TIF_E41211115_lstm-quiz-gen.../training_model.ipynb

520 lines
157 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 112,
"metadata": {},
"outputs": [],
"source": [
"\n",
"import numpy as np\n",
"import re\n",
"import string\n",
"import nltk\n",
"from nltk.corpus import stopwords\n",
"from nltk.tokenize import word_tokenize\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
"from tensorflow.keras.models import Model\n",
"from tensorflow.keras.layers import Input, Embedding, LSTM, Dense\n",
"\n",
"from Sastrawi.Stemmer.StemmerFactory import StemmerFactory\n",
"from sklearn.model_selection import train_test_split\n",
"import pickle\n",
"\n",
"from sklearn.metrics import classification_report, accuracy_score, precision_score, recall_score\n",
"import nltk"
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[nltk_data] Downloading package stopwords to /home/akeon/nltk_data...\n",
"[nltk_data] Package stopwords is already up-to-date!\n",
"[nltk_data] Downloading package punkt to /home/akeon/nltk_data...\n",
"[nltk_data] Package punkt is already up-to-date!\n",
"[nltk_data] Downloading package punkt_tab to /home/akeon/nltk_data...\n",
"[nltk_data] Package punkt_tab is already up-to-date!\n",
"[nltk_data] Downloading package wordnet to /home/akeon/nltk_data...\n",
"[nltk_data] Package wordnet is already up-to-date!\n"
]
},
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 113,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# download assets\n",
"nltk.download(\"stopwords\")\n",
"nltk.download(\"punkt\")\n",
"nltk.download(\"punkt_tab\")\n",
"nltk.download(\"wordnet\")"
]
},
{
"cell_type": "code",
"execution_count": 114,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total Context: 54\n",
"Total Possibility Questions: 97\n",
"Total Fill in the Blank Questions: 24\n",
"Total Multiple Choice Questions: 29\n",
"Total True/False Questions: 44\n"
]
}
],
"source": [
"import json\n",
"from collections import defaultdict\n",
"\n",
"# path dataset\n",
"file_path = \"dataset/training_dataset.json\"\n",
"\n",
"with open(file_path, \"r\", encoding=\"utf-8\") as file:\n",
" dataset = json.load(file)\n",
"\n",
"total_context = len(dataset)\n",
"\n",
"total_question_posibility = sum(len(entry[\"question_posibility\"]) for entry in dataset)\n",
"\n",
"question_type_counts = defaultdict(int)\n",
"for entry in dataset:\n",
" for question in entry[\"question_posibility\"]:\n",
" question_type_counts[question[\"type\"]] += 1\n",
"\n",
"print(f\"Total Context: {total_context}\")\n",
"print(f\"Total Possibility Questions: {total_question_posibility}\")\n",
"print(f\"Total Fill in the Blank Questions: {question_type_counts.get('fill_in_the_blank', 0)}\")\n",
"print(f\"Total Multiple Choice Questions: {question_type_counts.get('multiple_choice', 0)}\")\n",
"print(f\"Total True/False Questions: {question_type_counts.get('true_false', 0)}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 115,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data processing complete!\n",
"Samples: 97\n"
]
}
],
"source": [
