhwoX19fubm56aabbtKPP/6Yb94HH3ygpk2bys3NTTfccIPatGmj+fPnWz5PSkrSk08+qTp16sjZ2VkBAQHq3r27fvvtt0LPn1c6t3//fg0aNEheXl7y8/PTE088ofT09Hzzv/76a7Vu3Vqurq7y9fXVkCFDFB0dbTWnS5cuatasmXbt2qXOnTvLzc1Nzz///HXdJ11SErlw4UI9//zzCgwMlLu7u/r06ZMvBklavHixJdZq1arpX//6l06ePJlvXt61+/v7y9XVVQ0bNtQLL7yQb158fLxGjBghHx8feXt764EHHlBqaup1XxcAACgcK6UAAECpqVOnjjp06KBvvvlGPXv2lCStXLlSCQkJGjJkiGbMmGE132w2q0+fPlq/fr1Gjhypli1bavXq1XrmmWd08uRJvf/++5a5Dz30kL7++msNGzZMN998s37++Wfdeeed+WI4ffq0brrpJhmGoTFjxsjf318rV67UyJEjlZiYqCeffLLEr/v06dO6+eablZqaqrFjx8rPz09ffPGF+vTpoyVLlqhfv36SpE8++URjx47VgAEDLMmiPXv2aPv27Zak3b///W8tWbJEY8aMUZMmTRQXF6fNmzdr3759atWq1VVjGTRokOrUqaM33nhDv/76q2bMmKELFy7oyy+/tMx57bXX9OKLL2rQoEF66KGHdPbsWX3wwQfq3Lmzdu/ebVVmFxcXp549e2rIkCH617/+perVq181hvPnz+cbc3BwyFe+99prr8kwDI0fP15nzpzRtGnT1K1bN0VFRcnV1VXK7Vf2wAMPqG3btnrjjTd0+vRpTZ8+XVu2bLGKdc+ePerUqZMcHR01evRo1alTR4cPH9Z///tfvfbaa/nuUWhoqN544w399ttv+vTTTxUQEKCpU6de9doAAMB1MAMAAJSwOXPmmCWZIyMjzTNnzjR7enqaU1NTzWaz2Txw4EBz165dzWaz2Vy7dm3znXfeafnesmXLzJLMr776qtXxBgwYYDYMw3zo0CGz2Ww2R0VFmSWZH330Uat5w4YNM0syv/TSS5axkSNHmoOCgsznzp2zmjtkyBCzt7e3Ja4jR46YJZnnzJlT6LWtX7/eLMm8ePHiAuc8+eSTZknmTZs2WcaSkpLMoaGh5jp16phzcnLMZrPZfPfdd5ubNm1a6Pm8vb3Njz32WKFzruSll14ySzL36dPHavzRRx81SzL//vvvZrPZbD569KjZ3t7e/Nprr1nN++OPP8wODg5W47feeqtZknn27NnXFMOVtoYNG1rm5d3TGjVqmBMTEy3jixYtMksyT58+3Ww2m82ZmZnmgIAAc7NmzcxpaWmWeT/88INZknnSpEmWsc6dO5s9PT3Nx44ds4rJZDLli+/BBx+0mtOvXz+zn59fka4RAAAUH+V7AACgVA0aNEhpaWn64YcflJSUpB9++KHA0r0VK1bI3t5eY8eOtRp/6qmnZDabtXLlSss8SfnmXb7qyWw2a+nSperdu7fMZrPOnTtn2SIiIpSQkHDVMrjiWLFihdq1a2fV4N3Dw0OjR4/W0aNH9ddff0m5jb5PnDihyMjIAo/l4+Oj7du369SpU8WK5bHHHrPaf/zxxy0xStK3334rk8mkQYMGWd2fwMBA1a9fX+vXr7f6vrOzsx544IFrimHp0qVau3at1TZnzpx88+677z55enpa9gcMGKCgoCBLrDt37tSZM2f06KOPysXFxTLvzjvvVKNGjSzlkWfPntXGjRv14IMPqlatWlbnMAwj33n//e9/W+136tRJcXFxSkxMvKbrBAAA14byPQAAUKr8/f3VrVs3zZ8/X6mpqcrJydGAAQOuOPfYsWMKDg62SkxIUuPGjS2f5/1pZ2enunXrWs1r2LCh1f7Zs2cVHx+vjz/+WB9//PEVz3nmzJnrur4rOXbsmNq3b59v/NLraNasmcaPH69169apXbt2qlevnnr06KFhw4apY8eOlu+89dZbuv/++xUSEqLWrVurV69euu+++3TjjTcWKZb69etb7detW1d2dnY6evSoJOngwYMym8355uVxdHS02q9Ro4acnJyKdO48nTt3LlKj88tjMAxD9erVs8Sa97//5f87S1KjRo20efNmKbeflyQ1a9asSPFdnri64YYbJEkXLlyQl5dXkY4BAACuHUkpAABQ6oYNG6ZRo0YpNjZWPXv2zNdLqLSYTCZJ0r/+9S/df//9V5zTokWLMonlSho3bqwDBw7ohx9+0KpVq7R06VJ99NFHmjRpkqZMmSLlrjTr1KmTvvvuO61Zs0Zvv/22pk6dqm+//dbSp+taXL5SyGQyyTAMrVy5Uvb29vnme3h4WO3n9XaqTK503cpdaQcAAEoPSSkAAFDq+vXrp4cffli//vqrFi5cWOC82rVra926dUpKSrJaLbV//37L53l/mkwmHT582GrVzIEDB6yOl/dmvpycHHXr1q0Urqzg67g8Fl3hOiTJ3d1dgwcP1uDBg5WZman+/fvrtdde04QJEywlakFBQXr00Uf16KOP6syZM2rVqpVee+21IiWlDh48qNDQUMv+oUOHZDKZVKdOHSl35ZTZbFZoaKgaNGhQItdfXAcPHrTaN5vNOnTokCVxmHffDhw4oNtuu81q7oEDByyf560i27t3bxlFDgAAioOeUgAAoNR5eHho1qxZmjx5snr37l3gvF69eiknJ0czZ860Gn///fdlGIYlCZP35+Vv75s2bZrVvr29ve655x4tXbr0igmKs2fPXtd1FaRXr17asWOHtm3bZhlLSUnRxx9/rDp16qhJkyZS7pvsLuXk5KQmTZrIbDYrKytLOTk5SkhIsJoTEBCg4OBgZWRkFCmWDz/80Gr/gw8+kC65h/3795e9vb2mTJmSb2WQ2WzOF2Np+vLLL5WUlGTZX7JkiWJiYiyxtmnTRgEBAZo9e7bV9a9cuVL79u2zvH3R399fnTt31ueff67jx4/nuyYAAFA+sFIKAACUiYLK5y7Vu3dvde3aVS+88IKOHj2qsLAwrVmzRt9//72efPJJSw+pli1baujQofroo4+UkJCgm2++WT/99JMOHTqU75hvvvmm1q9fr/bt22vUqFFq0qSJzp8/r99++03r1q3T+fPni3U9S5cutax8uvw6n3vuOX3zzTfq2bOnxo4dK19fX33xxRc6cuSIli5dKju7i/9/wR49eigwMFAdO3ZU9erVtW/fPs2cOVN33nmnPD09FR8fr5o1a2rAgAEKCwuTh4eH1q1bp8jISL377rtFivPIkSPq06eP7rjjDm3btk1ff/21hg0bprCwMCl3pdSrr76qCRMm6OjRo+rbt688PT115MgRfffddxo9erSefvrpYt2jPEuWLMlXBihJ3bt3V/Xq1S37vr6+uuWWW/TAAw/o9OnTmjZtmurVq6dRo0ZJuf2tpk6dqgceeEC33nqrhg4dqtOnT2v69OmqU6eO/vOf/1iONWPGDN1yyy1q1aqVRo8erdDQUB09elQ//vijoqKirut6AABAySApBQAAyg07OzstX75ckyZN0sKFCzVnzhzVqVNHb7/9tp566imruZ9//rn8/f01b948LVu2TLfddpt+/PFHhYSEWM2rXr26duzYoZdfflnffvutPvroI/n5+alp06aaOnVqsWNdsGDBFce7dOmiW265RVu3btX48eP1wQcfKD09XS1atNB///tfy2oeSXr44Yc1b948vffee0pOTlbNmjU1duxYTZw4UZLk5uamRx99VGvWrLG8Ja9evXr66KOP9MgjjxQpzoULF2rSpEl67rnn5ODgoDFjxujtt9+2mvPcc8+pQYMGev/99y29rEJCQtSjRw/16dOn2PcoT0Gxrl+/3iop9fzzz2vPnj164403lJSUpNtvv10fffSR3NzcLHNGjBghNzc3vfnmmxo/frzc3d3Vr18/TZ061apXWVhYmH799Ve9+OKLmjVrltLT01W7dm0NGjTouq8HAACUDMPMGmYAAIBKZ/LkyZoyZYrOnj1bpDff2dKGDRvUtWtXLV68uMA3MwIAgMqHnlIAAAAAAAAocySlAAAAAAAAUOZISgEAAAAAAKDM0VMKAAAAAAAAZY6VUgAAAAAAAChzJKUAAAAAAABQ5hxsHUB5ZDKZdOrUKXl6esowDFuHAwAAAAAAUGGYzWYlJSUpODhYdnYFr4ciKXUFp06dUkhIiK3DAAAAAAAAqLCio6NVs2bNAj8nKXUFnp6eUu7N8/LysnU4xZaVlaU1a9aoR48ecnR0tHU4QJXDMwjYDs8fYDs8f4Dt8PyhvEhMTFRISIglv1IQklJXkFey5+XlVeGTUm5ubvLy8uIvJMAGeAYB2+H5A2yH5w+wHZ4/lDdXa4lEo3MAAAAAAACUOZJSAAAAAAAAKHMkpQAAAAAAAFDm6CkFAAAAAEAFkpOTo6ysrHzjWVlZcnBwUHp6unJycmwSG6oGR0dH2dvbX/dxSEoBAAAAAFABmM1mxcbGKj4+vsDPAwMDFR0dfdUG08D18vHxUWBg4HX91khKAQAAAABQAeQlpAICAuTm5pYvGWAymZScnCwPDw/Z2dGtB6XDbDYrNTVVZ86ckSQFBQUV+1gkpQAAAAAAKOdycnIsCSk/P78rzjGZTMrMzJSLiwtJKZQqV1dXSdKZM2cUEBBQ7FI+fqUAAAAAAJRzeT2k3NzcbB0KIF3yW7xSf7OiIikFAAAAAEAFQa8olBcl8VskKQUAAAAAAIAyR1IKAAAAAABUGoZhaNmyZbYOo8g+++wz9ejRo9SO36VLFz355JNFnn/u3DkFBAToxIkTpRZTHpJSAAAAAACgxBmGUeg2efLkAr979OhRGYahqKioEo9rxIgR6tu3b4kftzjS09P14osv6qWXXrKMlXR83377rV555ZUiz69WrZruu+8+q5hKC2/fAwAAAAAAJS4mJsbyzwsXLtSkSZN04MABy5iHh4eNIis/lixZIi8vL3Xs2PGav5uVlSVHR8erzvP19b3mYz/wwANq3bq13n777WJ9v6hYKQUAAAAAAEpcYGCgZfP29pZhGJb9gIAAvffee6pZs6acnZ3VsmVLrVq1yvLd0NBQSVJ4eLgMw1CXLl0kSZGRkerevbuqVasmb29v3Xrrrfrtt99KNO5ffvlF7dq1k7Ozs4KCgvTcc88pOzvb8vmSJUvUvHlzubq6ys/PT926dVNKSookacOGDWrXrp3c3d3l4+Ojjh076tixYwWea8GCBerdu7dlf/Lkyfriiy/0/fffW1aUbdiwwbJybOHChbr11lvl4uKiefPmKS4uTkOHDlWNGjXk5uam5s2b65tvvrE6x+Xle3Xq1NHrr7+uBx98UJ6enqpVq5Y+/vhjq+80bdpUwcHB+u6770rknhaEpBQAAAAAABWQ2WxWama21ZaWmZNvrKQ3s9l83bFPnz5d7777rt555x3t2bNHERER6tOnjw4ePChJ2rFjhyRp3bp1iomJ0bfffitJSkpK0v3336/Nmzfr119/Vf369dWrVy8lJSVdd0ySdPLkSfXq1Utt27bV77//rlmzZumzzz7Tq6++KuWu/ho6dKgefPBB7du3Txs2bFD//v1lNpuVnZ2tvn376tZbb9WePXu0bds2jR49utC31G3evFlt2rSx7D/99NMaNGiQ7rjjDsXExCgmJkY333yz5fPnnntOTzzxhPbt26eIiAilp6erdevW+vHHH7V3716NHj1a9957r+X+FeTdd99VmzZttHv3bj366KN65JFHrFaxSVK7du20adOm67ibV0f5HgAAAAAAFVBaVo6aTFpd5uf96+UIuTldXzrhnXfe0fjx4zVkyBBJ0tSpU7V+/XpNmzZNH374ofz9/SVJfn5+CgwMtHzvtttuszrOxx9/LB8fH/3yyy+66667rismSfroo48UEhKimTNnyjAMNWrUSKdOndL48eM1adIkxcTEKDs7W/3791ft2rUlSc2bN5cknT9/XgkJCbrrrrtUt25dSVLjxo0LPFd8fLwSEhIUHBxsGfPw8JCrq6syMjKsrjvPk08+qf79+1uNPf3005Z/fvzxx7V69WotWrRI7dq1K/DcvXr10qOPPipJGj9+vN5//32tX79eDRs2tMwJDg7W7t27i3TfiouVUgAAAAAAoMwkJibq1KlT+foodezYUfv27Sv0u6dPn9aoUaNUv359eXt7y8vLS8nJyTp+/HiJxLZv3z516NDBanVTx44dlZycrBMnTigsLEy33367mjdvroEDB+qTTz7RhQsXpNzeTSNGjFBERIR69+6t6dOnW/XVulxaWpokycXFpcjxXbqqSpJycnL0yiuvqHnz5vL19ZWHh4dWr1591fvRokULyz/nlVWeOXPGao6rq6tSU1OLHFtxsFIKAAAAAIAKyNXRXn+9HGHZN5lMSkpMkqeXp+zsSm8Niqujfakd+2ruv/9+xcXFafr06apdu7acnZ3VoUMHZWZmlsn57e3ttXbtWm3dulVr1qzRBx98oBdeeEHbt29XaGio5syZo7Fjx2rVqlVauHChJk6cqLVr1+qmm27Kdyw/Pz8ZhmFJahWFu7u71f7bb7+t6dOna9q0aWrevLnc3d315JNPXvV+XN4g3TAMmUwmq7Hz589bVqyVFlZKVXIms2QyXX+9LwAAAACgfDEMQ25ODlabq5N9vrGS3grrkVQUXl5eCg4O1pYtW6zGt2zZoiZNmkiSnJycpNyVQJfPGTt2rHr16qWmTZvK2dlZ586du654LtW4cWNt27bNqm/Wli1b5OnpqZo1a0q5971jx46aMmWKdu/eLScnJ6uG4OHh4ZowYYK2bt2qZs2aaf78+Vc8l5OTk5o0aaK//vor3/jl112QLVu26O6779a//vUvhYWF6cYbb9Tff/9dzKu3tnfvXoWHh5fIsQpCUqoSm7f9uF7dba/1f5+1dSgAAAAAAFg888wzmjp1qhYuXKgDBw7oueeeU1RUlJ544glJUkBAgFxdXbVq1SqdPn1aCQkJkqT69evrq6++0r59+7R9+3YNHz5crq6u13z+hIQERUVFWW3R0dF69NFHFR0drccff1z79+/X999/r5deeknjxo2TnZ2dtm/frtdff107d+7U8ePH9e233+rs2bNq3Lixjhw5ogkTJmjbtm06duyY1qxZo4MHDxbaVyoiIkKbN2+2GqtTp4727NmjAwcO6Ny5c8rKyirw+/Xr17es3Nq3b58efvhhnT59+prvx+VSU1O1a9cu9ejR47qPVRjK9yqx6AtpisswtHjXSd3RvIatwwEAAAAAQJI0duxYJSQk6KmnntKZM2fUpEkTLV++XPXr15ckOTg4aMaMGXr55Zc1adIkderUSRs2bNBnn32m0aNHq1WrVgoJCdHrr79u1ei7qDZs2JBvFdDIkSP16aefasWKFXrmmWcUFhYmX19fjRw5UhMnTpRyV3lt3LhR06ZNU2JiomrXrq13331XPXv21OnTp7V//3598cUXiouLU1BQkB577DE9/PDDBcYxcuRItWnTRgkJCfL29pYkjRo1Shs2bFCbNm2UnJys9evXq06dOlf8/sSJE/XPP/8oIiJCbm5uGj16tPr27WtJ4hXX999/r1q1aqlTp07XdZyrMcwl8S7HYnrjjTf07bffav/+/XJ1ddXNN9+sqVOnWnV7v5LFixfrxRdf1NGjR1W/fn1NnTpVvXr1snxuNpv10ksv6ZNPPlF8fLw6duyoWbNmWX7cV5OYmChvb28lJCTIy8vruq/TVvadvKCeH2yVvZ2hbc/dpgCvojdPA3D9srKytGLFCvXq1StfzTaA0sXzB9gOzx9QOtLT03XkyBGFhoYW2BjbZDIpMTFRXl5epdpTCiVr4MCBatWqlSZMmGDrUCxuuukmjR07VsOGDStwTmG/yaLmVWz6K/3ll1/02GOP6ddff9XatWuVlZWlHj16KCUlpcDvbN26VUOHDtXIkSO1e/du9e3bV3379tXevXstc9566y3NmDFDs2fP1vbt2+Xu7q6IiAilp6eX0ZWVD/UCPBTqaVaOyawlv52wdTgAAAAAAOAyb7/9tjw8PGwdhsW5c+fUv39/DR06tNTPZdOk1KpVqzRixAg1bdpUYWFhmjt3ro4fP65du3YV+J3p06frjjvu0DPPPKPGjRvrlVdeUatWrTRz5kwpd5XUtGnTNHHiRN19991q0aKFvvzyS506dUrLli0rw6srH24KuNg9f2FktGy4KA4AAAAAAFxBnTp19Pjjj9s6DItq1arp2Wefve6G9kVRrnpK5dU8+vr6Fjhn27ZtGjdunNVYRESEJeF05MgRxcbGqlu3bpbPvb291b59e23btk1DhgzJd8yMjAxlZGRY9hMTE6XcpceFNRQr77KyshTuZ9byaHsdi0vVloNn1D604HsLoGTl/f1Rkf8eASoqnj/Adnj+gNKRlZUls9ksk8kkk8l0xTl5CxHy5gGlyWQyyWw2KysrS/b29lafFfXfAeUmKWUymfTkk0+qY8eOatasWYHzYmNjVb16daux6tWrKzY21vJ53lhBcy73xhtvaMqUKfnG16xZIzc3t2JdT3nhbC+F+WRp6xk7TVu+Q/fW5y8moKytXbvW1iEAVRbPH2A7PH9AyXJwcFBgYKCSk5OVmZlZ6NykpKQyiwtVV2ZmptLS0rRx40ZlZ2dbfZaamlqkY5SbpNRjjz2mvXv35nsVYlmYMGGC1eqrxMREhYSEqEePHhW60XlWVpbWrl2rsb3bautnu/RHvIM6dr1V3q40nATKQt4z2L17dxq9AmWM5w+wHZ4/oHSkp6crOjpaHh4eBTY6N5vNSkpKkqenZ5mUXqFqS09Pl6urqzp37nzFRudFUS6SUmPGjNEPP/ygjRs3qmbNmoXODQwM1OnTp63GTp8+rcDAQMvneWNBQUFWc1q2bHnFYzo7O8vZ2TnfuKOjY6X4F2mr2r5qFOip/bFJWvHnGd3X4cqvkgRQOirL3yVARcTzB9gOzx9QsnJycmQYhuzs7Ap8s15eyV7ePKA02dnZyTCMK/59X9S//236KzWbzRozZoy+++47/fzzzwoNDb3qdzp06KCffvrJamzt2rXq0KGDJCk0NFSBgYFWcxITE7V9+3bLnKrGMAwNbhsiSVqwI9rW4QAAAAAAANg2KfXYY4/p66+/1vz58+Xp6anY2FjFxsYqLS3NMue+++7ThAkTLPtPPPGEVq1apXfffVf79+/X5MmTtXPnTo0ZM0bKTcA8+eSTevXVV7V8+XL98ccfuu+++xQcHKy+ffva5DrLg74ta8jJ3k5/xSRq78kEW4cDAAAAAACqOJsmpWbNmqWEhAR16dJFQUFBlm3hwoWWOcePH1dMTIxl/+abb9b8+fP18ccfKywsTEuWLNGyZcusmqM/++yzevzxxzV69Gi1bdtWycnJWrVqVYF1t1XBDe5Oimh2sbRxQeRxW4cDAAAAAACqOJuX711pGzFihGXOhg0bNHfuXKvvDRw4UAcOHFBGRob27t2rXr16WX1uGIZefvllxcbGKj09XevWrVODBg3K7LrKqyG5JXzf7z6ltMwcW4cDAAAAAECJMwxDy5Yts3UYRfbZZ5+pR48eJXrMLl266Mknn7Ts33TTTVq6dGmJnqMk0PmsCulwo59CfF2VlJGtlXtjivANAAAAAACKxzCMQrfJkycX+N2jR4/KMAxFRUWVeFwjRowoN+190tPT9eKLL+qll14q1fNMnDhRzz33nKUZfnlBUqoKsbMzNKh1bsPzSBqeAwAAAABKT0xMjGWbNm2avLy8rMaefvppW4doc0uWLJGXl5c6duxYqufp2bOnkpKStHLlylI9z7UiKVXFDGhTU3aGtOPIef1zNtnW4QAAAAAAKqnAwEDL5u3tLcMwLPsBAQF67733VLNmTTk7O6tly5ZatWqV5buhoaGSpPDwcBmGoS5dukiSIiMj1b17d1WrVk3e3t669dZb9dtvv5Vo3L/88ovatWsnZ2dnBQUF6bnnnlN2drbl8yVLlqh58+ZydXWVn5+funXrppSUFCm3BVG7du3k7u4uHx8fdezYUceOHSvwXAsWLFDv3r0t+2vWrJGLi4vi4+Ot5j3xxBO67bbbJElxcXEaOnSoatSoITc3NzVv3lzffPNNoddkb2+vXr16acGCBcW+L6WBpFQVE+Ttqlsb+EuSFu08YetwAAAAAADFZTZLmSnWW1Zq/rGS3szm6w59+vTpevfdd/XOO+9oz549ioiIUJ8+fXTw4EFJ0o4dOyRJ69atU0xMjL799ltJUlJSku6//35t3rxZv/76q+rXr69evXopKSnpumOSpJMnT6pXr15q27atfv/9d82aNUufffaZXn31VSl39dfQoUP14IMPat++fdqwYYP69+8vs9ms7Oxs9e3bV7feeqv27Nmjbdu2afTo0TIMo8Dzbd68WW3atLHs33777fLx8bHq/5STk6OFCxdq+PDhUm7JX+vWrfXjjz9q7969Gj16tO69917LPStIu3bttGnTphK4SyXHwdYBoOwNbltL6w+c1ZJdJ/RUjwZytCc3CQAAAAAVTlaq9HqwZddOkk9ZnPf5U5KT+3Ud4p133tH48eM1ZMgQSdLUqVO1fv16TZs2TR9++KH8/S8upvDz81NgYKDle3mrhfJ8/PHH8vHx0S+//KK77rrrumKSpI8++kghISGaOXOmDMNQo0aNdOrUKY0fP16TJk1STEyMsrOz1b9/f9WuXVuS1Lx5c0nS+fPnlZCQoLvuukt169aVJDVu3LjAc8XHxyshIUHBwf/739De3l5DhgzR/PnzNXLkSEnSTz/9pPj4eN1zzz2SpBo1aliVPj7++ONavXq1Fi1apHbt2hV4vuDgYEVHR8tkMsnOrnzkAcpHFChTtzcOUDUPJ51LztDP+8/YOhwAAAAAQBWSmJioU6dO5euj1LFjR+3bt6/Q754+fVqjRo1S/fr15e3tLS8vLyUnJ+v48eMlEtu+ffvUoUMHq9VNHTt2VHJysk6cOKGwsDDdfvvtat68uQYOHKhPPvlEFy5ckCT5+vpqxIgRioiIUO/evTV9+nTFxBT8krG0tDRJkouLi9X48OHDtWHDBp06dUqSNG/ePN15553y8bmYcszJydErr7yi5s2by9fXVx4eHlq9evVV74Grq6tMJpMyMjKu4w6VLFZKVUGO9na6p1VN/d/Gf7QoMloRTQOL8C0AAAAAQLni6HZx1VIuk8mkxKQkeXl6lu5KGEe30jv2Vdx///2Ki4vT9OnTVbt2bTk7O6tDhw7KzMwsk/Pb29tr7dq12rp1q9asWaMPPvhAL7zwgrZv367Q0FDNmTNHY8eO1apVq7Rw4UJNnDhRa9eu1U033ZTvWH5+fjIMw5LUytO2bVvVrVtXCxYs0COPPKLvvvtOc+fOtXz+9ttva/r06Zo2bZqaN28ud3d3Pfnkk1e9B+fPn5e7u7tcXV1L8I5cH1ZKVVGD2l58C9/6A2cUm5Bu63AAAAAAANfKMC6W0V26ObrlHyvprZAeSUXh5eWl4OBgbdmyxWp8y5YtatKkiSTJyclJyl0VdPmcsWPHqlevXmratKmcnZ117ty564rnUo0bN9a2bdtkvqRv1pYtW+Tp6amaNWtKkgzDUMeOHTVlyhTt3r1bTk5O+u677yzzw8PDNWHCBG3dulXNmjXT/Pnzr3guJycnNWnSRH/99Ve+z4YPH6558+bpv//9r+zs7HTnnXdaxXP33XfrX//6l8LCwnTjjTfq77//vuq17d27V+Hh4dd8T0oTSakqqq6/h9rV8ZXJLC3ZFW3rcAAAAAAAVcgzzzyjqVOnauHChTpw4ICee+45RUVF6YknnpAkBQQEyNXVVatWrdLp06eVkJAgSapfv76++uor7du3T9u3b9fw4cOLtfInISFBUVFRVlt0dLQeffRRRUdH6/HHH9f+/fv1/fff66WXXtK4ceNkZ2en7du36/XXX9fOnTt1/Phxffvttzp79qwaN26sI0eOaMKECdq2bZuOHTumNWvW6ODBg4X2lYqIiNDmzZvzjQ8fPly//fabXnvtNQ0YMEDOzs6Wz+rXr29ZrbVv3z49/PDDOn369FWvedOmTerRo8c136vSRFKqCstbLbVo5wmZTNf/9gQAAAAAAIpi7NixGjdunJ566ik1b95cq1at0vLly1W/fn1JkoODg2bMmKH/+7//U3BwsO6++25J0meffaYLFy6oVatWuvfeezV27FgFBARc8/k3bNig8PBwq23KlCmqUaOGVqxYoR07digsLEz//ve/NXLkSE2cOFHKXeW1ceNG9erVSw0aNNDEiRP17rvvqmfPnnJzc9P+/ft1zz33qEGDBho9erQee+wxPfzwwwXGMXLkSK1YscKSdMtTr149tWvXTnv27LG8dS/PxIkT1apVK0VERKhLly4KDAxU3759C73ekydPauvWrXrggQeu+V6VJsNsLoF3OVYyiYmJ8vb2VkJCgry8vGwdTrFlZWVpxYoV6tWrlxwdHfN9npqZrfav/aSkjGzNf6i9bq5XzSZxApXV1Z5BAKWH5w+wHZ4/oHSkp6fryJEjCg0NzdcYO4/JZFJiYqK8vLzKzdvVcHUDBw5Uq1atNGHChFI7x/jx43XhwgV9/PHHJXbMwn6TRc2r8CutwtycHNSn5cVXTy6IpIQPAAAAAICy9vbbb8vDw6NUzxEQEKBXXnmlVM9RHCSlqrjBuSV8q/6MVXxq2bytAAAAAAAAXFSnTh09/vjjpXqOp556StWrVy/VcxQHSakqrnkNbzUO8lJmtknLdp+0dTgAAAAAAKCKIClVxRmGoSG5q6UWREaLFmMAAAAAAKAskJSC+rasIScHO+2PTdIfJxOK8A0AAAAAAIDrQ1IK8nZzVM9mgRINzwEAAAAAQBkhKQXpkobny6NOKTUz29bhAAAAAACASo6kFCRJN4X6qbafm5IzsrXij1hbhwMAAAAAACo5klKQJNnZGRrU5uJqqYWRx20dDgAAAAAAqORISsFiQOuasjOkyKMXdOhMsq3DAQAAAACg0vnpp5/UuHFj5eTklMrxR4wYob59+xZ5fmZmpurUqaOdO3eWSjyFISkFi+peLrqtUYAkafFOGp4DAAAAAK7PiBEjZBiG3nzzTavxZcuWyTAMy/6GDRtkGMYVt9jYiy1mJk+ebBmzt7dXSEiIRo8erfPnzxcaw+TJk9WyZctSusJr9+yzz2rixImyt7eXSiG+6dOna+7cuUWe7+TkpKefflrjx48vsRiKiqQUrOSV8C397YQys022DgcAAAAAUMG5uLho6tSpunDhwlXnHjhwQDExMVZbQECA5fOmTZsqJiZGx48f15w5c7Rq1So98sgjpXwFJWfz5s06fPiw7rnnnmv+blZWVpHmeXt7y8fH55qOPXz4cG3evFl//vnnNcd1PUhKwUrXRgHy93TWueRM/bz/tK3DAQAAAABUcN26dVNgYKDeeOONq84NCAhQYGCg1WZn97/UhYODgwIDA1WjRg1169ZNAwcO1Nq1a68rvj/++EO33XabXF1d5efnp9GjRys5+X8tbTZs2KB27drJ3d1dPj4+6tixo44dOyZJ+v3339W1a1d5enrKy8tLrVu3LrQMbsGCBerevbtcXFwkSXPnztWUKVP0+++/W1aB5a1yMgxDs2bNUp8+feTu7q7XXntNOTk5GjlypEJDQ+Xq6qqGDRtq+vTpVue4vHyvS5cuGjt2rJ599ln5+voqMDBQkydPtvrODTfcoI4dO2rBggXXdS+vlUOZng3lnqO9nQa0rqlZGw5rYWS07mgWZOuQAAAAAABXYDablZadZtk3mUxKy06TQ5aDVSKnpLk6uFqV3l2Nvb29Xn/9dQ0bNkxjx45VzZo1SySOo0ePavXq1XJycir2MVJSUhQREaEOHTooMjJSZ86c0UMPPaQxY8Zo7ty5ys7OVt++fTVq1Ch98803yszM1I4dOyzXP3z4cIWHh2vWrFmyt7dXVFSUHB0dCzzfpk2bNGzYMMv+4MGDtXfvXq1atUrr1q2Tclc65Zk8ebLefPNNTZs2TQ4ODjKZTKpZs6YWL14sPz8/bd26VaNHj1ZQUJAGDRpU4Hm/+OILjRs3Ttu3b9e2bds0YsQIdezYUd27d7fMadeunTZt2lTse1kcJKWQz6A2IZq14bB++fusTsWnKdjH1dYhAQAAAAAuk5adpvbz25f5ebcP2y43R7dr+k6/fv3UsmVLvfTSS/rss88KnHd5wqp27dpWJWV//PGHPDw8lJOTo/T0dEnSe++9d83XkGf+/PlKT0/Xl19+KXd3d0nSzJkz1bt3b02dOlWOjo5KSEjQXXfdpbp160qSGjdubPn+8ePH9cwzz6hRo0aSpPr16xd6vmPHjik4ONiy7+rqKg8PD8sKsMsNGzZMDzzwgNXYlClTLP8cGhqqbdu2adGiRYUmpVq0aKGXXnrJEuPMmTP1008/WSWlgoODLSvAygpJKeQTWs1d7UN9tf3IeS3ZdUJjby/8oQIAAAAA4GqmTp2q2267TU8//XSBczZt2iRPT0/L/uWrjho2bKjly5crPT1dX3/9taKiovT4448XO6Z9+/YpLCzMkpCSpI4dO8pkMunAgQPq3LmzRowYoYiICHXv3l3dunXToEGDFBR0sapo3Lhxeuihh/TVV19ZygnzkldXkpaWZindK4o2bdrkG/vwww/1+eef6/jx40pLS1NmZuZVG6W3aNHCaj8oKEhnzpyxGnN1dVVqamqRYysJJKVwRUPahWj7kfNatDNaY7rWk51d0ZdmAgAAAABKn6uDq7YP227ZN5lMSkpKkqenZ6mX7xVH586dFRERoQkTJmjEiBFXnBMaGlpok24nJyfVq1dPkvTmm2/qzjvv1JQpU/TKK68UK6aimDNnjsaOHatVq1Zp4cKFmjhxotauXaubbrpJkydP1rBhw/Tjjz9q5cqVeumll7RgwQL169fviseqVq1akRq+57k0WabcnlRPP/203n33XXXo0EGenp56++23tX379gKPoSsk9wzDkMlk/XKz8+fPy9/fv8ixlQSSUriins2CNOn7P3XiQpq2Ho7TLfWr2TokAAAAAMAlDMOwKqMzmUzKdsiWm6NbqSalrsebb76pli1bqmHDhiVyvIkTJ+q2227TI488YlUWV1SNGzfW3LlzlZKSYkkAbdmyRXZ2dlYxhoeHKzw8XBMmTFCHDh00f/583XTTTZKkBg0aqEGDBvrPf/6joUOHas6cOQUmpcLDw/XXX39ZjTk5OSknJ6dI8W7ZskU333yzHn30UcvY4cOHr/m6r2Tv3r0KDw8vkWMVVfn8lcLmXBzt1bdlDUnSgsjjtg4HAAAAAFAJNG/eXMOHD9eMGTOu+PmZM2cUGxtrtWVlZRV4vA4dOqhFixZ6/fXXCz1vWlqaoqKirLbDhw9r+PDhcnFx0f3336+9e/dq/fr1evzxx3XvvfeqevXqOnLkiCZMmKBt27bp2LFjWrNmjQ4ePKjGjRsrLS1NY8aM0YYNG3Ts2DFt2bJFkZGRVj2nLhcREaHNmzdbjdWpU0dHjhxRVFSUzp07p4yMjAK/X79+fe3cuVOrV6/W33//rRdffFGRkZGFXntRbdq0ST169CiRYxUVSSkUaHDbEEnSmj9P60JKpq3DAQAAAABUAi+//HK+0rE8DRs2VFBQkNW2a9euQo/3n//8R59++qmio6MLnPP3339bVjvlbQ8//LDc3Ny0evVqnT9/Xm3bttWAAQN0++23a+bMmZIkNzc37d+/X/fcc48aNGig0aNH67HHHtPDDz8se3t7xcXF6b777lODBg00aNAg9ezZ06oR+eWGDx+uP//8UwcOHLCM3XPPPbrjjjvUtWtX+fv765tvvinw+w8//LD69++vwYMHq3379oqLi7NaNVVc27ZtU0JCggYMGHDdx7oWhtlsNpfpGSuAxMREeXt7KyEhQV5eXrYOp9iysrK0YsUK9erVq9BXUhbmzhmb9OepRE26q4kevCW0xGMEKrOSeAYBFA/PH2A7PH9A6UhPT9eRI0cUGhpaYKNsk8mkxMREeXl5ldvyPUjPPPOMEhMT9X//93+2DsVi8ODBCgsL0/PPP1/k7xT2myxqXoVfKQo1JHe11MLIaJG/BAAAAADg+rzwwguqXbt2gavFylpmZqaaN2+u//znP2V+bpJSKFSfljXk7GCnA6eT9PuJBFuHAwAAAABAhebj46Pnn3++3Kxmc3Jy0sSJE+XqWry3Kl6P8nEHUG55uzqqV/MgSdJCGp4DAAAAAIASQlIKV5XX8Hx51CmlZGTbOhwAAAAAAFAJkJTCVbUP9VUdPzelZOboxz9ibB0OAAAAAACoBEhK4aoMw9CgSxqeAwAAAAAAXC+SUiiSAa1qyt7O0K5jF3ToTJKtwwEAAAAAABUcSSkUSYCXi25rFCCxWgoAAAAAAJQAklIossFtLpbwLf3tpDKzTbYOBwAAAAAAVGAkpVBkXRr6K8DTWedTMrVu32lbhwMAAAAAQIXz008/qXHjxsrJySmxY44YMUJ9+/a17A8ZMkTvvvtuiR2/tJCUQpE52NtpYJuaEiV8AAAAAIAiGDFihAzD0Jtvvmk1vmzZMhmGYdnfsGGDDMO44hYbGytJmjx5smXM3t5eISEhGj16tM6fP19oDJMnT1bLli1L6Qqv3bPPPquJEyfK3t6+1M4xceJEvfbaa0pISCi1c5QEklK4JoNyS/g2Hjyrk/Fptg4HAAAAAFDOubi4aOrUqbpw4cJV5x44cEAxMTFWW0BAgOXzpk2bKiYmRsePH9ecOXO0atUqPfLII6V8BSVn8+bNOnz4sO65555SPU+zZs1Ut25dff3116V6nutFUgrXpLafuzrc6CezWVq8k9VSAAAAAIDCdevWTYGBgXrjjTeuOjcgIECBgYFWm53d/1IXDg4OCgwMVI0aNdStWzcNHDhQa9euva74/vjjD912221ydXWVn5+fRo8ereTkZMvnGzZsULt27eTu7i4fHx917NhRx44dkyT9/vvv6tq1qzw9PeXl5aXWrVtr586dBZ5rwYIF6t69u1xcXCRJf//9twzD0P79+63mvf/++6pbt64kKScnRyNHjlRoaKhcXV3VsGFDTZ8+/arX1bt3by1YsKDY96UskJTCNRvS7uJqqcU7TyjHZLZ1OAAAAABQJZnNZplSU623tLT8YyW8mc3X9t+B9vb2ev311/XBBx/oxIkTJXb9R48e1erVq+Xk5FTsY6SkpCgiIkI33HCDIiMjtXjxYq1bt05jxoyRJGVnZ6tv37669dZbtWfPHm3btk2jR4+2lB4OHz5cNWvWVGRkpHbt2qXnnntOjo6OBZ5v06ZNatOmjWW/QYMGatOmjebNm2c1b968eRo2bJgkyWQyqWbNmlq8eLH++usvTZo0Sc8//7wWLVpU6LW1a9dOO3bsUEZGRrHvT2lzsHUAqHgimgbKy8VBJ+PTtOXQOXVu4G/rkAAAAACgyjGnpelAq9b5xkv7tVQNf9slw83tmr7Tr18/tWzZUi+99JI+++yzAufVrFnTar927dr6888/Lft//PGHPDw8lJOTo/T0dEnSe++9d83XkGf+/PlKT0/Xl19+KXd3d0nSzJkz1bt3b02dOlWOjo5KSEjQXXfdZVm51LhxY8v3jx8/rmeeeUaNGjWSJNWvX7/Q8x07dkzBwcFWY8OHD9fMmTP1yiuvSLmrp3bt2mUpvXN0dNSUKVMs80NDQ7Vt2zYtWrRIgwYNKvBcwcHByszMVGxsrGrXrl2Mu1P6WCmFa+biaK9+4TUkGp4DAAAAAIpo6tSp+uKLL7Rv374C52zatElRUVGWbcWKFVafN2zYUFFRUYqMjNT48eMVERGhxx9/vNgx7du3T2FhYZaElCR17NhRJpNJBw4ckK+vr0aMGKGIiAj17t1b06dPV0xMjGXuuHHj9NBDD6lbt2568803dfjw4ULPl5aWZindyzNkyBAdPXpUv/76q5S7SqpVq1aWRJckffjhh2rdurX8/f3l4eGhjz/+WMePHy/0XK6urpKk1NTUa7wrZYeVUiiWwW1r6Yttx7Tmr1idT8mUr3vxl0sCAAAAAK6d4eqqhr/tsuybTCYlJiXJy9PTqg9TaZy3ODp37qyIiAhNmDBBI0aMuOKc0NBQ+fj4FHgMJycn1atXT5L05ptv6s4779SUKVMsq4xKw5w5czR27FitWrVKCxcu1MSJE7V27VrddNNNmjx5soYNG6Yff/xRK1eu1EsvvaQFCxaoX79+VzxWtWrV8jV8DwwM1G233ab58+frpptu0vz5862aty9YsEBPP/203n33XXXo0EGenp56++23tX379kLjznsrob9/+a1uYqUUiqVJsJea1/BWVo5Z3/5WcjXBAAAAAICiMQxDdm5u1pura/6xEt7y+ikVx5tvvqn//ve/2rZtW4ncg4kTJ+qdd97RqVOnivX9xo0b6/fff1dKSoplbMuWLbKzs1PDhg0tY+Hh4ZowYYK2bt2qZs2aaf78+ZbPGjRooP/85z9as2aN+vfvrzlz5hR4vvDwcP3111/5xocPH66FCxdq27Zt+ueffzRkyBCreG6++WY9+uijCg8PV7169a66IkuS9u7dq5o1a6patWpFvh9lzaZJqY0bN6p3794KDg6WYRhatmxZofNHjBghwzDybU2bNrXMmTx5cr7PL13yhpIzuO3FhucLI6OvudEdAAAAAKDqad68uYYPH64ZM2Zc8fMzZ84oNjbWasvKyirweB06dFCLFi30+uuvF3retLQ0q7LAqKgoHT58WMOHD5eLi4vuv/9+7d27V+vXr9fjjz+ue++9V9WrV9eRI0c0YcIEbdu2TceOHdOaNWt08OBBNW7cWGlpaRozZow2bNigY8eOacuWLYqMjLTqOXW5iIgIbd68Od94//79lZSUpEceeURdu3a16jtVv3597dy5U6tXr9bff/+tF198UZGRkYVer3JLIXv06HHVebZk06RUSkqKwsLC9OGHHxZpfl7tZt4WHR0tX19fDRw40Gpe06ZNreZd6X9wXL8+LYPl4ming2eS9dvxeFuHAwAAAACoAF5++WWZTKYrftawYUMFBQVZbbt27bri3Dz/+c9/9Omnnyo6uuCex3///bfCw8Ottocfflhubm5avXq1zp8/r7Zt22rAgAG6/fbbNXPmTEmSm5ub9u/fr3vuuUcNGjTQ6NGj9dhjj+nhhx+Wvb294uLidN9996lBgwYaNGiQevbsadWU/HLDhw/Xn3/+qQMHDliNe3p6qnfv3vr99981fPhwq88efvhh9e/fX4MHD1b79u0VFxenRx99tNB7kp6ermXLlmnUqFGFzrM1w1xOlrgYhqHvvvtOffv2LfJ3li1bpv79++vIkSOWTvKTJ0/WsmXLFBUVVexYEhMT5e3trYSEBHl5eRX7OLaWlZWlFStWqFevXoW+kvJ6jFsUpW9/O6nBbUI0dUCLUjkHUFGVxTMI4Mp4/gDb4fkDSkd6erqOHDmi0NDQfI2y85hMJiUmJsrLy6tUe0rh+jzzzDNKTEzU//3f/5XaOWbNmqXvvvtOa9asKbVzFPabLGpepUL/Sj/77DN169Yt36sNDx48qODgYN14440aPnz4VTvSo/iGtK0lSfrvnlNKzsi2dTgAAAAAAJRrL7zwgmrXrl3garGS4OjoqA8++KDUjl9SKuzb906dOqWVK1daNReTpPbt22vu3Llq2LChYmJiNGXKFHXq1El79+6Vp6fnFY+VkZGhjIwMy35iYqKU+//lKax2tbzLi700r6FlDQ+F+rnpSFyqvv8tWoPa1Cy1cwEVTVk8gwCujOcPsB2eP6B0ZGVlyWw2y2QyFZjMyCuEypuH8snLy0vPPfeclLu6rTQ8+OCDpXr8vGObzWZlZWXJ3t7e6rOi/jugwpbvvfHGG3r33Xd16tQpOTk5FTgvPj5etWvX1nvvvaeRI0decc7kyZOvWPM5f/58ubm5XcNVVE0/nTS0/Li96niY9Z/mObYOBwAAAAAqHQcHBwUGBiokJKTQ/wYGykpmZqaio6MVGxur7GzryqnU1FQNGzbsquV7FXKllNls1ueff6577733qg+jj4+PGjRooEOHDhU4Z8KECRo3bpxlPzExUSEhIerRo0eF7ym1du1ade/evVTr+dsmZWjFOxt1NFmq17qTGlS/8oo0oKopq2cQQH48f4Dt8PwBpSM9PV3R0dHy8PAosKeU2WxWUlKSPD09ZRhGmceIqiU9PV2urq7q3LnzFXtKFUWFTEr98ssvOnToUIErny6VnJysw4cP69577y1wjrOzs5ydnfONOzo6Vop/kZb2dQT7Our2xgFa/edpLd0dq0m9fUvtXEBFVFn+LgEqIp4/wHZ4/oCSlZOTI8MwZGdnV2AT87xSrbx5QGmys7OTYRhX/Pu+qH//2/RXmpycrKioKMub8o4cOaKoqChLY/IJEybovvvuy/e9zz77TO3bt1ezZs3yffb000/rl19+0dGjR7V161b169dP9vb2Gjp0aBlcUdWV1/D8u90nlJFNCR8AAAAAACicTZNSO3fuVHh4uMLDwyVJ48aNU3h4uCZNmiRJiomJyffmvISEBC1durTAVVInTpzQ0KFD1bBhQw0aNEh+fn769ddf5e/vXwZXVHV1buCvQC8XXUjN0tq/Tts6HAAAAAAAUM7ZtHyvS5cuKqzP+ty5c/ONeXt7KzU1tcDvLFiwoMTiQ9HZ2xka2KamPvj5kBZGRuuuFsG2DgkAAAAAAJRjFJmixAxqEyJJ2nzonKLPF5w4BAAAAAAAICmFEhPi66aO9fxkNkuLd52wdTgAAAAAAJQLmZmZqlevnrZu3