TIF_E41211115_lstm-quiz-gen.../old/NER/test_ner.py

42 lines
1.0 KiB
Python

import json
import numpy as np
import pickle
from keras.models import load_model
from keras.preprocessing.sequence import pad_sequences
model = load_model("NER/ner_bilstm_model.keras")
with open("NER/word2idx.pkl", "rb") as f:
word2idx = pickle.load(f)
with open("NER/tag2idx.pkl", "rb") as f:
tag2idx = pickle.load(f)
idx2tag = {i: t for t, i in tag2idx.items()}
print(idx2tag)
maxlen = 100
def predict_sentence(sentence):
tokens = sentence.strip().split()
x = [word2idx.get(w.lower(), word2idx["UNK"]) for w in tokens]
x = pad_sequences([x], maxlen=maxlen, padding="post", value=word2idx["PAD"])
preds = model.predict(x)
pred_labels = np.argmax(preds[0], axis=-1)
print("Hasil prediksi NER:")
for token, label_idx in zip(tokens, pred_labels[: len(tokens)]):
print(f"{token}\t{idx2tag[label_idx]}")
if __name__ == "__main__":
try:
sentence = "saat ini indonesia adalah negara yang sangat indah"
predict_sentence(sentence)
except KeyboardInterrupt:
print("\n\nSelesai.")