"# Text Preprocessing\n",
"stop_words = set(stopwords.words(\"indonesian\")) \n",
"factory = StemmerFactory()\n",
"stemmer = factory.create_stemmer()\n",
"\n",
"with open(\"normalize_text/normalize.json\", \"r\", encoding=\"utf-8\") as file:\n",
" normalization_dict = json.load(file)\n",
"\n",
"\n",
"def text_preprocessing(text):\n",
" #doing lower case \n",
" text = text.lower()\n",
" \n",
" # remove symbol and read mark\n",
" text = text.translate(str.maketrans(\"\", \"\", string.punctuation))\n",
" \n",
" # remove blank space\n",
" text = re.sub(r\"\\s+\", \" \", text).strip()\n",
" \n",
" # word tokenize \n",
" tokens = word_tokenize(text)\n",
" \n",
" \n",
" # normalassi kata\n",
" tokens = [normalization_dict[word] if word in normalization_dict else word for word in tokens] \n",
" \n",
" \n",
" # Lemmatization using Sastrawi (stemming in Indonesian)\n",
" tokens = [stemmer.stem(word) for word in tokens]\n",
" \n",
" # stopword removal\n",
" tokens = [word for word in tokens if word not in stop_words] \n",
" \n",
" return tokens\n",
"\n",
"# text processing all data training\n",
"contexts = []\n",
"questions = []\n",
"correct_answers = []\n",
"wrong_answers = []\n",
"question_types = []\n",
"\n",
"for entry in dataset:\n",
" processed_context = text_preprocessing(entry[\"context\"])\n",
" \n",
" for qa in entry[\"question_posibility\"]:\n",
" processed_question = text_preprocessing(qa[\"question\"])\n",
" processed_answer = text_preprocessing(qa[\"answer\"])\n",
" \n",
" contexts.append(processed_context)\n",
" questions.append(processed_question)\n",
" correct_answers.append(processed_answer)\n",
" question_types.append(qa[\"type\"])\n",
"\n",
" if qa[\"type\"] == \"multiple_choice\":\n",
" incorrect_options = [opt for opt in qa[\"options\"] if opt != qa[\"answer\"]]\n",
" wrong_answers.append(incorrect_options)\n",
" else:\n",
" wrong_answers.append([])\n",
"\n",
"tokenizer = Tokenizer(oov_token=\"<OOV>\")\n",
"tokenizer.fit_on_texts(contexts + questions + correct_answers)\n",
"\n",
"\n",
"context_sequences = tokenizer.texts_to_sequences(contexts)\n",
"question_sequences = tokenizer.texts_to_sequences(questions)\n",
"answer_sequences = tokenizer.texts_to_sequences(correct_answers)\n",
"\n",
"MAX_LENGTH = 100\n",
"context_padded = pad_sequences(context_sequences, maxlen=MAX_LENGTH, padding=\"post\", truncating=\"post\")\n",
"question_padded = pad_sequences(question_sequences, maxlen=MAX_LENGTH, padding=\"post\", truncating=\"post\")\n",
"answer_padded = pad_sequences(answer_sequences, maxlen=MAX_LENGTH, padding=\"post\", truncating=\"post\")\n",
"\n",
"question_type_dict = {\"fill_in_the_blank\": 0, \"true_false\": 1, \"multiple_choice\": 2}\n",
"question_type_labels = np.array([question_type_dict[q_type] for q_type in question_types])\n",
"\n",
"print(\"Data processing complete!\")\n",
"print(\"Samples:\", context_padded.shape[0]) \n"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training samples: 77\n",
"Testing samples: 10\n",
"Validation samples: 10\n"
]
}
],
"source": [