Voqx9+wYYMMw1B8fHyRv/Pcc8/p8ccfL5V4ioqkFErU4NyG54t3RivHVHBpJgAAAACg8jt79qweeeQR1apVS87OzgoMDFRERIS2bNlimVOnTh0ZhiHDMOTm5qbmzZvr008/tTrOtSZdjh49KsMwLC9Ws7XZs2crNDRUN998s1QK8d18882KiYmRt7d3kb/z9NNP64svvtA///xTIjEUB0kplKgeTarLx81RMQnp2nTwrK3DAQAAAADY0D333KPdu3friy++0N9//63ly5erS5cuiouLs5r38ssvKyYmRnv37tW//vUvjRo1SitXrrRZ3CXJbDZr5syZBb6wrTCZmZlFmufk5KTAwEAZhlHkY1erVk0RERGaNWvWNcdVUkhKoUS5ONqrb8sakqSFkdG2DgcAAAAAYCPx8fHatGmTpk6dqq5du6p27dpq166dJkyYoD59+ljN9fT0VGBgoG688UaNHz9evr6+Wrt2banFlpGRobFjxyogIEAuLi665ZZbFBkZafn8woULGj58uPz9/eXq6qr69etrzpw5Um6iaMyYMQoKCpKLi4tq166tN954o8Bz7dq1S4cPH9add95pGQsNDZUkhYeHyzAMdenSRZI0YsQI9e3bV6+99pqCg4PVsGFDSdJXX32lNm3aWO7TsGHDdObMGcvxLl9JNnfuXPn4+Gj16tVq3LixPDw8dMcddygmJsYqtt69e9v0hXEkpVDiBre92PB87V+ndS45w9bhAAAAAEClZDablZWRY7VlZ+bkGyvpzWwuWqsWDw8PeXh4aNmyZcrIKNp/G5pMJi1dulQXLlyQk5PTdd6hgj377LNaunSpvvjiC/3222+qV6+eIiIidP78eUnSiy++qL/++ksrV67Uvn37NGvWLFWrVk2SNGPGDC1fvlyLFi3SgQMHNG/ePNWpU6fAc23atEkNGjSQp6enZWzHjh2SpHXr1ikmJkbffvut5bOffvpJBw4c0Nq1a/XDDz9IkrKysvTKK6/o999/17Jly3T06FGNGDGi0GtMTU3VO++8o6+++kobN27U8ePH9fTTT1vNadeunU6cOKGjR48W6z5eLwebnBWVWuMgL4WF+Oj36Hh999tJjep8o61DAgAAAIBKJzvTpI+f+KXMzzt6+q1ydLa/6jwHBwfNnTtXo0aN0uzZs9WqVSvdeuutGjJkiFq0aGE1d/z48Zo4caIyMjKUnZ0tX19fPfTQQ6USf0pKimbNmqW5c+eqZ8+ekqRPPvlEa9eu1WeffaZnnnlGx48fV3h4uNq0aSPl9r3Kc/z4cdWvX1+33HKLDMNQ7dq1Cz3fsWPHFBwcbDXm7+8vSfLz81NgYKDVZ+7u7vr000+tknIPPvig5Z9vvPFGzZgxQ23btlVycrI8PDyueN6srCzNnj1bdevWlSSNGTNGL7/8stWcvLiOHTtWaGKttLBSCqVicJuLq6UWRB4vchYdAAAAAFC53HPPPTp16pSWL1+uO+64Qxs2bFCrVq00d+5cq3nPPPOMoqKi9PPPP6t9+/Z6//33Va9evVKJ6fDhw8rKylLHjh0tY46OjmrXrp327dsnSXrkkUe0YMECtWzZUs8++6zVW/NGjBihqKgoNWzYUGPHjtWaNWsKPV9aWppcXFyKHF/z5s3zrRLbtWuXevfurVq1asnT01O33nqrlJsgK4ibm5slISVJQUFBViV/kuTq6irlrqqyBVZKoVT0DgvSKz/8pcNnU7Tr2AW1qeNr65AAAAAAoFJxcLLT6Om3WvZNJpOSkhLl6eklO7vSW4Pi4HRtx3ZxcVH37t3VvXt3vfjii3rooYf00ksvWZWfVatWTfXq1VO9evW0ePFiNW/eXG3atFGTJk1K4QqurmfPnjp27JhWrFihtWvX6vbbb9djjz2md955R61atdKRI0e0cuVKrVu3ToMGDVK3bt20ZMmSKx6rWrVq+uOPP4p8bnd3d6v9lJQURUREKCIiQvPmzZO/v7+OHz+uiIiIQhuhOzo6Wu0bhpFv0UheuWLeyq2yxkoplApPF0fd1SJIouE5AAAAAJQKwzDk6GxvtTk42ecbK+ntWt7wdiVNmjRRSkpKgZ+HhIRo8ODBmjBhwnWdpyB169aVk5OTtmzZYhnLyspSZGSkVRLM399f999/v77++mtNmzZNH3/8seUzLy8vDR48WJ988okWLlyopUuXWhI8lwsPD9f+/futEkJ5K6FycnKuGu/+/fsVFxenN998U506dVKjRo3yrXgqrr1798rR0VFNmzYtkeNdK1ZKodQMbhuixbtO6Ic9MZrUu4k8XRyL8C0AAAAAQGUQFxengQMH6sEHH1SLFi3k6empnTt36q233tLdd99d6HefeOIJNWvWTDt37rT0dZKkP/74w6phuGEYCgsLK/A4Bw4cyDfWtGlTPfLII3rmmWfk6+urWrVq6a233lJqaqpGjhwpSZo0aZJat26tpk2bKiMjQz/88IMaN24sSXrvvfcUFBSk8PBw2dnZafHixQoMDJSPj88VY+jatauSk5P1559/qlmzZpKkgIAAubq6atWqVapZs6ZcXFzk7e19xe/XqlVLTk5O+uCDD/Tvf/9be/fu1SuvvFLo/SuqTZs2qVOnTpYyvrJGUgqlpnXtG1TX312Hz6bov7/HaFj7WrYOCQAAAABQRjw8PCz9ofL6OIWEhGjUqFF6/vnnC/1ukyZN1KNHD02aNEkrVqywjHfu3Nlqnr29vbKzsws8zpAhQ/KNRUdH680335TJZNK9996rpKQktWnTRqtXr9YNN9wg5a5kmjBhgo4ePSpXV1d16tRJCxYskCR5enrqrbfe0sGDB2Vvb6+2bdtqxYoVBZZM+vn5qV+/fpo3b57eeOMNKbcJ/IwZM/Tyyy9r0qRJ6tSpkzZs2HDF7/v7+2vu3Ll6/vnnNWPGDLVq1UrvvPOO+vTpU+g9LIoFCxZo8uTJ132c4jLMdKHOJzExUd7e3kpISJCXl5etwym2rKwsrVixQr169cpXS1pWPtn4j15bsU9hIT76/rGORfgGUHmUh2cQqKp4/gDb4fkDSkd6erqOHDmi0NDQAptmm0wmJSYmysurdHtK4drt2bNH3bt31+HDhwt8W15ZW7lypZ566int2bNHDg7XvmapsN9kUfMq/EpRqvq1qiEHO0O/R8drX0yircMBAAAAAKDMtWjRQlOnTtWRI0dsHYpFSkqK5syZU6yEVEkhKYVSVc3DWd2bVJdoeA4AAAAAqMJGjBih5s2b2zoMiwEDBqh9+/Y2jYGkFErd4LYhkqRlUSeVnnX1NwsAAAAAAIDKj6QUSl2n+v4K9nZRfGqW1vx12tbhAAAAAACAcoCkFEqdvZ2hAW0urpZaGHnc1uEAAAAAAIBygKQUysTA1jVlGNKWQ3GKPp9q63AAAAAAAICNkZRCmQjxddMt9apJkhbtpOE5AAAAAABVHUkplJm8hueLd55Qjsls63AAAAAAAIANkZRCmenepLpucHNUbGK6Nv591tbhAAAAAAAAGyIphTLj7GCvfuE1JUkLaHgOAAAAAKgiMjMzVa9ePW3durXEjrlhwwYZhqH4+HhJ0qpVq9SyZUuZTKYSO0dpIymFMpVXwvfTvjM6m5Rh63AAAAAAAKXo7NmzeuSRR1SrVi05OzsrMDBQERER2rJli2VOnTp1ZBiGDMOQm5ubmjdvrk8//dTqOJcnYK7m6NGjMgxDUVFRJX5NxTF79myFhobq5ptvLrVz3HHHHXJ0dNS8efNK7RwljaQUylTDQE+F1/JRtsmsb387YetwAAAAAACl6J577tHu3bv1xRdf6O+//9by5cvVpUsXxcXFWc17+eWXFRMTo7179+pf//qXRo0apZUrV9os7pJkNps1c+ZMjRw5stTPNWLECM2YMaPUz1NSSEqhzA1uc3G11MLIaJnNNDwHAAAAgMooPj5emzZt0tSpU9W1a1fVrl1b7dq104QJE9SnTx+ruZ6engoMDNSNN96o8ePHy9fXV2vXri212DIyMjR27FgFBATIxcVFt9xyiyIjIy2fX7hwQcOHD5e/v79cXV1Vv359zZkzR8otxRszZoyCgoLk4uKi2rVr64033ijwXLt27dLhw4d15513WsZuvvlmjR8/3mre2bNn5ejoqI0bN0qSvvrqK7Vp08Zyb4YNG6YzZ84Uel29e/fWzp07dfjw4WLfm7JEUgpl7q6wYLk52eufcymKPHrB1uEAAAAAQIVkNpuVlZ5uvWWk5x8r4a2oiws8PDzk4eGhZcuWKSOjaO1bTCaTli5dqgsXLsjJyek671DBnn32WS1dulRffPGFfvvtN9WrV08RERE6f/68JOnFF1/UX3/9pZUrV2rfvn2aNWuWqlWrJkmaMWOGli9frkWLFunAgQOaN2+e6tSpU+C5Nm3apAYNGsjT09MyNnz4cC1YsMDqXi5cuFDBwcHq1KmTJCkrK0uvvPKKfv/9dy1btkxHjx7ViBEjCr2uWrVqqXr16tq0adN136Oy4GDrAFD1eDg7qHeLYC3cGa2FkdFqF+pr65AAAAAAoMLJzsjQjPsHlPl5x36xRI4uLled5+DgoLlz52rUqFGaPXu2WrVqpVtvvVVDhgxRixYtrOaOHz9eEydOVEZGhrKzs+Xr66uHHnqoVOJPSUnRrFmzNHfuXPXs2VOS9Mknn2jt2rX67LPP9Mwzz+j48eMKDw9XmzZtpNy+V3mOHz+u+vXr65ZbbpFhGKpdu3ah5zt27JiCg4OtxgYNGqQnn3xSmzdvtiSh5s+fr6FDh8owDEnSgw8+aJl/4403asaMGWrbtq2Sk5Pl4eFR4PmCg4N17NixYt2bssZKKdjEoNyG5z/+cUqJ6Vm2DgcAAAAAUAruuecenTp1SsuXL9cdd9yhDRs2qFWrVpo7d67VvGeeeUZRUVH6+eef1b59e73//vuqV69eqcR0+PBhZWVlqWPHjpYxR0dHtWvXTvv27ZMkPfLII1qwYIFatmypZ5991uqteSNGjFBUVJQaNmyosWPHas2aNYWeLy0tTS6XJfH8/f3Vo0cPS1PyI0eOaNu2bRo+fLhlzq5du9S7d2/VqlVLnp6euvXWW6XcpFhhXF1dlZqaek33xFZYKQWbaFXLR/UDPHTwTLKWR53Sv24qPLMMAAAAALDm4OyssV8sseybTCYlJiXKy9NLdnaltwbFwdn5mua7uLioe/fu6t69u1588UU99NBDeumll6xK0apVq6Z69eqpXr16Wrx4sZo3b642bdqoSZMmpXAFV9ezZ08dO3ZMK1as0Nq1a3X77bfrscce0zvvvKNWrVrpyJEjWrlypdatW6dBgwapW7duWrJkyRWPVa1aNf3xxx/5xocPH66xY8fqgw8+0Pz589W8eXM1b95cyl3NFRERoYiICM2bN0/+/v46fvy4IiIilJmZWWjs58+fl7+/fwndidLFSinYhGEYGpy7WmrRzmhbhwMAAAAAFY5hGHJ0cbHenF3yj5XwlldeVlxNmjRRSkpKgZ+HhIRo8ODBmjBhwnWdpyB169aVk5OTtmzZYhnLyspSZGSkVRLM399f999/v77++mtNmzZNH3/8seUzLy8vDR48WJ988okWLlyopUuXWvpRXS48PFz79+/P14vr7rvvVnp6ulatWqX58+dbrZLav3+/4uLi9Oabb6pTp05q1KjRVZucS1J6eroOHz6s8PDwa74vtsBKKdhM/1Y1NXXVfu05kaA/TyWoabC3rUMCAAAAAJSQuLg4DRw4UA8++KBatGghT09P7dy5U2+99ZbuvvvuQr/7xBNPqFmzZtq5c6elr5Mk/fHHH1YNww3DUFhYWIHHOXDgQL6xpk2b6pFHHtEzzzwjX19f1apVS2+99ZZSU1M1cuRISdKkSZPUunVrNW3aVBkZGfrhhx/UuHFjSdJ7772noKAghYeHy87OTosXL1ZgYKB8fHyuGEPXrl2VnJysP//8U82aNbOMu7u7q2/fvnrxxRe1b98+DR061PJZrVq15OTkpA8++ED//ve/tXfvXr3yyiuF3jNJ+vXXX+Xs7KwOHTpcdW55QFIKNuPr7qQeTQL14x8xWhQZrSl3k5QCAAAAgMrCw8PD0h8qr49TSEiIRo0apeeff77Q7zZp0kQ9evTQpEmTtGLFCst4586drebZ29srOzu7wOMMGTIk31h0dLTefPNNmUwm3XvvvUpKSlKbNm20evVq3XDDDZIkJycnTZgwQUePHpWrq6s6deqkBQsWSJI8PT311ltv6eDBg7K3t1fbtm21YsWKAksm/fz81K9fP82bN09vvPGG1WfDhw9Xr1691LlzZ9WqVcsy7u/vr7lz5+r555/XjBkz1KpVK73zzjvq06dPofftm2++0fDhw+Xm5lbovPLCMBf1XY5VSGJiory9vZWQkCAvLy9bh1NsWVlZWrFihXr16iVHR0dbh3NFG/8+q/s+3yEvFwfteKGbXBztbR0SUGIqwjMIVFY8f4Dt8PwBpSM9PV1HjhxRaGhovqbZeUwmkxITE+XlVbo9pXDt9uzZo+7du+vw4cOFvjnvepw7d04NGzbUzp07FRoaWirnuFRhv8mi5lX4lcKmbqlXTTV8XJWYnq3Vf8baOhwAAAAAAEpcixYtNHXqVB05cqTUznH06FF99NFHZZKQKikkpWBTdnaGBrapKUlasIOG5wAAAACAymnEiBGWt+uVhjZt2mjw4MGldvzSQFIKNjewTYgMQ9r2T5yOxRX8BgYAAAAAAFB5kJSCzdXwcVWn+v6SpEU7WS0FAAAAAEBVQFIK5cKQtiGSpMU7Tyg7x2TrcAAAAACgXOJdZSgvSuK3SFIK5UK3xtXl6+6kM0kZ+uXvs7YOBwAAAADKlby3Waampto6FEC65Ld4PW9adSjBeIBic3Kw0z2tauiTTUe0IDJatzeubuuQAAAAAKDcsLe3l4+Pj86cOSNJcnNzk2EYVnNMJpMyMzOVnp4uOzvWoKB0mM1mpaam6syZM/Lx8ZG9vX2xj0VSCuXG4LYh+mTTEf28/4zOJKYrwMvF1iEBAAAAQLkRGBgoSZbE1OXMZrPS0tLk6uqaL2EFlDQfHx/Lb7K4SEqh3KgX4KnWtW/QrmMXtPS3k3qkS11bhwQAAAAA5YZhGAoKClJAQICysrLyfZ6VlaWNGzeqc+fO11VSBVyNo6Pjda2QykNSCuXK4LYh2nXsghZGHte/b72R7D4AAAAAXMbe3v6KCQF7e3tlZ2fLxcWFpBQqBIpMUa7c2TxI7k72OhqXqu1Hzts6HAAAAAAAUEpISqFccXd2UJ+WwZKkhZHRtg4HAAAAAACUEpJSKHcGt60lSVrxR4wS0vLXSQMAAAAAgIqPpBTKnbCa3mpY3VMZ2SYtjzpp63AAAAAAAEApICmFcscwDA1uGyJJWkAJHwAAAAAAlRJJKZRL/cJryMneTn+eStTekwm2DgcAAAAAAJQwmyalNm7cqN69eys4OFiGYWjZsmWFzt+wYYMMw8i3xcbGWs378MMPVadOHbm4uKh9+/basWNHKV8JStoN7k7q0bS6RMNzAAAAAAAqJZsmpVJSUhQWFqYPP/zwmr534MABxcTEWLaAgADLZwsXLtS4ceP00ksv6bffflNYWJgiIiJ05syZUrgClKYhuQ3Pl0WdVHpWjq3DAQAAAAAAJcimSamePXvq1VdfVb9+/a7pewEBAQoMDLRsdnb/u4z33ntPo0aN0gMPPKAmTZpo9uzZcnNz0+eff14KV4DSdHNdP9W8wVVJ6dlauTfG1uEAAAAAAIASVCF7SrVs2VJBQUHq3r27tmzZYhnPzMzUrl271K1bN8uYnZ2dunXrpm3bttkoWhSXnZ2hQW1yG57voIQPAAAAAIDKxMHWAVyLoKAgzZ49W23atFFGRoY+/fRTdenSRdu3b1erVq107tw55eTkqHr16lbfq169uvbv31/gcTMyMpSRkWHZT0xMlCRlZWUpKyurFK+odOXFXpGvoW9YoKat+1vbj5zXwdh41fFzt3VIQJFVhmcQqKh4/gDb4fkDbIfnD+VFUX+DFSop1bBhQzVs2NCyf/PNN+vw4cN6//339dVXXxX7uG+88YamTJmSb3zNmjVyc3Mr9nHLi7Vr19o6hOvSyNtOf8XbaeqiTepd22TrcIBrVtGfQaAi4/kDbIfnD7Adnj/YWmpqapHmVaik1JW0a9dOmzdvliRVq1ZN9vb2On36tNWc06dPKzAwsMBjTJgwQePGjbPsJyYmKiQkRD169JCXl1cpRl+6srKytHbtWnXv3l2Ojo62DqfY7Guf1pgFv+v3RBfNiOgsR/sKWXWKKqiyPINARcTzB9gOzx9gOzx/KC/yKtCupsInpaKiohQUFCRJcnJyUuvWrfXTTz+pb9++kiSTyaSffvpJY8aMKfAYzs7OcnZ2zjfu6OhYKR7kin4dPZoFq5rHPp1NztTmwxfUo2nBCUagPKrozyBQkfH8AbbD8wfYDs8fbK2ovz+bJqWSk5N16NAhy/6RI0cUFRUlX19f1apVSxMmTNDJkyf15ZdfSpKmTZum0NBQNW3aVOnp6fr000/1888/a82aNZZjjBs3Tvfff7/atGmjdu3aadq0aUpJSdEDDzxgk2vE9XNysNM9rWrq/zb+o0U7o0lKAQAAAABQCdg0KbVz50517drVsp9XQnf//fdr7ty5iomJ0fHjxy2fZ2Zm6qmnntLJkyfl5uamFi1aaN26dVbHGDx4sM6ePatJkyYpNjZWLVu21KpVq/I1P0fFMrBNiP5v4z/6ef8ZxSakK9DbxdYhAQAAAACA62DTpFSXLl1kNpsL/Hzu3LlW+88++6yeffbZqx53zJgxhZbroeKpF+ChtnVuUOTRC1r62wk91rWerUMCAAAAAADXgY7RqDAGt60lSVq0M1omU8HJTAAAAAAAUP6RlEKF0at5oDycHXQsLlW/HomzdTgAAAAAAOA6kJRCheHm5KA+LYMlSQsjo20dDgAAAAAAuA4kpVChDGkbIklauTdWCalZtg4HAAAAAAAUE0kpVCjNa3irUaCnMrNNWhZ10tbhAAAAAACAYiIphQrFMAzLaqkFkdGFvr0RAAAAAACUXySlUOH0Da8hJwc77YtJ1N6TibYOBwAAAAAAFANJKVQ4Pm5OuqNpoCRpQeRxW4cDAAAAAACKgaQUKqS8Er7lUaeUlplj63AAAAAAAMA1IimFCummG/1Uy9dNSRnZWvFHjK3DAQAAAAAA14ikFCokOztDg9rUlCQtjIy2dTgAAAAAAOAakZRChTWgdYjsDGnH0fM6fDbZ1uEAAAAAAIBrQFIKFVagt4u6NgyQJC3ayWopAAAAAAAqEpJSqNAG5TY8X7rrhLJyTLYOBwAAAAAAFBFJKVRotzUKUDUPZ51LztRP+87YOhwAAAAAAFBEJKVQoTna22lA64sNzynhAwAAAACg4iAphQov7y18Gw6cUUxCmq3DAQAAAAAARUBSChXejf4eahfqK5NZWrLzhK3DAQAAAAAARUBSCpXCkNyG54t2RctkMts6HAAAAAAAcBUkpVAp9GwWJE8XB0WfT9O2f+JsHQ4AAAAAALgKklKoFFyd7HV3y2BJ0oJIGp4DAAAAAFDekZRCpTGkbS1J0uq9sbqQkmnrcAAAAAAAQCFISqHSaFbDW02DvZSZY9KyqJO2DgcAAAAAABSCpBQqlcG5Dc8XRkbLbKbhOQAAAAAA5RVJKVQqd4fVkLODnfbHJmnPiQRbhwMAAAAAAApAUgqVirebo3o1D5JoeA4AAAAAQLlGUgqVzqA2F0v4/vv7KaVmZts6HAAAAAAAcAUkpVDp3HSjr+r4uSk5I1s/7omxdTgAAAAAAOAKSEqh0jEMQ4MuaXgOAAAAAADKH5JSqJQGtKopeztDO49d0KEzSbYOBwAAAAAAXIakFCqlAC8XdW0YIElatPOErcMBAAAAAACXISmFSmtIbgnf0l0nlJltsnU4AAAAAADgEiSlUGl1aeivAE9nxaVk6qd9p20dDgAAAAAAuARJKVRaDvZ2GtC6piRp4U4angMAAAAAUJ6QlEKlNqjNxRK+X/4+q1PxabYOBwAAAAAA5CIphUqtTjV33XSjr8xmaTENzwEAAAAAKDdISqHSG9K2liRp0c5omUxmW4cDAAAAAABISqEquKNZoLxcHHQyPk1bDp+zdTgAAAAAAICkFKoCF0d79Q2vIUlaEEnDcwAAAAAAygOSUqgSBre92PB8zZ+xOp+SaetwAAAAAACo8khKoUpoGuyt5jW8lZVj1ne7T9o6HAAAAAAAqjySUqgyBuWulloYeVxmMw3PAQAAAACwJZJSqDL6hAXLxdFOf59O1u7oeFuHAwAAAABAlUZSClWGt6ujejUPkiQtouE5AAAAAAA2RVKqkqNKzdrgNhdL+Jb/fkrJGdm2DgcAAAAAgCqLpFQlFnciWWd/dVPCmTRbh1JutAv1VWg1d6Vm5ujHPadsHQ4AAAAAAFUWSalKbMd/jyoz3l4b5v0tk4klU5JkGIYGWxqeU8IHAAAAAICtkJSqxG4ZXE+GvVmn/0nUH+tP2DqccqN/qxqytzP02/F4/X06ydbhAAAAAABQJZGUqsQ8fV3k3ShDkvTrssOKP51q65DKhQBPF93eKEBitRQAAAAAADZDUqqScw/JUo0GPsrOMunnr/bJTBmfJGlIu4slfN/tPqmM7BxbhwMAAAAAQJVj06TUxo0b1bt3bwUHB8swDC1btqzQ+d9++626d+8uf39/eXl5qUOHDlq9erXVnMmTJ8swDKutUaNGpXwl5ZdhSJ2H1Zejs71iDiVoD2V8kqTO9f1V3ctZ51Myte6vM7YOBwAAAACAKsemSamUlBSFhYXpww8/LNL8jRs3qnv37lqxYoV27dqlrl27qnfv3tq9e7fVvKZNmyomJsaybd68uZSuoGLw9HPRzffUkyjjs3Cwt9PA1hdXSy2IPG7rcAAAAAAAqHIcbHnynj17qmfPnkWeP23aNKv9119/Xd9//73++9//Kjw83DLu4OCgwMDAEo21omvaKViHdp3RyQMX9PNX+9RvXCsZdoatw7KpQW1CNHP9IW0+dE4nLqSq5g1utg4JAAAAAIAqo0L3lDKZTEpKSpKvr6/V+MGDBxUcHKwbb7xRw4cP1/HjrIQxDEO33duIMr5L1PJz0811/WQ2S4t3cj8AAAAAAChLNl0pdb3eeecdJScna9CgQZax9u3ba+7cuWrYsKFiYmI0ZcoUderUSXv37pWnp+cVj5ORkaGMjAzLfmJioiQpKytLWVlZZXAlpSMv9rw/Xb0d1L5vqDYvPKRtyw6rRmNvefu72jhK2xrQKlhbD8dp0c5oPdK5juyr+OoxlKzLn0EAZYfnD7Adnj/Adnj+UF4U9TdomM3mcvE6NsMw9N1336lv375Fmj9//nyNGjVK33//vbp161bgvPj4eNWuXVvvvfeeRo4cecU5kydP1pQpU654Dje3ylXSZTZL5yJdlRHnIKcbsuXfPk1GFc7DZJmkSTvtlZpj6N+Nc9TYp1w8DgAAAAAAVFipqakaNmyYEhIS5OXlVeC8CrlSasGCBXrooYe0ePHiQhNSkuTj46MGDRro0KFDBc6ZMGGCxo0bZ9lPTExUSEiIevToUejNK++ysrK0du1ade/eXY6OjpbxpJvStfj1Xcq84KDa7mFq1qWGTeO0td+N/frq1+M6ahesp3qF2TocVCIFPYMASh/PH2A7PH+A7fD8obzIq0C7mgqXlPrmm2/04IMPasGCBbrzzjuvOj85OVmHDx/WvffeW+AcZ2dnOTs75xt3dHSsFA/y5dfhG+iojvfU0y/f/K0dy48qNCxAPgGVa0XYtRjWvra++vW4ftp/RokZJvl55P8tANejsvxdAlREPH+A7fD8AbbD8wdbK+rvz6aNzpOTkxUVFaWoqChJ0pEjRxQVFWVpTD5hwgTdd999lvnz58/Xfffdp3fffVft27dXbGysYmNjlZCQYJnz9NNP65dfftHRo0e1detW9evXT/b29ho6dKgNrrD8atqphmo0vEHZWSb9/OU+mU1Vt2ytcZCXwmp6KyvHrO92n7R1OAAAAAAAVAk2TUrt3LlT4eHhCg8PlySNGzdO4eHhmjRpkiQpJibG6s15H3/8sbKzs/XYY48pKCjIsj3xxBOWOSdOnNDQoUPVsGFDDRo0SH5+fvr111/l7+9vgyssvwy7i2/jc8h7G9+Gqv32ucFta0mSFkRGq5y0WQMAAAAAoFKzaflely5dCk0AzJ0712p/w4YNVz3mggULSiS2qsCrmqs69q+rX775W79+d1i1m/lV2TK+3mFBeuWHv3ToTLJ+O35BrWv72jokAAAAAAAqNZuulILtXSzj86nyZXyeLo66s0WQJGlhZLStwwEAAAAAoNIjKVXFXSzja0wZn6QhbUMkSf/9PUZJ6Vm2DgcAAAAAgEqNpBTkVc1VN/erK0n69bvDij+TauuQbKJ17Rt0o7+70rJy9MOeGFuHAwAAAABApUZSCpKkZp3/V8a3/qv9VbKMzzAMy2opSvgAAAAAAChdJKUgXVbGd+pgvP74pWqW8fVvVVMOdoaiouO1PzbR1uEAAAAAAFBpkZSCxaVlfNu+O6yEs1WvjK+ah7O6Na4usVoKAAAAAIBSRVIKVixlfJkm/fxl1SzjG9zuYgnfd7tPKiM7x9bhAAAAAABQKZGUghXK+KTO9f0V5O2i+NQsrfnztK3DAQAAAACgUiIphXyqehmfvZ2hga1rSpTwAQAAAABQakhK4Yqada6hGg2qbhnfwDYhMgxp86Fzij5ftZJyAAAAAACUBZJSuCLDztBt911axnfS1iGVqRBfN91Sr5okafFOVksBAAAAAFDSSEqhQNZlfIeqXBnfoDYXG54v3nVCOVVspRgAAAAAAKWNpBQKVZXL+Ho0rS4fN0fFJKRr48Gztg4HAAAAAIBKhaQUCmXYGep6b9Us43N2sFf/8NyG5zso4QMAAAAAoCSRlMJVeftfXsaXZuuQyszgthdL+NbtO62zSRm2DgcAAAAAgEqDpBSKxLqMb1+VKeNrGOipliE+yjaZ9d3uE7YOBwAAAACASoOkFIrEUsbnZKdTB+O1d2PVKeMbkrtaakFktMzmqpGMAwAAAACgtJGUQpF5+7uqQ796kqSt31adMr67woLl5mSvf86maOexC7YOBwAAAACASoGkFK5J81trKLh+1Srj83B20F0tgiRJCyNpeA4AAAAAQEkgKYVrYtgZuu2+qlfGN7htLUnSj3tilJieZetwAAAAAACo8EhK4ZpVxTK+VrV8VC/AQ2lZOfrv76dsHQ4AAAAAABUeSSkUy6VlfOu/qvxlfIZhWBqeL6KEDwAAAACA60ZSCsVyaRnfyb+rRhlfv/AacrQ39PuJBP11KtHW4QAAAAAAUKEVKykVHR2tEydOWPZ37NihJ598Uh9//HFJxoZyzqqM77vDlb6Mz8/DWd2bVJckLdrJaikAAAAAAK5HsZJSw4YN0/r16yVJsbGx6t69u3bs2KEXXnhBL7/8cknHiHLMUsaXkVMlyvjyGp5/t/uk0rNybB0OAAAAAAAVVrGSUnv37lW7du0kSYsWLVKzZs20detWzZs3T3Pnzi3pGFGOXSzja1RlyvhuqVdNNXxclZCWpdV/xto6HAAAAAAAKqxiJaWysrLk7OwsSVq3bp369OkjSWrUqJFiYmJKNkKUe97+burQr66UW8aXeK7ylvHZ2xka0LqmJGkhDc8BAAAAACi2YiWlmjZtqtmzZ2vTpk1au3at7rjjDknSqVOn5OfnV9IxogJofmtNSxnfz19W7jK+gW1qyjCkrYfjdDwu1dbhAAAAAABQIRUrKTV16lT93//9n7p06aKhQ4cqLCxMkrR8+XJLWR+qlqpUxlfzBjd1qu8v0fAcAAAAAIBiK1ZSqkuXLjp37pzOnTunzz//3DI+evRozZ49uyTjQwVSlcr4BrcJkSQt3hWt7ByTrcMBAAAAAKDCKVZSKi0tTRkZGbrhhhskSceOHdO0adN04MABBQQElHSMqECsyvgq8dv4ujUJkK+7k04nZmjjwbO2DgcAAAAAgAqnWEmpu+++W19++aUkKT4+Xu3bt9e7776rvn37atasWSUdIyoQSxmfo51OHojXn5sqZxmfs4O9+ofXkCQt2EEJHwAAAAAA16pYSanffvtNnTp1kiQtWbJE1atX17Fjx/Tll19qxowZJR0jKhhvfzfdlFvGt+XbylvGN7jtxRK+n/af0ZmkdFuHAwAAAABAhVKspFRqaqo8PT0lSWvWrFH//v1lZ2enm266SceOHSvpGFEBtehSU0H1vCt1GV/96p5qVctHOSazlu6qnCvCAAAAAAAoLcVKStWrV0/Lli1TdHS0Vq9erR49ekiSzpw5Iy8vr5KOERXQxTK+xpW+jG9I21pS7lv4zObKl3gDAAAAAKC0FCspNWnSJD399NOqU6eO2rVrpw4dOki5q6bCw8NLOkZUUD4Blb+M784WQXJ3steRcynaceS8rcMBAAAAAKDCKFZSasCAATp+/Lh27typ1atXW8Zvv/12vf/++yUZHyo46zK+/ZWujM/d2UG9w4IlSQsjaXgOAAAAAEBRFSspJUmBgYEKDw/XqVOndOLECUlSu3bt1KhRo5KMDxWcdRnfBf25+ZStQypxeQ3PV+yNUUJalq3DAQAAAACgQihWUspkMunll1+Wt7e3ateurdq1a8vHx0evvPKKTCZTyUeJCs0nwE039b1Yxrd16aFKV8bXMsRHDap7KD3LpOW/V76kGwAAAAAApaFYSakXXnhBM2fO1Jtvvqndu3dr9+7dev311/XBBx/oxRdfLPkoUeG16HqxjC+rEpbxGYahwbkNzxdGHrd1OAAAAAAAVAjFSkp98cUX+vTTT/XII4+oRYsWatGihR599FF98sknmjt3bslHiQqvspfx9QuvISd7O+09mai9JxNsHQ4AAAAAAOVesZJS58+fv2LvqEaNGun8ed5AhiurzGV8vu5O6tG0uiRp0U4angMAAAAAcDXFSkqFhYVp5syZ+cZnzpypFi1alERcqKTylfGZK08ZX17D8+92n1R6Vo6twwEAAAAAoFxzKM6X3nrrLd15551at26dOnToIEnatm2boqOjtWLFipKOEZVIXhnfwld2XCzj23RKzTrXsHVYJaJj3Wqq4eOqk/FpWrU3Vn3DK8d1AQAAAABQGoq1UurWW2/V33//rX79+ik+Pl7x8fHq37+//vzzT3311VclHyUqlcpaxmdnZ1hWSy2g4TkAAAAAAIUqVlJKkoKDg/Xaa69p6dKlWrp0qV599VVduHBBn332WclGiErp0jK+9V9XnjK+Aa1ryjCkX/85r6PnUmwdDgAAAAAA5Vaxk1LA9TDsDN1278W38Z3Yf7GMrzII9nHVrQ38JRqeAwAAAABQKJJSsBmf6pWzjG9Ibgnf4l0nlJ1jsnU4AAAAAACUSySlYFOVsYzvtkbV5efupLNJGVp/4KytwwEAAAAAoFy6prfv9e/fv9DP4+PjrzceVDF5ZXwLX91hKeOr6G/jc3Kw0z2ta+rjjf9oYWS0ujepbuuQAAAAAAAod65ppZS3t3ehW+3atXXfffcV+XgbN25U7969FRwcLMMwtGzZsqt+Z8OGDWrVqpWcnZ1Vr149zZ07N9+cDz/8UHXq1JGLi4vat2+vHTt2XMtloozlK+OLq/hlfIPaXCzhW3/gjE4npts6HAAAAAAAyp1rWik1Z86cEj15SkqKwsLC9OCDD151FZYkHTlyRHfeeaf+/e9/a968efrpp5/00EMPKSgoSBEREZKkhQsXaty4cZo9e7bat2+vadOmKSIiQgcOHFBAQECJxo+S07xrTR3+7YxiDido/Vf71eeJljIMw9ZhFVu9AA+1qX2Ddh67oCW7TuixrvVsHRIAAAAAAOWKTXtK9ezZU6+++qr69etXpPmzZ89WaGio3n33XTVu3FhjxozRgAED9P7771vmvPfeexo1apQeeOABNWnSRLNnz5abm5s+//zzUrwSXC87O0O33ddY9rlv4/trc8V/G9/g3Ibni3ZGV4peWQAAAAAAlKQK1eh827Zt6tatm9VYRESEtm3bJknKzMzUrl27rObY2dmpW7duljkov3yqu+mmu2+UJG1ZUvHL+O5sESQPZwcdi0vVr/+ct3U4AAAAAACUK9dUvmdrsbGxql7duml09erVlZiYqLS0NF24cEE5OTlXnLN///4Cj5uRkaGMjAzLfmJioiQpKytLWVlZJX4dZSUv9op0DY07BerQb2d0+p9E/fzlPvV6rFmFLeNzNKQ7mwdq4c4T+mb7MbWp5WXrkFDGKuIzCFQWPH+A7fD8AbbD84fyoqi/wQqVlCotb7zxhqZMmZJvfM2aNXJzc7NJTCVp7dq1tg7h2tQ0pKPuOnkgXov/b508alXcv1BrZEiSg1b+cUodnKPlxhNXJVW4ZxCoRHj+ANvh+QNsh+cPtpaamlqkeRXqP5EDAwN1+vRpq7HTp0/Ly8tLrq6usre3l729/RXnBAYGFnjcCRMmaNy4cZb9xMREhYSEqEePHvLyqrirW7KysrR27Vp1795djo6Otg7nmuzxO6lfv/tHKYfc1XNQK3n6utg6pGIxm81acWab9p9OVnr1ZhrQvpatQ0IZqsjPIFDR8fwBtsPzB9gOzx/Ki7wKtKupUEmpDh06aMWKFVZja9euVYcOHSRJTk5Oat26tX766Sf17dtXkmQymfTTTz9pzJgxBR7X2dlZzs7O+cYdHR0rxYNcEa8jvHttHdsTp5jDCdq84JB6j624b+Mb3K6Wpvz3Ly3edUoP3FLX1uHABiriMwhUFjx/gO3w/AG2w/MHWyvq78+mjc6Tk5MVFRWlqKgoSdKRI0cUFRWl48ePS7krmO677z7L/H//+9/6559/9Oyzz2r//v366KOPtGjRIv3nP/+xzBk3bpw++eQTffHFF9q3b58eeeQRpaSk6IEHHrDBFaK4Ln0bX/S+iv02vn7hNeTkYKe/YhK192SCrcMBAAAAAKBcsGlSaufOnQoPD1d4eLiUm1AKDw/XpEmTJEkxMTGWBJUkhYaG6scff9TatWsVFhamd999V59++qkiIiIscwYPHqx33nlHkyZNUsuWLRUVFaVVq1bla36O8q+yvI3Px81JdzS9WD66IPL4VecDAAAAAFAV2LR8r0uXLjKbzQV+Pnfu3Ct+Z/fu3YUed8yYMYWW66HiaHFbiP7ZfVYxhxO04ev9FbaMb3DbEC3//ZS+331KL/RqIlcne1uHBAAAAACATdl0pRRwNZWljK/DjX4K8XVVUka2Vu6NsXU4AAAAAADYHEkplHtWZXxLDynpfLqtQ7pmdnaGBrcJkSQtiIy2dTgAAAAAANgcSSlUCC1uC1Hgjd7KSs/R+q/2FVr2WV4NaB0iO0PaceS8/jmbbOtwAAAAAACwKZJSqBDs7Azdfn/FLuML9HZRl4YBkqRFO0/YOhwAAAAAAGyKpBQqjMpQxje47cUSviW7Tigrx2TrcAAAAAAAsBmSUqhQKnoZ322NAlTNw1nnkjP08/4ztg4HAAAAAACbISmFCuXi2/gaWcr49m2pWG+yc7S30z2ta0iSFtHwHAAAAABQhZGUQoVzQ6C72ve5WMa3ecnBClfGl/cWvvUHzig2oWLFDgAAAABASSEphQop7PYQBd7odbGM7+v9FaqM70Z/D7Wr4yuTWVqyi9VSAAAAAICqiaQUKqSLZXy5b+P763yFK+PLa3i+aOcJmUwVJ6EGAAAAAEBJISmFCqsil/H1ah4kT2cHHT+fql//ibN1OAAAAAAAlDmSUqjQLi3j21CByvhcnezVp2WwJGkBDc8BAAAAAFUQSSlUaJYyPgc7Hf/rvPZtrThlfEPa1pIkrfozVvGpmbYOBwAAAACAMkVSChXepWV8WxZXnDK+ZjW81CTIS5nZJi3bfdLW4QAAAAAAUKZISqFSCOsWouqhXsqsQGV8hmFYGp4viIyuEDEDAAAAAFBSSEqhUrCzM3T7/RWvjK9vyxpycrDT/tgk/XEywdbhAAAAAABQZkhKodKoiGV83m6O6tUsUKLhOQAAAACgiiEphUqlIpbxDcot4VsedUqpmdm2DgcAAAAAgDJBUgqVSkUs47sp1E+1/dyUnJGtFX/E2jocAAAAAADKBEkpVDoVrYzPzs7QoDYXV0stjDxu63AAAAAAACgTJKVQKVW0Mr4BrWvK3s5Q5NELOnQm2dbhAAAAAABQ6khKoVKqaGV81b1c1LWhvyRp8U4angMAAAAAKj+SUqi0bgh0V7s+oVIFKeMb3LaWJGnpbyeUmW2ydTgAAAAAAJQqklKo1Fp2q/W/Mr555buMr2tDfwV4OutccqZ+3n/a1uEAAAAAAFCqSEqhUrMq4/uzfJfxOdjb6Z7WNSVJCyMp4QMAAAAAVG4kpVDpXV7Gl3yh/Jbx5b2F75e/z+pUfJqtwwEAAAAAoNSQlEKVcGkZ3/py/Da+0GruuulGX5nM0pJdJ2wdDgAAAAAApYakFKoEOztDt933vzK+/dvKbxnf4LYXV0st2hktk6l8Js8AAAAAALheJKVQZfgGuatd74tlfJsXld8yvp7NguTp4qATF9K09XCcrcMBAAAAAKBUkJRCldKy+6VlfAfKZRmfi6O9+oXXkCQtiDxu63AAAAAAACgVJKVQpViX8cWV2zK+vIbna/48rQspmbYOBwAAAACAEudg6wCAspZXxrftu8PavPiQQhr7yuMGF1uHZaVZDW81q+GlvScTdd/nO9Qw0FPB3i4K8nFVoLeLgr0v/unl4iDDMGwdLgAAAAAA14ykFKqklt1CdHj3WZ05mqj1Xx/QXWNalLvkzn031dGzS/foj5MJ+uNkwhXnuDvZK8jHVUHeLgrydlGgt6sleZU35uniWOaxAwAAAABwNSSlUCXZ2dvp9vsba9FrkbllfLFqfHOQrcOyMrBNTdUN8NDRcymKTUzXqfg0xSSk525pik/NUkpmjg6dSdahM8kFHsfD2SE3YXVxhVWQj0tuwio3ceXjKg9n/ioAAAAAAJQt/ksUVZZ1Gd/B3DI+Z1uHZWEYhlrXvkGta99wxc/TMnMUk3BJoio+TTGJuX/mjiWkZSk5I1sHzyTrYCGJK08XB+tElSVh9b9/didxBQAAAAAoQfxXJqq0S8v4NszbrzsfK39lfAVxdbLXjf4eutHfo8A5qZnZuQmr9EsSWGlWY4np2UpKz1ZSerL+Pl1w4srLxeFigsrn0uSVyyVjLnJz4q8UAAAAAEDR8F+QqNIuLeM7trd8lvFdDzcnB9X191DdQhJXKRnZ/0tWxadbJ65y/0xKz1ZierYS05N04HRSgcfydnX8X7LKx1VBXhf/DM4tHwzydpWrk30pXS0AAAAAoCIhKYUqr7yX8ZU2d2cH1QvwUL2AghNXSelZik1Iz7fS6lRCmmU8OSNbCWlZSkjL0v7YghNXPm6OCvL+X6Iq2MdVgV4XSwXz3iro4kjiCgAAAAAqO5JSQAUv4ysLni6O8nRxVP3qngXOSUrPUkzCxYbssQnpOpWQrtjLel6lZOYoPjVL8alZ2heTWOCxfN2dFOjlomCf/62wCvZxUaDXxT+re5G4AgAAAICKjqQUkFfGd19jLXx9R6Us4ysLeYmrBgUkrsxmsxLTs3MTVrkrrOLTcpNXF8di4tOVlpWj8ymZOp+Sqb8KSVz5uTsp6JJEleXtgrlJrOreznJ2IHEFAAAAAOUVSSkgl2+wu9r3vrHKlvGVNsMw5O3qKG9XRzUMLCRxlZatmMQ0q/LAU/Hpir1kLD3LpLiUTMWlZGrvyYITV9U8nBSUWxIYnNfn6pK3C1b3cpGTg10pXjUAAAAAoCAkpYBLUMZnW4ZhyNvNUd5ujmoU6HXFOWazWQlpWZZE1al465VWsYkXSwgzsk06l5ypc8mZ+uNkQgHnk6p5OFu/SdAqeXUxceVoT+IKAAAAAEoaSSngEpeX8R34NVaNOlDGV54YhiEfNyf5uDmpSXDBiav41Kz/rbTKLRW8tHTwVEK6MrNNOpuUobNJGdpzouDElb8lceWqIJ/8Cazqns5yIHEFAAAAANeEpBRwGd9gd7W7K1S/LvtHmxYdVM1GlPFVNIZh6AZ3J93g7qSmwd5XnGM2m3U+JdPSiD02Ic2SvPrfWLoyc0w6k5ShM0kZ+r2AxJWdIfl7Ov8vUZX7Z4CHow4nSv+cTVGgj7u8XB1YeQcAAAAAuUhKAVcQ3r2W/tl9VmeOJWnD/P2681HK+CobwzDk5+EsPw9nNatRcOIqLiUzt6/VJW8StLxV8OKqq6wcs04nZuh0Yoaioi8/ioNm/LlFkuRob8jP3VnVPJ3k5+4sPw8n+Xtc/LNabix+7k7y93SWr7sTZYMAAAAAKjWSUsAV2Nnb6fb7m1ws4/uDMr6qyjAMVfNwVrVCElcm08XElSVRFZ+mmMT0i03Z41N17PQFpctRSenZysoxKzbxYt+rovBxc5Sfu5P8PJwvS15dTGr55ya3qnk6y93JnsQpAAAAgAqFpBRQAMr4UBR2dob8PZ3l7+msFjWtP8vKytKKFSvUq1eETIad4pIzFZecqXPJGTqXnKG4lEydS8r9MzlD55IzFZc7nmO62BcrPjVLh8+mXDUOZwe73ASak2XFVTXP/628yluZVc3DWTe4OdIDCwAAAIDNkZQCCkEZH0qKs4O9gn1cFezjetW5JtPFNwxaElUpGVdMXuX9mZKZo4xsk07Gp+lkfNpVj28Ykq+bk2XFlXXy6mJSq1puAquah7NcnexL6C4AAAAAwP+QlAIKYWdvp9vub6xFr0deLOPbHqtGN1HGh9JlZ/e/Ru