"# split text for testing 8:2\n",
"context_train, context_temp, question_train, question_temp, answer_train, answer_temp, qtype_train, qtype_temp = train_test_split(\n",
" context_padded, question_padded, answer_padded, question_type_labels, test_size=0.2, random_state=42\n",
")\n",
"\n",
"# split dataset testing and validation 5:5\n",
"context_test, context_val, question_test, question_val, answer_test, answer_val, qtype_test, qtype_val = train_test_split(\n",
" context_temp, question_temp, answer_temp, qtype_temp, test_size=0.5, random_state=42\n",
")\n",
"\n",
"print(\"Training samples:\", context_train.shape[0])\n",
"print(\"Testing samples:\", context_test.shape[0])\n",
"print(\"Validation samples:\", context_val.shape[0])\n"
]
},
{
"cell_type": "code",
"execution_count": 120,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/10\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 1s/step - answer_output_accuracy: 0.0344 - answer_output_loss: 6.2090 - loss: 13.5239 - question_output_accuracy: 0.0000e+00 - question_output_loss: 6.2154 - question_type_output_accuracy: 0.3004 - question_type_output_loss: 1.0991 - val_answer_output_accuracy: 0.2287 - val_answer_output_loss: 6.1669 - val_loss: 13.4815 - val_question_output_accuracy: 0.0050 - val_question_output_loss: 6.2101 - val_question_type_output_accuracy: 0.3125 - val_question_type_output_loss: 1.1046\n",
"Epoch 2/10\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 526ms/step - answer_output_accuracy: 0.2277 - answer_output_loss: 6.1421 - loss: 13.4196 - question_output_accuracy: 0.0113 - question_output_loss: 6.1984 - question_type_output_accuracy: 0.6445 - question_type_output_loss: 1.0780 - val_answer_output_accuracy: 0.9856 - val_answer_output_loss: 6.0462 - val_loss: 13.3570 - val_question_output_accuracy: 0.0081 - val_question_output_loss: 6.2031 - val_question_type_output_accuracy: 0.3125 - val_question_type_output_loss: 1.1076\n",
"Epoch 3/10\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 528ms/step - answer_output_accuracy: 0.9837 - answer_output_loss: 5.9539 - loss: 13.1879 - question_output_accuracy: 0.0171 - question_output_loss: 6.1802 - question_type_output_accuracy: 0.5799 - question_type_output_loss: 1.0503 - val_answer_output_accuracy: 0.9856 - val_answer_output_loss: 5.5439 - val_loss: 12.8565 - val_question_output_accuracy: 0.0087 - val_question_output_loss: 6.1941 - val_question_type_output_accuracy: 0.5000 - val_question_type_output_loss: 1.1185\n",
"Epoch 4/10\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 533ms/step - answer_output_accuracy: 0.9839 - answer_output_loss: 5.1228 - loss: 12.2985 - question_output_accuracy: 0.0137 - question_output_loss: 6.1532 - question_type_output_accuracy: 0.5164 - question_type_output_loss: 1.0060 - val_answer_output_accuracy: 0.9856 - val_answer_output_loss: 3.2875 - val_loss: 10.6708 - val_question_output_accuracy: 0.0050 - val_question_output_loss: 6.1772 - val_question_type_output_accuracy: 0.5000 - val_question_type_output_loss: 1.2060\n",
"Epoch 5/10\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 520ms/step - answer_output_accuracy: 0.9835 - answer_output_loss: 2.7939 - loss: 9.9397 - question_output_accuracy: 0.0056 - question_output_loss: 6.0862 - question_type_output_accuracy: 0.5263 - question_type_output_loss: 1.0473 - val_answer_output_accuracy: 0.9856 - val_answer_output_loss: 1.1028 - val_loss: 9.0601 - val_question_output_accuracy: 0.0012 - val_question_output_loss: 6.1277 - val_question_type_output_accuracy: 0.5000 - val_question_type_output_loss: 1.8296\n",
"Epoch 6/10\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 541ms/step - answer_output_accuracy: 0.9828 - answer_output_loss: 1.2315 - loss: 8.3718 - question_output_accuracy: 0.0016 - question_output_loss: 5.8773 - question_type_output_accuracy: 0.5055 - question_type_output_loss: 1.2478 - val_answer_output_accuracy: 0.9856 - val_answer_output_loss: 0.6227 - val_loss: 8.6339 - val_question_output_accuracy: 0.0012 - val_question_output_loss: 6.0831 - val_question_type_output_accuracy: 0.1250 - val_question_type_output_loss: 1.9281\n",
"Epoch 7/10\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 492ms/step - answer_output_accuracy: 0.9842 - answer_output_loss: 0.7375 - loss: 7.4714 - question_output_accuracy: 9.6824e-04 - question_output_loss: 5.5770 - question_type_output_accuracy: 0.4612 - question_type_output_loss: 1.1578 - val_answer_output_accuracy: 0.9856 - val_answer_output_loss: 0.5788 - val_loss: 7.9850 - val_question_output_accuracy: 0.0012 - val_question_output_loss: 6.1148 - val_question_type_output_accuracy: 0.1250 - val_question_type_output_loss: 1.2913\n",
"Epoch 8/10\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 455ms/step - answer_output_accuracy: 0.9847 - answer_output_loss: 0.6731 - loss: 6.9870 - question_output_accuracy: 0.0011 - question_output_loss: 5.3263 - question_type_output_accuracy: 0.5596 - question_type_output_loss: 0.9895 - val_answer_output_accuracy: 0.9856 - val_answer_output_loss: 0.6030 - val_loss: 7.8753 - val_question_output_accuracy: 0.0012 - val_question_output_loss: 6.2693 - val_question_type_output_accuracy: 0.5000 - val_question_type_output_loss: 1.0031\n",
"Epoch 9/10\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 458ms/step - answer_output_accuracy: 0.9836 - answer_output_loss: 0.7391 - loss: 6.9393 - question_output_accuracy: 0.0017 - question_output_loss: 5.0887 - question_type_output_accuracy: 0.4841 - question_type_output_loss: 1.1123 - val_answer_output_accuracy: 0.9856 - val_answer_output_loss: 0.6056 - val_loss: 8.1353 - val_question_output_accuracy: 0.0019 - val_question_output_loss: 6.4616 - val_question_type_output_accuracy: 0.5000 - val_question_type_output_loss: 1.0682\n",
"Epoch 10/10\n",
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 454ms/step - answer_output_accuracy: 0.9847 - answer_output_loss: 0.6727 - loss: 6.6312 - question_output_accuracy: 0.0018 - question_output_loss: 4.9620 - question_type_output_accuracy: 0.5258 - question_type_output_loss: 1.0078 - val_answer_output_accuracy: 0.9856 - val_answer_output_loss: 0.5869 - val_loss: 8.5074 - val_question_output_accuracy: 0.0037 - val_question_output_loss: 6.6207 - val_question_type_output_accuracy: 0.3750 - val_question_type_output_loss: 1.2998\n"