31q199flpmzmUrry4mrKxWX+Xun0/NlNksxaVkKi4lU1LyVY/v5mT/v9LBS8oGLy0n9M/tieXj6ig7OxK3AAAAAK6OpFRllpUmmU22jqLC8wv2sJTxbV50UCGNfOXuQxkfyg9XJ3uF+LopxNftqnNzTBffOhiXknFJKeHFPy9NXuWNZWSblJqZo9TzaYo+f/VVWPZ2hnzdna6w8sq6sXteiaGLI6uwAAAAgKqKpFQlZvfrh7rr93dld+JGya+e5Ff34uZb9+K+Z+DFOh5c1aVlfOvnUcaHisv+kh5YV2M2m5WSmZNbKnhp8up/5YOX9seKT81Sjsmss0kZOpuUof2xSVc9h6ezg6V88NK3EPpf1hurmruzvFwdeO4AAACASqRcJKU+/PBDvf3224qNjVVYWJg++OADtWvX7opzu3Tpol9++SXfeK9evfTjjz9KkkaMGKEvvvjC6vOIiAitWrWqlK6gfDIuHJGdOUs6d+DidjlHd8n3RskvN2nle0nSyr0aCatLUMaHqsgwDHk4O8jD2UG1/dyvOj8rx6Tzlzdtv3w11iUrtLJyzErKyFZSRraOnLt6M3dHe6OAskHr3lh5nznSzB0AAAAo12yelFq4cKHGjRun2bNnq3379po2bZoiIiJ04MABBQQE5Jv/7bffKjMz07IfFxensLAwDRw40GreHXfcoTlz5lj2nZ2rXrlVzl3T9VNOW3VtUUsOCcekuEPS+cNS3GEp/riUlSKd/uPidjln74vJqrxVVZYVVjdKrjfY4nJsjjI+oHCO9naq7uWi6l4uV51rNpuVmJ592cqry1ZjXdIbKyk9W1k5ZsUmpis2Mb1I8Xi7OlreRljtkp5Y1XJ7YlW7JLnl4cwqLAAAAKCs2Twp9d5772nUqFF64IEHJEmzZ8/Wjz/+qM8//1zPPfdcvvm+vr5W+wsWLJCbm1u+pJSzs7MCAwNLOfpyzs5Bqc4BMte9TXJ0tP4sO1OKP3YxQXX+8MWEVdxh6fw/UsIJKSNBOrX74nY5N7//raqyJKty/3T2KLPLswWrt/HN269elPEBxWIYhrxdHeXt6qi6/lefn56VY1mFFZd8+VsI895MmNvMPSVTOblvMExIy9Lhs1dfheXsYGdJUFW7pGzQ38NZgd4uuck2ZwV4usjJgRVYAAAAQEmwaVIqMzNTu3bt0oQJEyxjdnZ26tatm7Zt21akY3z22WcaMmSI3N2tS0s2bNiggIAA3XDDDbrtttv06quvys/P74rHyMjIUEZGhmU/MTFRkpSVlaWsrKxiXp3t5cV+5WswJO86/9/encfJUdf543/V3edM5sidEMJhBOQOIIfHEpJAdt1lf7oeyy6BRSJCVMyuCOxyCQiCIgpIgOX8Kou6nqsQCFEOAQFBDpEz4QiEJHNkZvqs+/dHVXdXd1dP95w9x+vpox5d9enqmupIJzOveX/eH2/bY1nFC3PArrcg9G6BsGszhJ7NwK4t3nF6B5Dt8bZ3n6q6qpuYDbd9D6BtD7gde8Jt29M/3h1QomP1VsfVR0/aGz+/6s9468Ue/PXx9/CBwxtYHo2mpcE/gzQUEoCZcRkz4zIwe/CphI7joi9noidj+EGW4YdWXmDVkzbQ7T/2ZAxkDRu65eC9vhze66vfzL09rmB20gupZrdomJ2MYFbFfntMYWDdZPz8ETUPP39EzcPPH00Ujf43KLiu64753dSwbds2zJ8/H48//jiOPPLI4vg555yDhx9+GE8++eSgr3/qqadwxBFH4MknnyzrQVWonlq8eDE2b96M888/H4lEAk888QQkqXqlp4svvhiXXHJJ1fjdd9+NWKz+albTiWznENd3IK7vQELfgbj+vv+4A5pVu6mxCwE5pR0ZbTbSkTlIa3OQ0WYjo81BRp0JV2x60d6QDGxWMfCaBkF2MecjGUiRpn2MiGiEdBtIm0DKBNKmgJS/nzIFDJhAvyGg3wD6DcB2GwuaJMFFqwp/c9Gq+I/BMRXQuPggEREREU1B2WwW//zP/4z+/n60tLTUPG9Sh1Jf+MIX8MQTT+CFF14Y9LwtW7Zgzz33xIMPPohly5ZVPR9WKbVw4UJ0d3cP+oc30ZmmifseuA8nrDgBSuX0vbGQ64PQuwXYtdmrqur1pgMKvVsg6AM1X+YKEjBjN7h+dRXa9oDb7m1oXQiIE++nNsd28atrnkPXO2ns9qF2rFyzL6siqIppmti4cSOWL18+Pp9BGlOu66I3a2LngI4dqbz36O/v8Pd3pryphI1KRmTMSvpVVi0RzPb3vTGvGqszrkJm0/Yh4+ePqHn4+SNqHn7+aKIYGBhAZ2dn3VCqqeUpnZ2dkCQJO3bsKBvfsWNH3X5QmUwG99xzD77xjW/U/Tp77LEHOjs78cYbb4SGUpqmhTZCVxRlUn+Qn9n5DK4ZuAZ7DeyFA+ccOPZfUJkJtMwEdj+ifNx1gUx3qcl6sYfVFqB3MwQzC+x6E8KuN4Etm8pfK6ne1L+wHlbJeYDYpB/UFGDZ6n3xkyuexjt/6cWbz/ZgCVfjoxom+98lVDJHVTFnxuDTBw3Lwc5iUJXHDr85+47+0tj2gTyyho1U3kIqbw3a90oUgE6/t9WsZARzWr1pgrNbI5jjN5af0xJBS5TN2sPw80fUPPz8ETUPP3/UbI3+99fUUEpVVRx66KHYtGkTTjzxRACA4zjYtGkT1q5dO+hrf/rTn0LXdfzLv/xL3a/z7rvvoqenB3PnTq/Q4M6/3okBdwBrH1qLO46/A3vO2LM5NyIIQGKmt+324fLnXBdIvR8IqwLBVe+bgK0D3a95WyU5CrTv4a0I2LFXecP1xCzv646hjvkJHPa3i/Hkr7bg0Z+8jgX7tCPeytX4iKY7VRaxoC2GBW2DT/9O5U0/tNKxvT/vVVz1+wGWH17tTOmwHRc7U14VFtBf83oRpbT6oRdUaaX91kix31VEmXjVp0REREQ0PTW9kc+6deuwevVqLF26FIcffjiuvfZaZDKZ4mp8J598MubPn48rrrii7HW33norTjzxxKrm5el0Gpdccgk++clPYs6cOdi8eTPOOecc7LXXXli5cuW4vrdmu+LoK/C5n38O7+rvYs0Da3DnCXdiQXJBs2+rnCAALfO8bfFHyp9zbG8lwMqwqmezt3KglQN2vuRtldSkF1a17+kFVsEKq1h79fnDdMgKbzW+rndSeOhHr2LVF/dnpQIRNSQZUZCMKNhrVrLmObbjoiejY0d/qcKqVH2lY6c/1pc1kTcdvN2Txds92UG/7oyYUqywmt2iYU5LBLP8aqs5rV5w1RnXIIr8u4yIiIiIxlbTQ6nPfOYz6OrqwoUXXojt27fjoIMOwoYNGzB7trei2TvvvAOxYorWq6++ij/84Q944IEHqq4nSRJeeOEF3Hnnnejr68O8efOwYsUKXHrppaFT9KayuBLHyfGT8WPhx9jcvxmnP3A67jrhLsyMNbD++kQgSkDbIm/b89jy52wT6HunYjqgv9+3FTBSwPvPe1ulaFtgOuBefrWVH1pFhtZDTJRELFu9D35yxdN464VuvPbkdk7jI6JRI4kCZiW9aXv7o7XmeXnTxs4BvTy06s9jR0r3pg2mvGPdctCXNdGXNfHK9tqLU8iigJl+X6s5fng126+2mtNaCrSSEU4LICIiIqLha3ooBQBr166tOV3voYceqhpbsmQJavVnj0ajuP/++0f9HiermBjDDz7+A5z24Gl4N/0u1mxcg9tX3o4ZkRnNvrWRkZRSj6lKZh7Y9VagwuoNoHeLt5/aBuR2Ae/9ydsqxWeVV1UV9tv3ANTwqTicxkdEzRZRJOzWEcNuHbWnDLqui/6c6U0XLIRXFdMFdwzk0ZXWYTku3u/P4/3+/KBfN65KZWHVLL/yqlh91RrBzIQGVWajdiIiIiKqNiFCKRpbM2MzccuKW7D6vtV4o+8NnLnpTNyy4hbElcGb9U5aSgSY9UFvq2RkSgFV5bTATBeQ2elt7zxR/dqW+aWqqmAPq7bdOY2PiCY8QRAwI6ZiRkzFkjm1pwxatoOutF7sdbXTr7LaPpAvVWP155HSLWQMG1u6MtgySKN2AOhMqGX9rgrTBoOBVltM4d+bRERERNMMQ6lpYkFyAW5ecTNO2XAKXux+EV/53Vdww3E3QJOmWUWPGgfm7O9tlfL9fkC1JVBh5T/m+4GB97ztrUfLXyeIEFsXYln7YfjJ1s950/h+vQlLjlkMzFgESPyYEdHkIUsi5rZGMbc1CiysfV5Gt4qN2iv7XQUDLdN20Z020J028NK2gZrXUyWxWGlVFl61Bpu3RxBV2aidiIiIaKrgT8vTyJ4z9sT649bjtAdOw5Pbn8TXHv4avvPx70AR2RMEABBpBeYf4m1BrgtkeyumA24uBVhGGuh7Gx14G4fFgSfTJ+HRDRks+NMyxJUU0LZ7oOH6HqUKq5YFgMgpLUQ0OcU1GXvMTGCPmYma5ziOi11Zo6zKKlh9VQi0ejIGDNvBu7tyeHdXbtCvm4zIpabsyQjmtGplodXslgg6E+oYvGMiIiIiGm0MpaaZ/Tr3w3XHXocvPvhF/H7r73HhYxfi8mMuhygwHKlJEIB4h7ctPLz8OdcF0juKUwAP6dqMLRu70JWeiYdSZ2FV62UQet7wgqzXK3qdyRGgbXF576rC1MDEbO/rEhFNYqIooCOhoSOhYb95tc/TLRtdKb/iql8PVFyVel5t788jZ9pI5S2k8mm8vjNd++sKwMyEBsWR8LPuZzAzGUVnQkVHQkVHXENHQkVnQkNnQkN7XGXPKyIiIqImYSg1DR025zBc8/Fr8JXffQW/2fIbJJQEzj/ifPbyGA5BAJJzvG33oyECWPahNH7yzafxVv5QvPYPj2PJoq7y3lU9m71G7FYe6HrZ2yqpCaB9sRdUxWd6KwZGZ/iPbUBkRvmYPM2mYRLRlKLJEha0xbCgbfBG7Sndwk4/uCqfLpjH9gFvpcGutA7bcbEjpQMQ8O7rPXW/fktERmdCCwmtVC9Ui3uPnQkVrVH2viIiIiIaLQylpqmPLvgoLj/mcpz76Lm459V7kFST+PIhX272bU0JxdX4fr0Fj/5fDxZcdCTie3y8/CTbAvrfAXq2lPpWFUKrvne8KYHbX/S2Riix6qAqOqN6LBIItqIzAK2VUwiJaFIQBAEtEQUtEQV7zardqN12XPSkdbzbm8aGhx7H4n0OQF/ORk9aR0/GQHdaR3faKB7bjouBvIWBvIUt3YM3bAcAWRSqwqtCaNWRUDGzEG754xGFPbCIiIiIamEoNY2t2mMV0mYal/7xUtzy4i1Iqkmc+qFTm31bU8LBK3fDlucGWY1Pkr2V/Nr3AHBc+Ystw6uk6t0M9L4J5HqB3C5/6/Me832lY7iAmfW21LYh3qng9dIKBlVh4VXYmBIdlT8rIqLRJIkCZrVE0BaVsLXNxapD5kNRwnsnOo6LgbzpN2LX0ZM20JMJhFaFcT/MSuUtWI7r98LSG7qfhCZXhVedCTUkyNIwI6pAFFmFRURERNMHQ6lp7tNLPo20mcZ3n/kurnnmGiTVJD71gU81+7YmPUkSsWz1Pt40vhe68dpTO7DkiDmNvVhWgZkf8LZ6HAfQByqCqhrhVeWYmfUCrXyft+16c2hvUo6EVGeFTC2MzgAiwXCrFRBZOUBEzSeKAmbEVMyIqdhrVu2G7QW6ZaM3YxTDqmDFVTDUKjxv2i7SuoW0buHtnmz9+xGA9rhW1v+qMK2ws7I6K6EipvLbOCIiIprc+N0M4d8+9G9IGSn894v/jW888Q0klASOX3x8s29r0vOm8e2OJ3/9Jh798WtY8ME2xFtHufeTKPphz4yhv9bSa4RXu8LHgseu7fXESm/3tqGKtDYWaFVVZ8XYAJ6ImkaTJcxtjWJua/1KUdf1pgUWQqseP8QKrcjKGOjLmnBc+GFXY1VYMVUKhFfVoVWwT1ZbTIEscbo2ERERTSwMpQgA8OWDv4yUkcKPX/0xznv0PMSUGD664KPNvq1J7+CVi7Dlue7a0/iaSdaA5GxvGwrXBfRUg9VZ/mNhzPBXy8r3e1vf20P72pLa2NTCyrFIqzdlkohonAiCgNaogtaogj1m1j/ftB30hlZcFcYK4ZaBrrQOw3KQNWxke3PY2ptr4H6AtlhIxVVgGmGwuXtclSbOv1dEREQ0ZfGnNAL8b57PP+J8pIwU7n3zXqx7aB3WH7ceS+csbfatTWojmsY3UQkCEGnxNiwa2mtts3Z4NWjAtQtwLMA2gMxObxsqrcUPqmpVY9Wo2FITrM4iojGnSCJmt0QwuyVS91zXdZExbL/6qlBxZVQ0cy+EWwZ2ZQ24LtCbMdCbMQCk634NTRYDlVaFqqvyqYWFflhtcRUKq7CIiIhoGBhKUZEoiLjsmMuQNbN46N2HsPZ3a3HryluxX8d+zb61SW1cpvFNFpICJGZ621C4LmBkhlCdVRjr83puAd6jPuCtejgUotxYeBU2RkQ0BgRBQEKTkdBkLOqI1z3fsh3syppl/a6CzdwLUwkLYVbedKBbDt7ry+G9vvpVWAAwI6ZUNHKv6IcVqMpqiciswiIiIiKAoRRVUkQFV3/sapy56Uw8vf1pnLHxDNx5/J3YY8Yezb61SS04je/hu1/FCWdMoGl8k4EgAFrC27BwaK+1LW+q4HCqs2zDq9DKdHnbEMlqHMuEBKSe9UDrAqBlLpCcB7T4W3IukJjNqYVENKZkScTMpIaZycZ+IZI1rNLKgxWhVeXUwt6MDscF+rIm+rImNndl6l5flUSv2qrGVMLOQD+s9rgKTebiGERERFMVfxKiKhE5guuOvQ6fv//z+EvPX3D6xtNx1wl3YX5ifrNvbdIKTuN78/luvP70Dnzg8Ek+jW+ykGQg3uFtQ+G6gJkbRnXWLiA/AMCFYGSQQAZ4Z0ftryOIXjCVnFseVhX353lhllq/GoKIaDTEVBmxdhkL22N1z7UdF31Zo3wFwrJphEZZP6y0bsGwHbzfn8f7/fmG7icZkQOhVSG4qmzu7u23RhWIIn/pQ0RENFkwlKJQcSWOG4+7EadsOAWb+zfj9AdOx53H34mZsSFOu6Ki4DS+R378GuYvmcbT+CYDQQDUmLe1DjGQdWwg3w8ztRNPPvgrfHi/RZAzO4GBbUBqGzDwvref3u5VYqXe97Ztz9a+ptbqB1XBaqu5pdCqZT4Q62D/KyIaV5Io+I3SNXxgdrLu+XnT9gKrlB5YgbA6yOpO6+jNGLAdF6m8hVTewpvd9auwJFFAe7zUB6s4dTChotMPsApTCTsTGqIqq7CIiIiaiaEU1TQjMgM3r7gZJ993MramtmLNxjW44/g70Kq1NvvWJi1O45smRAmItQNKEj2JD8LdbxWgKNXnOY43LTC1zQupBrZ54VTlvpEG9H6gqx/oern215VUIDnHC6jCKq+Sc71NVsf07RMR1RJRJMyfEcX8GdG65zqOi4G8WVFtVWsqoY6BvAXbcdGV0tGV0gGk6n6NmCoVpxF2hjRyLzV719AWUyCzoTsREdGoYihFg5oVm4VbVtyC1fetxht9b+DMB8/ELStuQUypX9JP1SRJxLEn74OfXsFpfARAFIHkbG+bd3Dt8/IDFWFVoNqqsJ/Z6fXA6nvH2wYTn+kHVfMrqq0C0wW1FlZdEVFTiaKAGTEVM2Iq9pqVqHu+YTnoLUwjzJQauXdndHSnSgFWT1pHd8aAYTnIGjayvTls7a3f0F0QgLZYcDXC8l5YwWmEHQkVCY0N3YmIiOphKEV1LUwuxM3Lb8Yp95+CF7pfwJd//2XcsOwGaBKnng1H54IElq7aHU/9H6fxUYMiLd42c0ntcyzDmw448P7glVe2UWrcvv2F2tdTE35wFdKcvbAfn+lVhRERTQCqLGJOawRzWiN1z3VdF2ndKmvkHpxG2JXWA6sTGtiVNeC6QG/GQG/GwOs70w3dT2dcRWeyIrgKmUbYHlehyqzCIiKi6YehFDVkr7a9sP649Tjt/tPw5PtP4msPfw3XfPwayCL/ExqOQ45fhC3PdaF7a5rT+Gh0yCowYzdvq8V1gWxPSFhVUXmV7/emDPa87m21CFIguAppzl4IsZT603SIiMaTIAhIRhQkIwp276y/kIRlO9iVNcumC1ZOH+wOHGcNG4blYFt/HtsabOjeEpHRmdQCoVVhWmEpwCqsTtgaVfh9AxERTQlMFKhhH+r8EK5fdj3O2HgGfr/197jwsQtx2TGXQRT4m72h8lbj25fT+Gh8CQIQ7/S2uQfUPs/IBCqualRepXcArg0MvOttg4m2hTRnr6i8irZxuiARTViyJGJmUsPMZGOVzVnDKlZZBacRBgOtwjTDQkP3gbyFgbyFLV31G7rLolDd+6rGNMLOhIaIwqpWIiKamBhK0ZAcNucwXPPxa3D278/G/235PyTUBM47/Dz+tm4YOI2PJiw1DnTu5W212JbXx2qwBu0D2wArB+R2edvOl2pfT46EN2cPVl4l5gAS/9kiookvpsqItctY2F6/B6fjuOjPmeXTCIv7eqAqywuyUnkLluNix4COHQN6Q/eT0GQ/xCpVW3UEphF2BsZnxFRIIr+vIyKi8cHv7mnIPrbwY7j8mMtx7qPn4n9e+R8k1SS+dPCXmn1bkxKn8dGkJcml0KgW1wXyfdVN2YuVV/5+tgew8sCuN72tFkEE4rMqqq1CKq+0+g2RiYgmClEU0BZX0RZXsdes+ufrlo3ejFFjGmGhAqvQ1N2AYTtI6xbSuoW3e7L170cA2uPloZXX+yqwH5hmGFMlfu9CRETDxlCKhmXVHquQNtO49I+X4uYXbkZSSeKUD53S7NuadIrT+L7pT+P70w584DBO46MpQhC8aXnRNmD2vrXPM/NedVWtaqvCc47lNXNPbwfw59rX01pCqq0qKq9iHd7qh0REk4wmS5jbGsXc1vr9+lzXRarQ0L2i71VhFcLuVGm1wl1ZE44LP9wygB317yeiiFW9r9piMnZuE2A+/z7mtMbQmfSmEbaxCouIiCowlKJh+/SST2PAGMD3nv0evvPMd5BQE/jUBz7V7NuadDoXJLD0b/1pfPe8hvkf4DQ+mmaUCNC+2NtqcRxvxcBiU/b3/OCqovLKSAH6ANA1AHS9Uvt6ohIIqsIqr/zm7TI/i0Q0eQmCgJaIgpaIgsUNNnTvzRrFKqvgNMLCcVdgWmHedJA3HbzXl8N7fbmKq0n45dsvlo14VVhegNWZCDwmtbLjmUlvRUJF4i8PiIimOoZSNCKf3//zSBkp3PaX2/CNJ76BhJrA8bsf3+zbmnQ4jY+oDlEEkrO9bd7Btc/LD5SqrGpVXmW6AMcE+t/xtsGoSa/HlpYA1ASgJf3HhDdeNZYo3w8+p8TYzJ2IJjRZEjErGcGsZKSh8wsN3YPTCLvTBroGcnjhtbegtXb6vbAM7MoafhWWF2gBqbrXb4spXhP3YojlBVadgeNO/1iT2cydiGgyYihFI3b2IWcjZaTw09d+ivMePQ9xOY6PLPhIs29rUvGm8e2Dn37zT5zGRzQSkRZvm7mk9jm2CaS2D97namAbYBte5ZWRAtKjcXNCRWAVFmIlvCCs+Fy8OvTS/KCMIRcRNVmthu6maeJebMGqVUuhKApQqMLKGOgKrD7Y7U8p7E7p6Crsp/XiioS7siZ2ZU28vrP+vSQjMmb6QVVHWWgVCLT845jKH4GIiCYK/o1MIyYIAv7ziP9E2kzjvjfvw7qH1mH98vU4dPahzb61SaVzQbJsGt+CJe2ItajNvi2iqUdSgBkLva0W1wWyvV6jdiMN6Gn/MRU4zvjTBdPl55Sd7z/C9bZCyDUaBLE61BosxKoXeilRhlxENGZkScSslghmtdSvwnIcF7uypcbt3YHAqjtVcZzWYdouUnkLqbyFLd2ZutePqVJ1BVZCDUwj9KuxkhqSmszqdSKiMcRQikaFJEq4/JjLkTEzeOTdR7B201rcuvJW7NsxSHNjqlI5je/4L3yI3wgRNYMgAPEObxspxwHMrB9YZSqCrULQlQkJvWqcb/hlW67j9c/SBxqZBVOfIAYCqwZCrHqhlxxhyEVEwyKKgtc0PaFhCZKDnuu6LgZyll9ppRenEhb2u1LBYMvrg5U1bLzTm8U7vfVXI1Rl0a/A8hq5h00dLFRotUYViGzkTkQ0JAylaNQoooLvfOw7+OKDX8SfdvwJZ2w8A3eccAf2aN2j2bc2aQSn8W15rgtv/Gkn9j5sdrNvi4hGQhS9kEZLjM71HAcwM35glW6gWisVCLhCzjf9qgLXAfR+bxsNghQ+XXGwyq3B+nLJGkMuIqoiCAJaYwpaYwr2mjX437Ou6yJj2IFqq/LG7d2p8sqstG7BsGo1cq8mi0JZ9VVHILAKTiPsTHiN3LkSIRERQykaZRE5guuOvQ6ff+DzeKnnJZz+wOm464S7MD8xv9m3Nml0Lkji0FW74+nfvImH73kViTYNifYIYkkVksJVaIimPVH0ghotiToFBI0phFwNT1FMBQKukOou0688cO3RDblE2Q+z6oVYXtAlSBHM7dsMYWu71yA/3glEZnh/fkQ0LQmCgIQmI6HJ2L2B1Qjzpo2uiumCPf5+V8VUwv6cCctxsWNAx44Bve61vZUIywOsyqmDwR5ZXImQiKYqhlI06hJqAjcedyNO3XAqNvdvxpoH1uDOE+5EZ7Sz2bc2aRx6wiK8+bw3je/n3362OK5GZcRaVMRaVESTqr+vFPejLSpi/r6schUaImpAMOQaDY4dmI4YrMyqNUWxsgdXxfmFkMuxgHy/tzVABnA4ALz5/dKgIAGxdiDWAcQ6vemZxf1Of78jsN8JyOztRzRdRRQJC9tjVY3cwxiW460+6FdbdYVMJSw811tcidDrm9XIHOwZ/kqEhWmEM2tMJexMaIgo/B6QiCYPhlI0Jtoibbhp+U1YvWE13km9gzUb1+D2lbejVWtt9q1NCpIkYsVp++GRe17Dru1Z5FIGHNuFkbNg5Cz07ajfA0GJSF5A1eoFVdGqMKu0r2j85oWIRokolVZBHA2OHd48virEKu/B5eRT6Hv/TbRpDoRsj9d7y7WBTJe3NUpr8YOsQYKreGfpHC3JaYZE05Aqi5jbGsXc1mjdcy3bQW/WqJgu6AVYXYEVCbvTOnr8lQj7sib6sibeaGQlQk0uC6nKq7A0zAxMJYxr/HGQiJqLfwvRmJkdn41bVtyC1fetxuu7XseZm87ELctvQUyp/9smAtrmxPEPZx8M+D0Q9KyF7ICB3ICBbMoo7fvHwX3HcmHmbfTnc+jvaqAHgiYhllRKQVWrVjpuKQ+1FE1i83UiGj+iBERavW0IbNPEo/fei1WrVnlL0lu6t6JithvIdAPZHm8r7ncDmZ7SfranvJn8rrca+8KS6oVTMb9RfnG/MtAqHLd775GIpg1ZEjErGcGsZGMrEfblzOLKg4XQqid0VUIDhu0gpVtI6RbebGAlwqgiVfS7Kg+wvEBLRUecjdyJaGwwlKIxtTC5EDctvwmn3n8qXuh6AV/+/Zdxw7IboElas29tUhEEAZG4gkhcAeYO3gPBdb2KquyAgVzKQHbADOyXtkK4ZZsOLN3GgG5joDtf915kRQytuqqqwmpRoUYYYBHRBCFrQMtcb2uE4wD5vkBw1V0RYgXHe719KwfYBpDa5m0NEYBoW+3gKliFVXheqV+JQURTgygKaI+raI+r+MDsBlYizFtlIVV3ZXgVmEqYM23kTBtbe3PY2lv/l5iSfy8d8VIFVke8PLjqCFRnxVT+qElE9fFvChpze7ftjRuX3YjPP/B5PPn+kzjn4XPwnY9/B7LI//zGgiAI0GIKtJiCtjn1Aywzb4dWWxX2g2GWZTiwTAepnjxSPfUDLEkWEW1Rin2uij2vWqunEWoxmQEWEU0couiHQe1A596NvcbI1A6uMt3VlVr5PgAukOv1tp7XG/s6SryxfliFQCsyg1MKiaYBQRDQGlXQGlWw58z6K75mdKu0CmFgKmFPsam7ge6M99ifM2E7LrpSOrpSekN9sKKK5AVXCQ2dcbW4XxlqdSZUtMXZzJ1oumIqQONi/5n747pjr8MXH/wifrf1d7jo8Ytw6dGXQhT4j08zCYIANSpDjcqYMbuBJp55q1h9VTWNMBhqDRgwdRu25SDdqyPd28AqNLLgTRMMadoebVEQa9GKx1pMhsDycSKaaNS4t83YrbHzbdMPqnoan1boWN5qiX0ZoO+dxr6OKJeCqlh7+fTB0GmF7YCkjOiPgogmvrgmI67JWNRRfyVCw3KwK1sKq3oyhfDKm0rYkzGKKxN2p3XoloOcaePdXTm8u6t+FRb8Zu4dcT/EClRelUItvxIrrqElyl9mEk0VDKVo3Bw+93B8+2Pfxlcf+ip+vfnXSCgJnHv4ufwHZRJRIzLUiIzWmfXPNQ27LKTKVQRY3pg3tdDIWXAsF+ldOtK7GgiwRAHRpFKcRlirkXusRUUkrjDAIqKJSVKA5Gxva4TreqsPVk0fHGRaoZH2gqz0Dm9rVKS1fj+sYM8sNc5qLKIpTJVFzG6JYHZL/T5Yrusia9hllVaF4Cos1OrN6HBcFJu5b+6q3wtLkQpTCQNTBoPBVcV0Qq5ISDRxMZSicfU3u/0NLjvmMpz/6Pm4+5W70aK14KyDzmr2bdEYUFQJSmcULZ0NrEJj2n5gZdadRqhnLTiOi0y/gUy/UffagiggmggJsJIqYi2B8RYNkQQbeBLRBCYIQHSGt3Xs2dhrzFxI9dUg0wpzu7wphfl+b+vd3NjXkSP+lMHKaYWVKxf6+5EZ3hRJIppyBEEoVmHt1lG/Er/QzL1QadUTCLK6/QosL8jyQq1U3oJpu9gxoGPHQP1fZgJAXJWKgVVhymBHSB+sjriG9rgKid8PEo0bhlI07v5uj79D2kjj8icvx/rn1yOhJLB6v9XNvi1qIlmR0NIRRUtH/QDLtpzqpu1VVVje9MJ8xoTruMXzeupcWxCASEIpq7gqn0YY2E8qENn7gIgmOiUKtC7wtkY4thdMlU0fDOmHVZxW2O01d7fywMC73tYIQQSi7YP3w4rOALRWQEsCkRbvUU2wIotoigk2c9+7gcJR3bLRmzHKel+VTScMhlr+ioQZw0amN4t3erN1ry8IQHssJLSqUYmV0DiVkGgkGEpRU3z2g59F2kzje89+D9/+07eRVJP4//b+/5p9WzQJSLKIRFsEibb65eO27SDvTxGsDLDKwqyUgVzahOsCuZSJXMoEUKd0XAAi8fIAy6vCKo2pMRFWVoCRsyBL7INFRJOAKHmBULyzsfNd15siGDp9sKcUXAUrtfQBwHX88e6h3Z8geuGU1uJvgcCq7LjW8y3escxVgIkmK02WMLc1irmt9X+Z6bou0rpVDK68Hli1pxP2Zg24LrweWRkDQLru11Blsazn1WCVWO1xFZrMqYREQQylqGlO+9BpGDAGcPtfbsclT1yCuBLHyt1XNvu2aAqRJBHxGRriM+r/8OHYDnJps6zqKlPVxN2bXphPed+w5NMm8ul6AVYCdzz8BAQBUKMytJjsr44Y2I/K0OKB8Wj5OWpMhsSqLCKaiATBD3ySQPvixl5jGaVqq5rTCv3VCfMDXohVCLJcpzS1cCQktcEQK+n116oKvfxjkT9cEk1kgiAgGVGQjCjYvbN+Q3fbcbErWwquuupUYmUMG4blYFt/Htv6669MDQDJiByovKpu5F4KtTTMiLK1BE19DKWoaQRBwFcP+SpSRgr/+9r/4txHz0VcieOY+cc0+9ZoGhIlEfFWDfHWBgIsx0U+EGAVq676AwFW4TitA44A1wX0rAU9awFo7JuWIEWTyoOsYHgVl6vCLDUmI+Lvyyp/aCKiCURWgZa53tYo1wXMrB9SpUpBVdlxqjzEKh4Hnjf8qgfbGF6lViUlXh5ShVVl1aviUmKckkg0QUiigM6Ehs6EBiBZ9/ycYZdCqgYqsSzHRSpvIZW38GZ3/YbuogC016q8qliRsCOhIsbv+WgSYihFTSUIAv7riP9Cxsjgvrfuw1d//1XctPwmHDL7kGbfGlFNoigUV/frmF/7PNM0ce+992LF8uPhmKVQSs+a1fs5C3omMJ7z9s287V1Lt2HqdkOrE1aSZNEPqfzKq6gXVkViMrS4UqzgisQUqMXgyztWIhL7JBBR8wmCt8KfGgcwhDCrkmOHhFjDCLls/+9iM+NtqfdH8N6kGqFWjamHtUIuWR3+PRDRsERVCQvUGBa01W/o7rouBnJW2YqE5Y3cC6GWF2j1ZU04LtCd1tGdbuz7v4gioiOuQjIl/LznWXQmImiPK2iPeyFWe1xFe0It7rMfFk0EDKWo6SRRwuUfuRwZK4NH3n0EZ206C7euvBX7duzb7FsjGhWyIkKJKQ1VYVVybAdGzka+GGSVB1pGzkI+a0HPVBxnTRhZC67rN4f3pyIOlSDAD6r8aYaxQHVWremIsVLlFpvBE9GEIkqlFQxHwtL9kKq/dogVGnClykMu1wFc25+q2AeMZFaipDU49XCQ59QEpyQSjRFBENAaU9AaU7DnzPrnm7aDXZnyKYPdfmBVCLIKoVZ3WkfedJA3HbzXlwcg4J3X6leCqpJYbDIf3DrKwiutONbK6YQ0BhhK0YSgiAq+87Hv4IwHz8AzO57BGRvPwB0n3IE9Wvdo9q0RNZUoiYgkREQSypBf67ouzHwp0DL8MCvvh1d61qvOymct/zgYeFmwLcebdpjxQq/hUCJSVY+s2kFWsL+WDFnhD0ZENEHJmrc12hA+jOsCRqbBqYeDhFymPwXI1oFMl7eNhJocfgP5wjF/xCAaMUUSMaslglkt9Rf3AYCs4TV0396XwQMPP4HF+xyA/ryN3owXZPX6W0/ae8yZNgzbwfaBPLYPNNZaQhSAtlggvEoU9gOVWIFgqy2uQuEvKKkO/otBE0ZEjuD6Y6/HaQ+chr/2/BVrHliDu064C/MS85p9a0STkiAIUKMy1KgMdAz99ZZhh08zLOxnStMMK88zdX/aYd6GmR/+tMPBQ6wazeKjMqcdEtHEJwiAlvC2kbAtwAjpn1Wvv1awyis/ADimdz0j5W2pbcO+JVmUcYKgQX5rlleRVbX51Wqhz7WyzxbRMMRUGbF2GXOSCra1u1h16HwoSu1fauYMG71ZA71+JVYxtMoUxgz0ZnTsyproSesYyFtwylYmbExLREZHQqsKqzrKAiytWJkV4S8lpx2GUjShJNQE1h+3HqdsOAVb+rfg9AdOx50n3InO6Ah+E0lEwyKrEmRVamj1wkq27XjVV5nyHlk1e2pVBF/wpx0WGskPlSAKgemFtYMtNeo3hC82i/f6arE0nYgmDUkGom3eNhJmPqQyqzLQ6q8RcAWO4UJwLKiwgF1vDu9eRKV2YFUWZtXYVxqrLCGazqKqhPlqFPNnRBs6vzCdsKcsvNKL+4VVCwvh1q6sAccFBvIWBhps7A4AMVUKn07IvlhTFkMpmnDaIm24efnNWL1hNd5JvYMvbPwCblt5G1q11mbfGhE1SJJERBMqoomhN951HReGbnuN33P1gqzqKi7HcuE6LvIZE/mMOaz7VyNSsZdWJF4xxTAmIxKvDrgKjeIZaBHRpKREvC3RQLObWhwHMDMw0714dONv8NHDD4RsZbyqrHy/3zvL388F9oOba3tVWyNZHVHSBgmyQqq2IhXPs2k8UZWhTie0HRf9OdObPpguBVnBYKsYbvmVWqbtImvYyBo5vLsr19DXUSURbZXN3Cv6YrXFClMNNcxgX6wJh6EUTUiz47Nxy/JbcPKGk/Hartdw1qazcPPymxFT6q9sQUSTW7HKKTr0f6Jc14VlOjD83lmlXlqm3wC+/DjYSyuftWD50w6NvA0jbyPdO/Rph2q0vDqrPNQqjIVMR4zKEPhNEhFNZqLo9ZUSI0hFF8BdeAQwyPShKoU+W/kagVVZoFXjHLh+f62d3jYccrTBMCtsrAWQht4HkmiqkUShGBDtNav++a7rIqVbxamDuypCq8H6Yu0Y0LFjoLHv2Wr2xSqMJUrhFvtijQ+GUjRhLWxZiJuW34RTN5yK57uex9m/PxvXL7seqsTfXhFROEEQoKgSlJFMOww0hC9WYmVKVVl5v0F8sFKrLNDKeWFXqmeoN4+qFQ1L4VUpxKoaiytQ2UOLiKaCYJ+t1gVDf73j+P21BguzBgm7dH/5QysHpHNAevvw3oeaGGKYFQjAtBaugEjTkiAIaIkoaIko2L0z3tBrxrsvVlssUJGVYF+s0TIhQqkbbrgBV199NbZv344DDzwQ1113HQ4//PDQc++44w6ceuqpZWOapiGfL60Y4LouLrroItxyyy3o6+vD0UcfjRtvvBF77733mL8XGl0faPsAbjzuRnz+gc/jifefwNcf+Tqu/tjVkMUJ8Z8uEU0xkiQimlQRTQ49/LYtp2w6YT4TMuUwU6jYCjyXMWGZDuCiOAY0tgpOQVUPrbiCSOXKhnG/f1Ys0BQ+JkPRGGgR0RQhiqWQZzgc2++nNYxAK98HGGnvOkba2wbeG959aC2NBVlh1Vxq0vtzIJoGRrsvVm/FVtUXq9H7UqSK1Qmr+2K1BaYYJqd5X6ym/2T/4x//GOvWrcP69etxxBFH4Nprr8XKlSvx6quvYtas8Dq/lpYWvPrqq8Xjyv8Dr7rqKnz/+9/HnXfeicWLF+OCCy7AypUr8de//hWRCBsfTjYHzDwA1x17Hc588Ew8+M6DuPjxi/GNo78BUeA/uEQ0cUiyiFiLiljLMAIt0ylVZmXM8qqsirHCVMPCmG05I+qhJYpCWUhVnGLoh1u1pyIqkFVxWn8TRURTjCiNrGm8bfmhVt/QA618P2BmvesUms33bx3GTQjeFMLBGsEPNjVRTXDlQ5qyRqsvVmV4VdkXK2faeK8vh/f6ht8X6yN7d+Kfli4c4TueHJoeSl1zzTU4/fTTi9VP69evx29/+1vcdtttOPfcc0NfIwgC5syZE/qc67q49tpr8V//9V/4h3/4BwDAXXfdhdmzZ+OXv/wlPvvZz47hu6GxcsTcI3D1x67GuofW4Vebf4WEmsDXD/s6fxgioilBUkTEWzXEW4c+5dAy7NJ0w0x5FVb1WHkVl2O7cBwXuZSJXGoYgZYkBKqyyqcUFpq/B6u3gmOyytJ2IppiJBmItXvbcFhGoFKrb2iBVr4fsPJeT61if613hn4PguRPI0wCShSQI/6j5vXaUiLeo6wN8nwkMF7Yj4Q/z6mKNIGNtC9Wb1lj96H1xWqNKgylxoNhGHjmmWdw3nnnFcdEUcRxxx2HJ554oubr0uk0Fi1aBMdxcMghh+Cb3/wm9ttvPwDAm2++ie3bt+O4444rnt/a2oojjjgCTzzxRGgopes6dL30H8DAwAAAwDRNmObwVm6aCAr3PpnfQ9BH5n4EF3/4YlzwxAX40cs/QlyK44wDzmj2bRHVNNU+gzRBCYAaF6HGNWBm46GW67qwDG/KoZHzgiqjuIph+VY+7gVargM4tovcgIHcQON9GQokWSiGWGohuIr6Uwv9qYhqZdjlnyMp9Stl+fkjah5+/oZLANRWb2vZbegvt/JAfgDQ+yHkSxVbQr6/bFqioPd75+X7Ss/l+iA4prf6Ya7X28aBKyrlAZe/ucUgq3xziwFYKeRypeDrS+GYW/HaYngmKlO6Goyfv+aKSsD8VhXzWxurnM8ZNnZlDfRmTK8/lh9aLZmTnPT/HzZ6/00Npbq7u2HbNmbPnl02Pnv2bLzyyiuhr1myZAluu+02HHDAAejv78e3v/1tHHXUUXjppZewYMECbN++vXiNymsWnqt0xRVX4JJLLqkaf+CBBxCLTf7V3jZu3NjsWxg1AgT8XfTv8Jvcb3DzX27G1je24ujI0c2+LaJBTaXPIE0jIoCEvwFQ/S3pL5DlrdouFDe3uB8Yt4SQcwBAgG25yA4YyA4j0BJEF6LiQlC8R29DYN+FKLsQFAm/+ckmiLL3nCC7EKQp/bMI0YTCf/8mgoi/BX420vwt2HrLdSG6JhQ7C8XOQLFzkBwDomNCcg1IjgnRMSC5Zo3xwn5h3D/2z5f813rPl35QFRwTMMxSP67C+Bj+ibgQYIsqbFGFIyiwRQW24B8X95XA896xI6qw/ePSfmG8cE74tRxh/IMwfv4mJxXAHAD9/cC9rzbwggksm802dF7Tp+8N1ZFHHokjjzyyeHzUUUdhn332wU033YRLL710WNc877zzsG7duuLxwMAAFi5ciBUrVqClpWVU7rsZTNPExo0bsXz5cihDWY53gluFVVj00iLc8PwNuC9/Hw478DCcuOeJzb4toipT9TNINBKu48LU7eom8IVqrIz3aGRDKrbyFuACriPA1gWgsdWfywgioEa9iis1KkONSlXHpf2Q44gEQWSqRTQY/vtHtTgAHNfxqrrMPGDp3mqHVh6CmQfswnjeH9e9cf+c4vlmHoJVOM/fTP/84LGt++eWevsIcCE7OmRnGP+IjIAbUrXlBo8lrTjN0a2o+qquICuvGHPl0mtNSPjdI4/j2BWroKhDbwtANFoKM9DqaWoo1dnZCUmSsGPHjrLxHTt21OwZVUlRFBx88MF44403AKD4uh07dmDu3Lll1zzooINCr6FpGjSt+gOrKMqk/of06V/9FG/99lf45dOPonXWbLR0zkTLzFlIds5ES+cstMycBTXS2EoFE80XDvwCslYWt790Oy576jK0RlqxYvcVzb4tolCT/e8SotGmakB8GL/zcRwXRnAaYcYqNYiv6J+Vyxjo2t6LiBqHkbNg5Gy4jgvXgXdexhrezQuAqkne1MKoP/2wEGrFSuGWVrEfDL4kmQt10PTAf/+oJrWyVGuMua4faAUDrHwgHMsFwrChPK+X9v1QrHRuDnCd4i0Uw7KAsfgVhwLg7wDgefihVhRQYoAaK+2XPUYBJR4y5u+r8eqx4CP7glENjf7939RQSlVVHHroodi0aRNOPNGrdHEcB5s2bcLatWsbuoZt23jxxRexatUqAMDixYsxZ84cbNq0qRhCDQwM4Mknn8QXv/jFMXw3E0//zp2wshm8//oreP/18OmQkUQyEFL5j4HQKtrSOiGbiQuCgK8e+lUMGAP42es/w9cf/TriShxHz+dUPiKiqUoUBUTiCiJxBcDgv1QxTRP33nsvVq36OBRFget6FVpGLlCJ5QdcZWP50nPFAMx/zrYcwAWMvA0jbyM9nFItALIqFkMqL7BSoEUlqDHFD64kr49WSNClRmXIClc9JCIaEkHwKomUcVyJ3XUBxxo8tKoXajX0fEVo5gT6+Fg5bxvLHmGFnl6VgZUaCw+5lFh4uDVYeCYx3J7Kmj59b926dVi9ejWWLl2Kww8/HNdeey0ymUxxNb6TTz4Z8+fPxxVXXAEA+MY3voEPf/jD2GuvvdDX14err74ab7/9Nj7/+c8Dflhx9tln47LLLsPee++NxYsX44ILLsC8efOKwdd0cfRn/xUDWhz7L9kbmV29SHV3YaB7Jwa6dmKgeyf0TAb5dAr5dApdb20JvYasqF5oNbMUVpWOZyHR3gFJbs5/RoIg4IIPX4CMmcGGtzbg7N+fjZuW34RDZh/SlPshIqKJSxAEqBEZakRGYpirvVumDSNnQ8+a3mPOrA61cjWOsxZM3fauYziwDAPZ/qH300Jh1cOK6qvgcXn1llJVvaVonIJIRDTmBMELUyQFwPi1hDH1HB747a+w4tiPQnFNL8wys4HHbMhYDjDCnhvkNQW27m35vrF7U6JcI8xqpKKrwQBMUtl0skmaHkp95jOfQVdXFy688EJs374dBx10EDZs2FBsVP7OO+9AFEtl7rt27cLpp5+O7du3o62tDYceeigef/xx7LvvvsVzzjnnHGQyGaxZswZ9fX045phjsGHDBkQi45iMTwDRZAsinbOw9xFHh5bO6dksUt07MdDd5QVVPV3FwCrV3YX0rl5YpoFd77+HXe+/F/o1BEFEvL29VGE1s7zSqqVzFpQx/HOXRAnfPOabyJgZPPreozhr01m4beVt2KdjnzH7mkREND3JigRZkRBraWxFnUqO7cDI2yFBllkMu4IhVvGcwLHr+qsepkzkUsNclUdAeZgVKZ9uWKjOKg+6FL+/lvcoSpyCSEQ0IYkyLCkKxGcCYzV91nVL1VtGJjzkMnOAWfmcv18WgA0SmhWmPzqWt0qk3liPomERxNGb0lgzCIsy+AohuK7rNvsmJpqBgQG0traiv79/0jc696YurBrWfH7bMpHq6SkLqoKVVqnuLthW/Z4ckUSybHpgsNKqZeYsRJMtI56GkLNyOGPjGXh257Noj7TjjuPvwOLWxSO6JtFIjfQzSETDNxU/f4UpiDWrs4pTDU3oORtGoZIrXwq8HGt0vu2TNakYXAUbwdeu2Cqv6pIV9iCZyqbi549ospgynz/XBWyjPLwaTgBW9rqQ551h/oJnuGpWe1WM7/4R4IB/Gt97G2WN5ipNr5SiiUuSFcyYPQczZoc3nXcdB9mBfj+kqg6sKqcI7nxrc+h1ZFXz+1r5YVVHeWiVaO+AKA3+zWtUjuL6ZdfjtPtPw8u9L2PNxjW46/i7MDcxd9DXERERTRbBKYjDZZnhodZgQZeRLwVeVmEKom7D0m1k+obXV0uSxWLvrFoVW96YBCVSsVpihA3jiYimPEHwVxjUgOgw5903wjZrT1usO6UxLAALeY0d+Ley8Dr0DH5fojzpQ6lGMZSiYRNEEfEZbYjPaMPcvZeEnqNns6WQyg+sClMFU107ke7bBcvQsWvbu9i17d3wryOISLR3lFdaBaYHtnTOhBKJIKkmsX75epyy4RS82f8m1mxcg9uPvx2d0c4x/pMgIiKaHGRFgtwqId46vGXCbduBGdJPqzLUCo4XAq7CGFzAthzkUs7wpyAGgq1CSFW2H/ECLbUyzCo+LxUfORWRiGgakxRAagUiY7gapGMP0p+rxpTGuQeO3f1MMAylaExpsRhm7rY7Zu62e+jzlmki3dNds9KqMEUw1dOFVE8X3sNfQ68TSbYUe1mtaT0Wv+q6H9u278C/963BVZ/4PmZ1zOdKRURERCMkSSKkhIhIYnhTQlzHn4JYFWSZ1dMQc97UQ6Niv9AwfjSCLfhTEdWIVBZYaVEZSlSGFpGh+IGWFpWh+M+pwf0Im8cTEdEgRAnQEt5GVRhKUVPJioIZc+ZixpzwaXau4yDT31fVz2qg26u0Gujugp7NIJ8aQD41gJ1velMEPwgJH8QsAAZ+uOEMyJpWnBZYXmk1s7iKYL0pgkRERDQygigUq5eS7cO7huO4MPPhgZWR9wItM+8FX6b/nDfmh115G2bOgmV6DXQLUxGHuxqi98YAVQtUZhUrscKOazwXlSErIn+JRkRE0wpDKZrQBFFEoq0dibb2QaYIZkorCPrBVaq7Czu3v4Nt77+JaF6Epevo3fYuemtNERT9KYJlqwh6+0m/SbuiTa/VG4mIiCYiURSgxRRosZE18LUtpxheGfmwyiwLRs6ufq5wnPOOHccFXHjP521g1/D6bBXemxKVaoRZMrRooMcW+20REdEUwFCKJj0tFsfM3eKhUwSf73oeX7jvdIhpEx9tOQKfm/ePyPjTBVPdOzHQ5U0LtC0Lqe4upLq78F6NrxNNtniVVmWN2Et9rkZjFUEiIiIaH5I8sqmI8FdEtE0nPLDKlx/rea9yS8/ZfqVXqarLyFlwXa8KTM9Y0DP1Vzeu995C+22FVGex3xYRETUTQyma0g6ceSCuXf59nPngmfit/RhktRPf+NQ3IAqlb7IKUwQr+1kVVxXs2gkjl0UuNYBcagA7trwR+rVkTStVWvnTA4OrCibaOEWQiIhoKhEEAbIqQVYlxFrUYV/Hdb1eW2FhVs1KrSb32wpWcVX22xJkF1ZOgKnbkGWZv7QjIqKaGErRlPfhuR/G1R+7Gv/+0L/jV5t/haSaxDmHnVP8Bik4RXDeBz4Yeg09mynrZ1UIrFL+SoKZXb3eFMH3tqL3va2h1yibIhiYHtjSORNJv78VpwgSERFNP4IgFKuVgOGtjIgJ128rgdsfehyiJECLydBiCtSojEhMhhaTocYUf9wLtbSYAi0e2I95AZfIBvJERFMaQymaFpbttgyXHn0pzv/D+fjhyz9Ei9qCLx70xYZfr8XimLloMWYuWhz6vGWaSPV0FftZDfhTA0uVV11w7MAUwVdeCr1OYYpgYWpgsmMmtHgCajQKNRKFEon6+xFvPxKFpCj8DSQRERFNmH5b3uqKJuAKcGwXuZQ57Kotr5eW7AVWMRlaNBBmBcIuLSYjEg/sxxRICqcfEhFNdAylaNr4xJ6fQMpI4YqnrsAPnv8BEmoC/7rvv47KtWVFQduceWibMy/0eddxkOnbVV1p1T20KYJhREmCEolAjcS8x0ECLDUa9c8NPl9xrhaBIPKbOCIioulqpP22TNPEb397L1YctxKOCehZL6TyHq3y45wV8rwJy/CqtQpBWKp3GO9DEYvBVTHYClRiBYOtwvNeNZcCJSLxl35EROOAoRRNK/+8zz8jbaZx3Z+vw1VPX4WEksA/7v2PY/51C1P3Eu0dmPeBfULPyWfSXqVVTzC06oKRy8LI52Dk8zBzOX8/B0v3VvdxbBt6JgM9kxm1+1W0SCDAKoVdwXArPOyqCMb8R0nmXzVERETTiSAAiiZBSShItA399bblQM96gVTeD6wMP7DKB/ZDg62cBbiAbTrI9hvDmn4oCIDqB1YRfyph+RTDinCrUMHlB1sSm8QTETWEPynStHP6/qcjZaRwx0t34OInLkZCTWD5ouXNvi1E4glE4gnM2n2Phs53HBtmXoeRz8LM52HkcjDzufIAK5eFkc/DyPvP5XIw9cC5fshVeL3rer+VNPU8TD0/au9NkmUo0RjUYpVWBGo0Fgi/SlVbaiRSDLPKzvVfq0aikDWNv70kIiKawiRZRKxFHVYDeddxYeg29EwwtCqvxDKyFvL+sZHznsv7zzmWC9dFcSXEgWHcv6JJVVMMI4X9WGGKYaC3ViD0khWR3+cQ0bTBUIqmHUEQsO7QdUgZKfzs9Z/hnEfOwQ3H3oCj5h/V7FsbElGUoMVi0GKxUbme67qwTMOvxsrDyPlhVyHMygcDLC/sKoZgFeFWYdw2vf4RtmXBTg0gnxrOt3XVBEH0Q6pIeNgVMkWx+tzy6YxcGZGIiGhqEETBC3miw/tRxzK8flp6xg+zakwxLO4HQi8z762AaOo2TN1Gepc+5K8vykLINEOlWKGl+j2zqvb99yywOTwRTSIMpWhaEgQBF3z4AqSMFB54+wGc/dDZuHn5zTho1kHNvrWmEQQBiqpBUTXEWkfnmrZlFYOtYGVWWIBVfD5QzVUcD5wLAK7reMFYLgvsGkaTiRCyonoVWtEoVG3wACvYg8ubpuifG5jiKCkjazJLREREzSGrEmRVQrx16CshOrYDI2cjnzW9pu8Zq7Qf1k8rUz4F0XVcONYImsMLgBaViw3fy6YZhgVdFaEXm8MT0XhjKEXTliRKuPIjVyJjZfDYe4/hzAfPxO3H344l7UuafWtThiTLkBIJRBKJUbme6zgwDb1UrZXLlaq5ihVd+bIpjWVTFwPnFvpzObb3G03LNGCZBnID/aNyr4IoQo1EYUPA3X/YCC0WhxaPe4+FLR73q90S3mPF87I69CkLRERE1DyiJCIyzCbxruvC1O1ieGXkTOQzVs3eWsUKroy3bxkO4KL4+lTP0O9f9pvDqzEFWlSCGvECLjUieY9R2R8LPucf+89z+iERDQVDKZrWFEnBdz/+XZyx8Qw8u/NZrNm4Bncefyd2b9292bdGIQpBjxqJIj5jGF1TQ1imWTZVMSzAKuvXFXiu6txcDpbhlem7jgM96zWf734nPax7kxQlEFLFoMUT0KIxqKGBlv8YDLyiMa6kSERENEkIguAFPBEZyfahv942ner+WTnTm4aYC+unFajg8pvDW6YDq99AZhjN4QtEUYBSEWhpURlKRParuKRAmBUIvArH/vNsFk80PTCUomkvKkdx/bLrcdr9p+Hl3pdx+sbTcdfxd2FuYm6zb43GgawokJVWoGV05ix6Dei9kCqbSuGhBx/EoQcfBFvPQ896qyTq2Sz0bNp/9MaMbAb5bAaGPwYAtmki29+HbH/fsO9HjcYqqrLioVVbaiyGSCweCLy8R1lR+dtOIiKiSUBSRMSUETSHz5dPMTTyNoy8V6Vl5GzvsXCcLx3rOa+XlpGz4LqA47jFJvEjfT+hoVagakvxnwut6IrKUDWJPbaIJjiGUkQAkmoS65evxykbTsGb/W9izcY1uOP4O9AR7Wj2rdEk4zWg90KdSLIVkc5ZWLT/QVCG0GPKdRwY+ZwfYPlBVi5TcZwNhFyFLQs9k4aRzcIyvd9wFnpvpXq6hvd+JLnuNMPy41LVluofiyKbyBMREU1kgij4PaaG3xOzMP3QyAXCrLxVfpyzqp7XczZMP9wy8jYs3WutYJsOcqaB3AjXyVEitaq2JChRORBqcUoiUTMwlCLytUfacfPym7H6vtV4a+AtnPHgGbh15a1oUVuafWs0zQiiWAx5hssyTa/6qqwKq3Ss57IVgVZ5FZeRzcF1HTi2hdxA/4h6bSmRaHE6Yeg0w5BAKxiAyarGbwSJiIgmuOD0Q2DoTeILHNsJVGLVqNDKlY69Sq1SqFV4zrFdAICZt2HmbWT6hr4SYsGQpiTWmI6oRmRIMqckElViKEUUMCc+Bzev8IKpV3pfwdpNa7H+uPWIKbFm3xrRkMiKArl1BmKtM4b1eq9aK18VWhmFiqyyIKsi2PIDr0J/LdPvvzW8zlqAKEnl0wzjcajRRhrHlwIwUWK1FhER0WQgSiIicRGR+MhWMrZMe9Bph9VVW+M0JbEytCoEXH7VVr0piYomQeSURJpCGEoRVVjUsgg3Lb8Jp95/Kv6888/46kNfxXXHXgdV4kpoNH141VoxaLEYgJnDuoZtmcUAy8hmkfenFuaz/mMx5Kqu1PKmImb8ai0budQAcqnh1+8rWqSqKkuNxb2Aa5BgS41EIauqv2kMt4iIiCYJWZEgK9KwemwVjM2URAe5lDmi9zbYlERJFTGwVcULv3sXkZjqnat5YZeiea8r7Csqe25R8zGUIgqxpH0JbjzuRpz+wOl4fNvjOPfRc3HVR6+CLPIjQ9QoSVYQa2lFbJhN5L1vBGs0iA9UaFVPUyz12zL1PADA1PMw9TzSvcNYHztAlCTIqlYMqYKBlayqUDQNslL9nKJVn1vaLx0rhX3/fPbjIiIiap7JOyVRwx/feLOBNwgoqh9Q+UFXcV8rjMshwVbpueA+q7hoOPgTNlENB848EN/7m+/hrE1nYePbG3HJE5fgkqMugShwLjjRePC+EYxCjUSRbO8c1jVsy4KRyxabwNcKtorTE3OZ4nP5bAaWrhenIQKAY9vF5vHjQZTk8OArGG4VQjB/XKkTfNW8DkMwIiKiMTGeUxJzGRObX9uCubPnwzJcmLo/FTFvw9S9Ci5DtwEXgAtvTLeBETaUL5AV0Quv/JDKC60C+8GKrWIAFqjeqgjHJIk/e011DKWIBnHkvCNx9Uevxr8//O/45Ru/REJJ4JzDzmHTZaJJQpJlRJMtiCaHv2CB67qwTAOWYcAydP/RKAZWxWNDh1l2TsVzun9sVj9n6YFjf+VEAHDswm9Oxy8Ea7SqqxhuDTH4klWtWBEmiPxGk4iIqFGNTEk0TRO9976MY1d9sObqz973No4fVnmhlan7+3ohvAoc520YevC8UsBVOHYdr4rLMh1YozBFsUCSxUBYFajQqqjkCg/AgpVcXvglygJ/lptgGEoR1bFs0TJ84+hv4D//8J/44cs/RIvWgi8e+MVm3xYRjRNBEKD4QQqQHPOv5zoOLMusGXxZhgGzRvBlGUYp/DIqQjC9+tywEEzPWtCzmTF/n/BDw0aCr1LAVVEdNkjwBVGE5Tfml5NJBmBEREQ+73sbr6fUSHpuFbiuC9tyykOrQGBl6oH9ioqt4n7eLgvAHMsLuWzLgW05yGdGJ+QSRcGv5PICrGJoVdFvqxhwhVV2BZ6TFZEh1wgxlCJqwN/v+fdIGSlc+dSV+MFzP0CL2oKT9jmp2bdFRFOQIIqlECwxTiFYsRIsJNwyGwi+ivvhwZcZeM42S99U2pYF2xrbEOymX94NAFAiUahRbzqoGo15+5XHkShUv8F99XGseB4b3hMREZUIglCs4oqO0rcutuWUV28FAq3yqq3KCi6rKhgz8zYs0wHgr6SY9X4JB9TqydU4QUBIf63qiq3yXlxsPh/EUIqoQSftcxJSRgo3PHcDrnzqSiSUBP5hr39o9m0REY2IIIpQtAgULTIuXy8YgoWGW4UQLPCc2UjwVagqKwRsug49lwXcQlPYHMx8DqMRf8mKCiUahRaNQfHDKy0Wqx18BUOvQLilRqKQFIW/YSUiIqogySIkeeR9uAoc2ylOTSxVbAUqtCoCrvJKrsqpjKUVFV0XXl+vvD0q32MUms/ve/Q8HPPpvUfjihMeQymiIfjCAV9Aykjhrr/ehQsfvxBxJY7jFh3X7NsiIpo0giHYaP02NYxpmvjtb3+LlcuXw7UtGNksjHzOa1SfzwWO/bFcrsaxt2/mcsWpjpbpTXvMDfSP+D5FSS4Pr0KrtMqDLSUag+aPKX4gpkaikDWNARcREVEIURKhxURosdEJuVzHhWnY4RVblf23yqYy2qHN503d9n6P5jefd/1fqk0HDKWIhkAQBPzH0v9A2kzj56//HOc8cg6uX3Y9jpp3VLNvjYiIKgiC4PWdUuKItbSO+Hq2ZcHIewGVkctCz+Vg+iGXnsv64+VhVlUA5h+beh7w+3jl0ynk06lReL8ilEikOswKCbbKj2NQY/6jH5ApkQhXYyQiIqpBEAWoERlqZHQilcrm84o2ff4NZihFNESCIODCD1+ItJHGA28/gLN/fzZuXn4zDpp1ULNvjYiIxpAky4gmkoiOQq8vx7Fh5vVAeJWtrtIKhFlmPgfdPzZzXghWCshycF0Hruv4rx+d1RoVLRJSpeVNW/SCq8C+H25pUa+SS62Y3ijJ/JaTiIioltFuPj+Z8DsEomGQRAlXfuRKZKwMHnvvMZy56UzcvvJ2LGlf0uxbIyKiSUAUJWixGLRYbMTXcl0Xlq6XV2iFTVNscNqiY1sAAFPPw9TzyPTtGvE9SooS0ltr8ObySiRavQqjqkHWSses5iIiIprcGEoRDZMiKfjux7+LMzaegWd3Pos1G9fgrhPuwqKWRc2+NSIimkYEQYASiUCJRBCf0Tbi61mmWR1uFY/Lw6xC1ZbpB1vFaYx+AFbow2WbJnJm/6j04QoSJbkUWGlaWYBV3FdUP8jS/GArGHRVPnr7ihZyHYZgREREo46hFNEIROUorl92PU67/zS83PsyTn/gdNx1wl2YE5/T7FsjIiIaFllRICuto9KHy7Ht0vTEoTaX1/OBlRiDKzQagetbMHLWqE1ZrEeS5fDgq7hf/ZyiaV4w1mDwJauaVxGmqhBEcVzeFxERUbMwlCIaoaSaxI3H3YhTNpyCtwbewukPnI47jr8DHdGOZt8aERFRU4mShEgigUgiMWrXdB0HlmX6YZVRHlgZOsyK48K+WRluGZWvD7+ObZrFr21bFmzLgp4dlYW/6yoLwWqEW6UqsYrqsDrBV9W0SIZgRETUBAyliEZBR7QDt6y4BSffdzLeGngLZzx4Bm5deSta1JZm3xoREdGUIogiFL+aaDy4jgPLNGqHW6YeCMgKgVYw+KoOwsxgoGYGntN12JZV/NpNCcGC0yCVQYKvinArOC0SkoTMe+/g3Zf/gmg8AUWLQIlo3qMWgaQoEARhXN4TERFNbAyliEbJnPgc3LLiFqy+bzVe6X0FazetxU3Lb0JUjjb71oiIiGiYBFEshinjwXFs2IYZUvHVeLhl6uHVYmHXCQ3BMqMTgv384ftDx70/01JIpUSCj8Fxb1+uOK58PvhaWdUYeBERTSIMpYhG0aKWRbhp+U049f5T8eedf8ZXf/9VXHfsdVAkpdm3RkRERJOAKEoQIxKUyPiFYLUCrHrhlln1nB+W5fPo6epCLKJ54VreW8mxEIC5jlNsnD/qBMEPqrRS2FUIugY5lkOeVyPBsQinOBIRjQGGUkSjbEn7Evxg2Q+wZuMaPLbtMZz76Lm46qNXQeKKPURERDTBiKIENRKFGhm9ym7TNHHvvfdi1apVUJTSL+Yc24ap52H6IZWp64H9wnHOH9NL4/nAftWxF3oVG+C7rn+NHDC6iz0CAORgJdcQgy8lEq1d4aVpXN2RiKYlhlJEY+CgWQfh2r+5Fms3rcUDbz+AxB8TuPjIi1lOTkRERNOWKEnQYnFosfioX9txbFi6XhZ0GYHAywoGXcFQrOZxKfiydL34dSzd6/2VG4PES1ZUyDWmMFYdRyJVwVbosX+eKDHwIqKJiaEU0Rg5at5RuOqjV+HfH/53/Pz1nyOhJPAfS/+DwRQRERHRKBNFCWo0BjUaG/Vru44DyzBg5HODBllW3aCr4jifh2nogOsCgNcXzDSQT436W4Aky94UxNBKLg1qJOr37tKKz4uSDFGWIEkyREmCKHuPkj8uSjWO/fPKXx88R2RVGBEVMZQiGkPHLToOlxx1CS547ALc9de70KK24AsHfqHZt0VEREREDRJE0QtvxqDPl+u6xf5dZVMZa0xZtGpMYSy+tuIarusAxSb2aSCTHvX3MCyCACkQXImS7B0HAq2q40Dw5b1OHtk1ar0+9Hq1AzdBFPlLZ6IRYChFNMZO3OtEpI00vvX0t3D9c9cjoSZw0j4nNfu2iIiIiKjJhGJj9gjQ0jqq13ZdF7ZpNtabKzBlsVDx5dg2HMuCbdtwbKv62PIeQ48t/3z/dSE3V1ztEXrY3U8ug1aVDVZlFgy5/GNBlGqHZ4OFaf61XACZbVux9aUXoPoVb+HVa+H3xYCNxhtDKaJx8C/7/gtSZgo/eO4HuPKpK5FUk/j7Pf++2bdFRERERFOUIAiQVRWyqiKabGnafbiuWxZQ2cHAyrJhBwIvx/aPrcD5lccVgdeQwjPLCrzOgm3VeM0g1yhMtwzyXmPBmkAJ2y8e2jCs1wmiWBWeDTUYE8WhBXG1A7MGquEGq37jNNFJgaEU0Tg544AzkDJS+H9//X+44LELEJfjWLZoWbNvi4iIiIhozAiCAEn2qnWmAsexa1aF1Qy5qqrKGgvcGgrwyu7Bhm2Z2LVrFxLxGFzbCa9e86/lOk7V+3MdB5ZjAGZT/nhHV41posIwq9jEegFZA9M9G6pYEyWo0eiY9MibiKbG3wxEk4AgCPja0q8hbaTxizd+ga898jXcsOwGHDnvyGbfGhERERERNUAUJYiqBEBt9q2EMk0T9957L1atWgVFUQY913WcYshWt2ItWGU2pMq0IQZ4nCYKADhg2fFYvmZts29jXDCUIhpHgiDgoiMvQtpMY+PbG/GV338FNy+/GQfNOqjZt0ZERERERNOIIIqQRBGSrGDw+Gric10XruMMXn02jLBrWOHZKEwTFeXpM/WQodQUlvq/32DOT3+CHX98EpKmQlBVCIpSfBQrjgW1+pzwRxWCqgQeFTbEGwJJlHDlR65E1szisW2P4cxNZ+L2lbdjSfuSZt8aERERERHRpCMIAgRJgihJE7WIbUjckN5lUxVDqSks/9Jf0PLn55D683Nj/8UUBaKiDC/kqgy4AqEZKsOzhkKzwLmyt0zrRKNKKq75+DU448Ez8Oedf8YXNn4Bd55wJxa1LGr2rREREREREVETTaeiD4ZSU1h82TK80deHJXvtBdGy4RoGXNOsfjQNuEbp0ak4DnsNKufsmiYcc4J2w/PDMlFRAFWBqAw35AoJ3UZQcRZVIrh+2fU47f7T8ErvKzj9gdNx1wl3YU58TrP/xIiIiIiIiIjGHEOpKSx22GHY1dWF9gaa3A2Vaw8SclU8OoYRGBs87HLLzq1xPdPwQjAj/DphgZlrmiiMhrTAax5ZxqWKggwc6OJWbPn2cgy0zIWsaV71mKIAigxB9gMxWfY2RQZkf7zWmOKNDzrmHxfHFCVkvPxYkGUv6JugVWhEREREREQ0OUyIUOqGG27A1Vdfje3bt+PAAw/Eddddh8MPPzz03FtuuQV33XUX/vKXvwAADj30UHzzm98sO/+UU07BnXfeWfa6lStXYsOGDWP8TqYPQZIgRKNANNrsW6ni2rZfAdZgyGUEQ65geFYncKtTeeaEhG+wrPKbtSy4loUYAG/BTwt239aJFZwNRhSrg6qy8KoiOCuMFcKvMQ/Z1OpArVbINo1KZImIiIiIiCaCpodSP/7xj7Fu3TqsX78eRxxxBK699lqsXLkSr776KmbNmlV1/kMPPYTPfe5zOOqooxCJRPCtb30LK1aswEsvvYT58+cXzzv++ONx++23F481TRu390TNJUgSBEkCIpFm30oV13Fqhlzv9b6FSx65ANncAPZJ7oWv7H8WFLsUXLmmBdcy4VqWN2b644ONFY9L43XHzMJrzbLzqirQAMBxigHdpCdJ4dVgZSFZ2JgfflWFcTJcUULntvfQu/VdKMkEhFgMYiwGMeo/xv3H4ngUgjoFOjMSERERERE1oOmh1DXXXIPTTz8dp556KgBg/fr1+O1vf4vbbrsN5557btX5P/rRj8qO//u//xs/+9nPsGnTJpx88snFcU3TMGcOe/PQxCKIIgRNA0JC0j323BPn7Tkf/7bh3/CKuRldzs/x/WO/D0WaGAu0uq5bFVS5pgVYdcYqw7RGAjbTDIz5wVnZebXG/K9dOdZIwGbbXpWdro/qn1s7gN6HHm78BYpSHlT5YVVx3w+yqgKuypArGvXPiUOMRTnVkoiIiIiIJpymhlKGYeCZZ57BeeedVxwTRRHHHXccnnjiiYaukc1mYZom2tvby8YfeughzJo1C21tbTj22GNx2WWXoaOjI/Qauq5DD/wgOjAwAAAwTRPmRG3e3YDCvU/m9zDd7JncE9/7+Pdw5u/OxB/e+wO+/sjXce7ScyGLMhRRgSzKkASpeVPNBAFQFG8LDvvbZOE6jhdCmRVhWViIVRGyoey8kEAscJ6V1/H2a69h4cyZQD4PJ5eFm83CyeXgZnNwstnihsLn1DTh9PfD6e8f1fcsRCMQozEIgYCrGGzFotXjfthVGo8GzvfGBU3jtEeasPhvIFHz8PNH1Dz8/NFE0eh/g4Lruu6Y300N27Ztw/z58/H444/jyCOPLI6fc845ePjhh/Hkk0/WvcaZZ56J+++/Hy+99BIi/nSte+65B7FYDIsXL8bmzZtx/vnnI5FI4IknnoAkSVXXuPjii3HJJZdUjd99992IxWIjfp9EQ/W6+Tp+mPkh7JDuUgIEiBAhQYIkSJAgecf+/qiNB54XBbHq3MK4DLnqerXGGWAMwrYhGgZE3YBg6P6+9yj442JxPHiO4Z+jF/dFXfdeYxgQxvCveFcQ4KgqXE2Do6pwNA2OqsBVC8cqHFWDo6lwVdUbKx5r/vPeFjxGyN/TREREREQ0eWSzWfzzP/8z+vv70dLSUvO8pk/fG4krr7wS99xzDx566KFiIAUAn/3sZ4v7+++/Pw444ADsueeeeOihh7Bs2bKq65x33nlYt25d8XhgYAALFy7EihUrBv3Dm+hM08TGjRuxfPnyUV99j8be/lv3x2VPXYY+va9s3IUL2/8f3LInJjxZkCGLpa1Q/VX2KMhQJKXs3NDzRut1gdfLkgxFUKpeP9zqtGZ/Bl3XhavrXnWWv7m5HBy/Ssur2gqO+/uBKq6y8VwWTjYHN58HvN9qQNJ1YJSnPAqqWlG5FS1OVSyMB6u8StVd5dVcXkWXX+UViXAK4zTT7M8f0XTGzx9R8/DzRxNFYQZaPU0NpTo7OyFJEnbs2FE2vmPHjrr9oL797W/jyiuvxIMPPogDDjhg0HP32GMPdHZ24o033ggNpTRNC22ErijKlPggT5X3Md2s3GMlVu6xEo7rwHIsmI5Z/mibMF0Tpm3Ccr3j0POG+xi4rumasOzycxq5TiXLtWDZFibP8oIeAcLgoZZUHoopkh9sQUZ3pht/eOoPUGW17HXBcxVRKX8ucN2w58qeF5Ti16t8XhAEQFWBZHJU/zxc24aTy8PJZsoCL2/LVRxnSuFWpvJcbyqjk83CyWSKq1MWmueP+hTGwXp1Bft1RaN+L66YF5BJotcIX5IBSYQgyRBkCRAlCLK/sEJhgQVJLp0vy14QJsvec8Hzq54TWUk4RvhvIFHz8PNH1Dz8/FGzNfrfX1NDKVVVceihh2LTpk048cQTAQCO42DTpk1Yu3ZtzdddddVVuPzyy3H//fdj6dKldb/Ou+++i56eHsydO3dU759oPIiCCFVSoUqTa1U213Vhu/agoddQgrJBA7FgMDcKAZ3tlqdmLtzi1x2Ol95+aZT+VIcmLCgbLAAb9Hk/SKsZnrUqkNsKQVoLFLFj0CBNCwnSJMspVWYVw6rygCtYuVX2XHC8EIRlvHH4UxjdbBZ2NjtxM1GpPOAqC7uKIZYXjnnBlzzI+RIEUapxfkWwFnZ+4LlgAFd+j4Hryn6wVhHAlZ1feA8NhHpl75mIiIiIpqymT99bt24dVq9ejaVLl+Lwww/Htddei0wmU1yN7+STT8b8+fNxxRVXAAC+9a1v4cILL8Tdd9+N3XffHdu3bwcAJBIJJBIJpNNpXHLJJfjkJz+JOXPmYPPmzTjnnHOw1157YeXKlU19r0TTiSAIxal0k81oVaflzTyef/F5fGCfD8ARStcMvq4ybCurUGsglCucV7Myza8+wiTpdVkZoJUFYJoMJapA6QwL0hKQxRnVIZgoQ7MEaIbrbboL1bChGi4U3YaiW5B1G3LegqybkPLeJuYNb7MciI4L0XYhuIBou4BjA7YD17YB24JrO3BtC7Bsr4m+ZfnP+Ss6BvZDV34sKJwzOWbjjh85JHyrDOmCVWf+Oa4oYkFqAO/94peQIhGv6k3TIKgKBFWFqGqBMRWCqkAs7oeMFR4VFaKmVrxWZYBGRERENAxN/2nxM5/5DLq6unDhhRdi+/btOOigg7BhwwbMnj0bAPDOO+9ADHyjd+ONN8IwDHzqU58qu85FF12Eiy++GJIk4YUXXsCdd96Jvr4+zJs3DytWrMCll14aOkWPiKjSaFWnmaaJyGsRrPrgqjEvnw6rTBss4KpVsTZY+BX6+iEEaZXn1Q3SxoPqb0OY4SgKIiJSBBE5Ak3SEJEjiEjx0nHVcxFosoaoHIUmqoiIGiKCighkRAQVGhREBAUqZGiCAs2VoQkyVMhQHBFwHbhWKQDzHm1vzPEeXdvygzLLD7f88ywbrmN7gZk9jPOLwZpVCuIsy1/Bcgjn27XO84M6x6n9B15Y0XIYYV0MQO7Nt4b4qmFSFIiKUh5U+eGVqAQCLD8YE4PhVzAs0zQISr2wLDwYE1UVUBROBSUiIqJJo+mhFACsXbu25nS9hx56qOz4rbcG/+YyGo3i/vvvH9X7IyKa6CZjZVojQVpoyDXEKrKaIVudwM6wDZiOiZyVg27rcFwvOHFcB1kri6yVHfM/IwFCMdzSJD/YkjQv5JKi0GQ/BFPLQ7DygCxefX7l9fzXikJzqn28kKu80qyywswL4izAqRHSFc7zwzozr+PZp57CwR/6EETbgmMYcHWj2LPMNXSvd5muwzVMb0z3x4zqMW/cKBtDcHVL04RjmkB27P+7qKcsrNL8UKxirBBilYKxsLGKsGwoVWSqCkGePH8fERERUXPwuwUiImqKyRSkua7XVyxv56FbOvJWHnk7X3zU7fKx4LFu6cVgq9bzZdeydFhuoTLI9Z6z8+PyPlVRLavuCg+56gRkcnVAVrxe4Png/++CKHo9qQBglKqaTdNEOp9DctXYVCq6rgtYFhzdgGtWhFeF/cJzfpAVFoxVjek6XNPwrlsRgtUKy1yzvOqwMN50khQIuqqDsbphmaL4m+xNz1QUCLLi9SfzxwVZ9qrDZNl7LjAuKIr3OlnxwrXiNQLPs7KMiIioqSb+TwJERERNJghCaUrnOKw5YDpmWVhVFmhZOnJ2DrqlQ7cDgVeNgCwsSAteLziN0nAMGIaBATS2hO9IyKJcs2qrsB+Rw0OuYEBWa7qk7MrIOTnkrBwESRj18FMQBEBRICkKgPioXnuoXMeBa5ohwZhZrAirCsuMUpjWcFgWrBYLqyLT9fKpmLYNN5eDncs184+nPkkKCasCIVdg3AvBQgKyQcYFJRCQBZ/3g7Ja42XBmlLrXhiqERHR5MZQioiIaIJRRAWKqiCBxJh/LduxiyFVMPAKq+oKO66s9qoMyIKhmW7rxa9rORbSThppMz2m7+/yn1wO+L3AFFGBKqrFlSQVUYEqqWWPwZUmB33Ov44qls6RRTn0NcX9sNf6YyOZOimIIgRNG7Uqs5FwLSsQgtWqIqsTlgWCMVgWXNPrK+aapvdomV51WNW4Bdc0aox7+zBDVn0oTA9txh/YaCgEVY0EZH7oBbkidGugIq2s8qzOuA1A27YN+htvwIlEyr++LANy4PWS1Ow/QSIiaiKGUkRERNOYJEqIiTHElNiYfy3HdWDYRs2qrarKr4qx0MqwkOmPhWM3EDM4rlO8xkRcjbKw8uSQwrIaAVswLBssYBs0LAtcRxblhqtxiqFDLIaJGDUUpl2WhVWm9wjLLA+zzMK+6Ydj1eOFoKt8PBCcVY0HrtnIeMXzCFsIovB8M/5AB7EIwNbvfb/+iYJQXvkVDNkKAZtcUSVWCNDKxkPGigFcYLx4XiFIC4R5FeeVjSkVwV9F2AdJYtUaEdEwMJQiIiKicSEKYnFK3lgzDAO/ufc3WLZiGSCh2Li++OgYpYb6/mNhzHBK5wab3pe9vjBW8dqqa9d4TaFvWEFh5ckcJuZUt5phWViQVissCwvCaoRlsihDFVVoklacOlu1L6pDDgEK0y6FMV4RdawUQ7XKMMu0vFAtZLwsIGtoPCSMq6w+M41BAzfXtJBPpaDKclkIGFqp5roTpw/aSFWGasHKNVkZnbAt2E+tXogWDM2CwVrYWDBsY7hGROOIoRQRERFNOYIgQBIkxJTYmDQ6HynHdcoCr9CwzA+wKsOyYvg1WFhW57WDBWymY8J27bL7LYyPx6qTQ6GISnhwVSPQ0iSt+BpN0qBIgf1hjkvi+NWETZZQzTRN3HvvvVhVsdCA67r+KpnBIMysqF6zSoFYcPpmVYhmlarVap1nBq5rhY+VTQUNnls15lerFaaCuiG1af77mWhVa0NWCK4kydsXRUCWIEj+mCRBkCQIsgRIhee954LPF18jS4BYPgZJLF1PliCIgetJUun5QcdE/2sFvoYslcYk0TuvMFZ4L/5Y+b36X8O/RvE5sTmr0hJNJwyliIiIiMaZKIil5vkTkO3YoRVlwXArWFEWFpZVhmaWY4VWowVDtMrXG7YB3da9Jvz+flDhtc2cklmYelkvEGuk8it0vIFrDmWKZTMJglAMPCY7txCuFarUqqaFDiNsqxeimYZfcdZAiFaYkloxDrP8XmHb1W9ugk4JbYrCf7PB8GqEIV1VIDeskK4ikAuMOQDiL72ETCIBWYvUqKQrr5wrm46qKOz1RuNq8v+LQERERESjShIlSKKECMZ+quVQuK4Ly7GK/cFMxyzt2+bwxwv7Tmm/LBSzDRhOaT9YSVacemk1b+qlAKGxgKvGeM1qMEmBJtYYr6gYUyV1RA37J5ti4DABFhgYCddxQsMq17QAx4Zr2YBtlc6zA2O2A9cOjPnnF8dsxzuvOObAte3SmGMDll1zrPQaq3Re8GtYNlzH8UI0f8ECWN69lr6uXVrMoNZrbLt85dCyPyB3UlbAzQfw/l3/b/gXEITqPm/B6aANTz8trGYa0tctuKhC5VRVpda01DphWvH+lFJlHE14DKWIiIiIaFIQBMHrRyWNz+qUtRSmXlaGVbVCrEbHy45DqsSC46ZTKg9z4RYDthRSTftzkUW5GH7Zho31v14f2lNMluS6/ceC4zV7kwXPq2jYX/U1RXlahWaNEkQRgqoC6sSs2hwvXpDlh1eFgK0QcgWDrVohXWUgNxohXUUg12hI55gmdnV1YUYy6d9LRSVdIICsOR3VdUvTVZv1f8poEMXwsKoqNGtgfLTDtHq93yIRiNPkc8lQioiIiIhoCGRRhizK47JqZS2O6xQrv6oCrjqB1lBCs3rXCq5yaTkWLMdCBhkAwEB6oGl/PmFqrXJZudrkYCtYhoVmYdepCtbqhGaF4GwyTMOcigRRLAYYk51pmnjh3nuxf0VPt8GUpqPWmHoaXPwgOK20MKW0stdbVf+3RqaqVk43DVmldJDx0NVJHQeursPV9bC3PaHN+PSnMfcblzT7NsYFQykiIiIioklGFMTiFLpmcV0XlmtVhVUZPYPfP/J7HH7k4XBFt7x5f40m/ZXN9mutbGnZVt3rFCrZKhv2T/RVLhFY6XIo4VZwXxblqgAtbHXLetcpnBuc6ikLDM2mqqkwHTV8ddJAz7fi6qEV/d0qViVFVRgX0uOtkfEG+7wFF1BwLas4lXQq9N5r1PR5p0RERERENGoEQYAieAFGXIkXx03TxGvyazhw5oFNXf3SduxiaBYWdFmONXhIFmjSH9rUP2S1zMGuEwzMCmNuxeSoYvP+kKKPZhMglPUUK/Qoq+xNVhirOV7RuD+skX+hn1nltQrVbAzHqNJkWZ20nuLU0GmEoRQREREREU05kihBgtTUarJ6bMcuW9Wy0XArrLKsanXMIQRmheCt8NrCVE7LKf1w7MJF3s4jb+eb2rss2Ng/LOAKW+EydLxGOFa2muYg5zEco7FQ7PM2jTCUIiIiIiIiagJJlBAVo4gi2uxbCeW4Ts1G/JX9xoJN+MvO8/uUVa5sWTVecZ3gOZXhWKGxf7OFVoxVVHkNGo41WG022HmKqDAco0mNoRQRERERERFVEQURETmCCCJNvY/KcKwqIKsTcFUFZSHBVyOvDa56CaAUjpk1b31cBKu5FFGBlbdw5713IiJHoEoqIlKkLCALHhfH5AbOqRjTJA2SKDX3zdOkx1CKiIiIiIiIJqyJFI7VCrjqVYgNGo4FgrDQVTBDgrIgw/HOCYZj3X3d4/JnIgtyKaiSSwFWoVosGHYFt8ECsMpzCtctG/OnUNLkx/8XiYiIiIiIiOqYCKteIhCOFUOqQJVXVs/i4ccexiGHHQJbsIvhVt7OF8/XbR26pRefCzsn9DX+FpxOWVjVMmtlgXGeUSkJUlWY1Ui4Neg5DV6Hq1GOHoZSRERERERERJNEMBxLIln2nGmaeFt+Gx+e++ExW/2y0KDfsA3krUBw5VSHXcGtcqwqJHMCYzWuE6wSs10bOSuHnJUbk/c5mML/B2FhVuV0ybBwKyJHyqZdVlaEzY7Nxm4tu437+2oGhlJERERERERE1JBig345ilatdVy/dqG/2JDCrkFCssrqsNDrFK7hGGX3MZaB2Kc+8ClcdORFY3LtiYahFBERERERERFNeMX+YvL49xcL9hQbTtgVrCoznPIqs8rrzIrNGvf31ywMpYiIiIiIiIiIBlHWU0xt9t1MHWKzb4CIiIiIiIiIiKYfhlJERERERERERDTuGEoREREREREREdG4YyhFRERERERERETjjqEUERERERERERGNO4ZSREREREREREQ07hhKERERERERERHRuGMoRURERERERERE446hFBERERERERERjTuGUkRERERERERENO4YShERERERERER0bhjKEVEREREREREROOOoRQREREREREREY07hlJERERERERERDTuGEoREREREREREdG4YyhFRERERERERETjjqEUERERERERERGNO4ZSREREREREREQ07hhKERERERERERHRuGMoRURERERERERE405u9g1MRK7rAgAGBgaafSsjYpomstksBgYGoChKs2+HaNrhZ5Coefj5I2oefv6ImoefP5ooCnlKIV+phaFUiFQqBQBYuHBhs2+FiIiIiIiIiGhSSqVSaG1trfm84NaLraYhx3Gwbds2JJNJCILQ7NsZtoGBASxcuBBbt25FS0tLs2+HaNrhZ5Coefj5I2oefv6ImoefP5ooXNdFKpXCvHnzIIq1O0exUiqEKIpYsGBBs29j1LS0tPAvJKIm4meQqHn4+SNqHn7+iJqHnz+aCAarkCpgo3MiIiIiIiIiIhp3DKWIiIiIiIiIiGjcMZSawjRNw0UXXQRN05p9K0TTEj+DRM3Dzx9R8/DzR9Q8/PzRZMNG50RERERERERENO5YKUVEREREREREROOOoRQREREREREREY07hlJERERERERERDTuGEpNYTfccAN23313RCIRHHHEEXjqqaeafUtEU94VV1yBww47DMlkErNmzcKJJ56IV199tdm3RTQtXXnllRAEAWeffXazb4Vo2njvvffwL//yL+jo6EA0GsX++++PP/3pT82+LaIpz7ZtXHDBBVi8eDGi0Sj23HNPXHrppWALaZroGEpNUT/+8Y+xbt06XHTRRXj22Wdx4IEHYuXKldi5c2ezb41oSnv44Ydx1lln4Y9//CM2btwI0zSxYsUKZDKZZt8a0bTy9NNP46abbsIBBxzQ7FshmjZ27dqFo48+Goqi4L777sNf//pXfOc730FbW1uzb41oyvvWt76FG2+8Eddffz1efvllfOtb38JVV12F6667rtm3RjQorr43RR1xxBE47LDDcP311wMAHMfBwoUL8aUvfQnnnntus2+PaNro6urCrFmz8PDDD+OjH/1os2+HaFpIp9M45JBD8IMf/ACXXXYZDjroIFx77bXNvi2iKe/cc8/FY489hkcffbTZt0I07fzd3/0dZs+ejVtvvbU49slPfhLRaBQ//OEPm3pvRINhpdQUZBgGnnnmGRx33HHFMVEUcdxxx+GJJ55o6r0RTTf9/f0AgPb29mbfCtG0cdZZZ+Fv//Zvy/4dJKKx9+tf/xpLly7FP/3TP2HWrFk4+OCDccsttzT7toimhaOOOgqbNm3Ca6+9BgB4/vnn8Yc//AEnnHBCs2+NaFBys2+ARl93dzds28bs2bPLxmfPno1XXnmlafdFNN04joOzzz4bRx99ND70oQ81+3aIpoV77rkHzz77LJ5++ulm3wrRtLNlyxbceOONWLduHc4//3w8/fTT+PKXvwxVVbF69epm3x7RlHbuuediYGAAH/zgByFJEmzbxuWXX46TTjqp2bdGNCiGUkREY+Sss87CX/7yF/zhD39o9q0QTQtbt27FV77yFWzcuBGRSKTZt0M07TiOg6VLl+Kb3/wmAODggw/GX/7yF6xfv56hFNEY+8lPfoIf/ehHuPvuu7Hffvvhueeew9lnn4158+bx80cTGkOpKaizsxOSJGHHjh1l4zt27MCcOXOadl9E08natWvxm9/8Bo888ggWLFjQ7NshmhaeeeYZ7Ny5E4ccckhxzLZtPPLII7j++uuh6zokSWrqPRJNZXPnzsW+++5bNrbPPvvgZz/7WdPuiWi6+NrXvoZzzz0Xn/3sZwEA+++/P95++21cccUVDKVoQmNPqSlIVVUceuih2LRpU3HMcRxs2rQJRx55ZFPvjWiqc10Xa9euxS9+8Qv87ne/w+LFi5t9S0TTxrJly/Diiy/iueeeK25Lly7FSSedhOeee46BFNEYO/roo/Hqq6+Wjb322mtYtGhR0+6JaLrIZrMQxfIf7yVJguM4TbsnokawUmqKWrduHVavXo2lS5fi8MMPx7XXXotMJoNTTz212bdGNKWdddZZuPvuu/GrX/0KyWQS27dvBwC0trYiGo02+/aIprRkMlnVvy0ej6Ojo4N93YjGwVe/+lUcddRR+OY3v4lPf/rTeOqpp3DzzTfj5ptvbvatEU15n/jEJ3D55Zdjt912w3777Yc///nPuOaaa/Bv//Zvzb41okEJruu6zb4JGhvXX389rr76amzfvh0HHXQQvv/97+OII45o9m0RTWmCIISO33777TjllFPG/X6IpruPf/zjOOigg3Dttdc2+1aIpoXf/OY3OO+88/D6669j8eLFWLduHU4//fRm3xbRlJdKpXDBBRfgF7/4BXbu3Il58+bhc5/7HC688EKoqtrs2yOqiaEUERERERERERGNO/aUIiIiIiIiIiKiccdQioiIiIiIiIiIxh1DKSIiIiIiIiIiGncMpYiIiIiIiIiIaNwxlCIiIiIiIiIionHHUIqIiIiIiIiIiMYdQykiIiIiIiIiIhp3DKWIiIiIiIiIiGjcMZQiIiIimiYEQcAvf/nLZt8GEREREcBQioiIiGh8nHLKKRAEoWo7/vjjm31rRERERE0hN/sGiIiIiKaL448/HrfffnvZmKZpTbsfIiIiomZipRQRERHRONE0DXPmzCnb2traAH9q3Y033ogTTjgB0WgUe+yxB/73f/+37PUvvvgijj32WESjUXR0dGDNmjVIp9Nl59x2223Yb7/9oGka5s6di7Vr15Y9393djX/8x39ELBbD3nvvjV//+tfj8M6JiIiIqjGUIiIiIpogLrjgAnzyk5/E888/j5NOOgmf/exn8fLLLwMAMpkMVq5ciba2Njz99NP46U9/igcffLAsdLrxxhtx1llnYc2aNXjxxRfx61//GnvttVfZ17jkkkvw6U9/Gi+88AJWrVqFk046Cb29veP+XomIiIgE13XdZt8EERER0VR3yimn4Ic//CEikUjZ+Pnnn4/zzz8fgiDgjDPOwI033lh87sMf/jAOOeQQ/OAHP8Att9yCr3/969i6dSvi8TgA4N5778UnPvEJbNu2DbNnz8b8+fNx6qmn4rLLLgu9B0EQ8F//9V+49NJLAT/oSiQSuO+++9jbioiIiMYde0oRERERjZO/+Zu/KQudAKC9vb24f+SRR5Y9d+SRR+K5554DALz88ss48MADi4EUABx99NFwHAevvvoqBEHAtm3bsGzZskHv4YADDijux+NxtLS0YOfOnSN+b0RERERDxVCKiIiIaJzE4/Gq6XSjJRqNNnSeoihlx4IgwHGcMbknIiIiosGwpxQRERHRBPHHP/6x6nifffYBAOyzzz54/vnnkclkis8/9thjEEURS5YsQTKZxO67745NmzaN+30TERERDQcrpYiIiIjGia7r2L59e9mYLMvo7OwEAPz0pz/F0qVLccwxx+BHP/oRnnrqKdx6660AgJNOOgkXXXQRVq9ejYsvvhhdXV340pe+hH/913/F7NmzAQAXX3wxzjjjDMyaNQsnnHACUqkUHnvsMXzpS19qwrslIiIiGhxDKSIiIqJxsmHDBsydO7dsbMmSJXjllVcAf2W8e+65B2eeeSbmzp2L//mf/8G+++4LAIjFYrj//vvxla98BYcddhhisRg++clP4pprrilea/Xq1cjn8/jud7+L//iP/0BnZyc+9alPjfO7JCIiImoMV98jIiIimgAEQcAvfvELnHjiic2+FSIiIqJxwZ5SREREREREREQ07hhKERERERERERHRuGNPKSIiIqIJgB0ViIiIaLphpRQREREREREREY07hlJERERERERERDTuGEoREREREREREdG4YyhFRERERERERETjjqEUERERERERERGNO4ZSREREREREREQ07hhKERERERERERHRuGMoRURERERERERE446hFBERERERERERjbv/HzyKPR/zxpEsAAAAAElFTkSuQmCC", "text/plain": [ "