]
}
],
"source": [
"\n",
"VOCAB_SIZE = len(tokenizer.word_index) + 1\n",
"EMBEDDING_DIM = 300\n",
"LSTM_UNITS = 256\n",
"BATCH_SIZE = 32\n",
"EPOCHS = 10\n",
"\n",
"context_input = Input(shape=(MAX_LENGTH,), name=\"context_input\")\n",
"context_embedding = Embedding(input_dim=VOCAB_SIZE, output_dim=EMBEDDING_DIM, mask_zero=True, name=\"context_embedding\")(context_input)\n",
"encoder_lstm = LSTM(LSTM_UNITS, return_state=True, name=\"encoder_lstm\")\n",
"encoder_output, state_h, state_c = encoder_lstm(context_embedding)\n",
"\n",
"# Question Decoder\n",
"question_decoder_input = Input(shape=(MAX_LENGTH,), name=\"question_decoder_input\")\n",
"question_embedding = Embedding(input_dim=VOCAB_SIZE, output_dim=EMBEDDING_DIM, mask_zero=True, name=\"question_embedding\")(question_decoder_input)\n",
"question_lstm = LSTM(LSTM_UNITS, return_sequences=True, return_state=True, name=\"question_lstm\")\n",
"question_output, _, _ = question_lstm(question_embedding, initial_state=[state_h, state_c])\n",
"question_dense = Dense(VOCAB_SIZE, activation=\"softmax\", name=\"question_output\")(question_output)\n",
"\n",
"# Answer Decoder\n",
"answer_lstm = LSTM(LSTM_UNITS, return_sequences=True, return_state=True, name=\"answer_lstm\")\n",
"answer_output, _, _ = answer_lstm(context_embedding, initial_state=[state_h, state_c])\n",
"answer_dense = Dense(VOCAB_SIZE, activation=\"softmax\", name=\"answer_output\")(answer_output)\n",
"\n",
"type_dense = Dense(128, activation=\"relu\")(encoder_output)\n",
"question_type_output = Dense(3, activation=\"softmax\", name=\"question_type_output\")(type_dense)\n",
"\n",
"model = Model(\n",
" inputs=[context_input, question_decoder_input],\n",
" outputs=[question_dense, answer_dense, question_type_output]\n",
")\n",
"\n",
"model.compile(\n",
" optimizer=\"adam\",\n",
" loss={\"question_output\": \"sparse_categorical_crossentropy\",\n",
" \"answer_output\": \"sparse_categorical_crossentropy\",\n",
" \"question_type_output\": \"sparse_categorical_crossentropy\"},\n",
" metrics={\"question_output\": [\"accuracy\"],\n",
" \"answer_output\": [\"accuracy\"],\n",
" \"question_type_output\": [\"accuracy\"]}\n",
")\n",
"\n",
"data_model = model.fit(\n",
" [context_train, question_train],\n",
" {\"question_output\": question_train, \"answer_output\": answer_train, \"question_type_output\": qtype_train},\n",
" batch_size=BATCH_SIZE,\n",
" epochs=EPOCHS,\n",
" validation_split=0.2\n",
")\n",
"\n",
"model.save(\"lstm_multi_output_model.keras\")\n",
"with open(\"tokenizer.pkl\", \"wb\") as handle:\n",
" pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)\n"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FOXaBvB7dje76b0XUiC00EtoQqgiKgJKEewCegQOKIqCBcEjKiq2g+hnA1QEpFiODUgMvQUw9JKQ3ntPts73xyYLIQkE2GSSzf27rr2S7M7OPLMITu553+cVRFEUQURERERERERE1IxkUhdARERERERERERtD0MpIiIiIiIiIiJqdgyliIiIiIiIiIio2TGUIiIiIiIiIiKiZsdQioiIiIiIiIiImh1DKSIiIiIiIiIianYMpYiIiIiIiIiIqNkxlCIiIiIiIiIiombHUIqIiIiIiIiIiJodQykianEEQcCyZctu+n1JSUkQBAHr1q1rkrqIiIiILA2vu4hISgyliKhe69atgyAIEAQB+/fvr/O6KIoICAiAIAi49957JanRHP744w8IggBfX18YDAapyyEiIqI2yJKvu3bv3g1BELB161apSyGiFoihFBFdl7W1NX744Yc6z+/ZswdpaWlQqVSS1GUuGzZsQFBQEDIzM/H3339LXQ4RERG1YZZ+3UVEdC2GUkR0XXfffTe2bNkCnU5X6/kffvgBffv2hbe3t2S13a7y8nL88ssvWLhwIXr37o0NGzZIXVKDysvLpS6BiIiImpglX3cREdWHoRQRXdf06dORn5+PXbt2mZ7TaDTYunUrZsyYUe97ysvL8fzzzyMgIAAqlQqdOnXC+++/D1EUa22nVqvx3HPPwcPDAw4ODrjvvvuQlpZW7z7T09Px5JNPwsvLCyqVCmFhYfjmm29u69x++uknVFZWYsqUKXjwwQexfft2VFVV1dmuqqoKy5YtQ8eOHWFtbQ0fHx/cf//9uHz5smkbg8GAjz/+GN27d4e1tTU8PDxw11134dixY8AN+i5c28th2bJlEAQB586dw4wZM+Di4oI77rgDAHDq1Ck8/vjjCAkJgbW1Nby9vfHkk08iPz+/3s9s5syZ8PX1hUqlQnBwMJ555hloNBokJCRAEAR8+OGHdd538OBBCIKAjRs33sanS0RERDfLkq+7biQhIQFTpkyBq6srbG1tMXDgQPz+++91tvvvf/+LsLAw2NrawsXFBf369as1uqy0tBTPPvssgoKCoFKp4OnpiTFjxuDEiRNNWj8R3RqF1AUQUcsWFBSEQYMGYePGjRg3bhwA4M8//0RxcTEefPBBfPLJJ7W2F0UR9913H6KjozFz5kz06tULO3bswKJFi5Cenl4rBJk1axa+//57zJgxA4MHD8bff/+Ne+65p04N2dnZGDhwIARBwLx58+Dh4YE///wTM2fORElJCZ599tlbOrcNGzZgxIgR8Pb2xoMPPojFixfjf//7H6ZMmWLaRq/X495770VUVBQefPBBLFiwAKWlpdi1axfOnDmD9u3bAwBmzpyJdevWYdy4cZg1axZ0Oh327duHw4cPo1+/frdU35QpUxAaGoq33nrLdGG5a9cuJCQk4IknnoC3tzfOnj2LL774AmfPnsXhw4chCAIAICMjA+Hh4SgqKsJTTz2Fzp07Iz09HVu3bkVFRQVCQkIwZMgQbNiwAc8991ydz8XBwQETJky4pbqJiIjo1ljyddf1ZGdnY/DgwaioqMD8+fPh5uaG9evX47777sPWrVsxadIkAMCXX36J+fPnY/LkyViwYAGqqqpw6tQpHDlyxBTa/etf/8LWrVsxb948dO3aFfn5+di/fz/Onz+PPn36mL12IrpNIhFRPdauXSsCEGNiYsTVq1eLDg4OYkVFhSiKojhlyhRxxIgRoiiKYmBgoHjPPfeY3vfzzz+LAMQ333yz1v4mT54sCoIgxsfHi6IoirGxsSIAcc6cObW2mzFjhghAfP31103PzZw5U/Tx8RHz8vJqbfvggw+KTk5OproSExNFAOLatWtveH7Z2dmiQqEQv/zyS9NzgwcPFidMmFBru2+++UYEIH7wwQd19mEwGERRFMW///5bBCDOnz+/wW2uV9u15/v666+LAMTp06fX2bbmXK+2ceNGEYC4d+9e03OPPvqoKJPJxJiYmAZr+r//+z8RgHj+/HnTaxqNRnR3dxcfe+yxOu8jIiKipmHJ113R0dEiAHHLli0NbvPss8+KAMR9+/aZnistLRWDg4PFoKAgUa/Xi6IoihMmTBDDwsKuezwnJydx7ty5192GiFoOTt8johuaOnUqKisr8dtvv6G0tBS//fZbg0PI//jjD8jlcsyfP7/W888//zxEUcSff/5p2g5Ane2uvfsmiiK2bduG8ePHQxRF5OXlmR5jx45FcXHxLQ3H3rRpE2QyGR544AHTc9OnT8eff/6JwsJC03Pbtm2Du7s7/v3vf9fZR82opG3btkEQBLz++usNbnMr/vWvf9V5zsbGxvR9VVUV8vLyMHDgQAAwfQ4GgwE///wzxo8fX+8orZqapk6dCmtr61q9tHbs2IG8vDw8/PDDt1w3ERER3TpLvO66kT/++APh4eGmdgUAYG9vj6eeegpJSUk4d+4cAMDZ2RlpaWmIiYlpcF/Ozs44cuQIMjIyzF4nEZkfQykiuiEPDw+MHj0aP/zwA7Zv3w69Xo/JkyfXu21ycjJ8fX3h4OBQ6/kuXbqYXq/5KpPJTNPfanTq1KnWz7m5uSgqKsIXX3wBDw+PWo8nnngCAJCTk3PT5/T9998jPDwc+fn5iI+PR3x8PHr37g2NRoMtW7aYtrt8+TI6deoEhaLh2c6XL1+Gr68vXF1db7qO6wkODq7zXEFBARYsWAAvLy/Y2NjAw8PDtF1xcTFQ/ZmVlJSgW7du192/s7Mzxo8fX6sPw4YNG+Dn54eRI0ea9VyIiIiocSzxuutGkpOT69RS33m89NJLsLe3R3h4OEJDQzF37lwcOHCg1nveffddnDlzBgEBAQgPD8eyZcuQkJBg9pqJyDzYU4qIGmXGjBmYPXs2srKyMG7cODg7OzfLcQ0GAwDg4YcfxmOPPVbvNj169LipfcbFxZnusIWGhtZ5fcOGDXjqqaduqd6GNDRiSq/XN/ieq0dF1Zg6dSoOHjyIRYsWoVevXrC3t4fBYMBdd91l+qxuxqOPPootW7bg4MGD6N69O3799VfMmTMHMhnvWRAREUnFkq67zKlLly64ePEifvvtN/z111/Ytm0b1qxZg6VLl2L58uVA9bXS0KFD8dNPP2Hnzp147733sHLlSmzfvt3Up4uIWg6GUkTUKJMmTcLTTz+Nw4cPY/PmzQ1uFxgYiMjISJSWlta6a3fhwgXT6zVfDQaDaSRSjYsXL9baX80KMXq9HqNHjzbLuWzYsAFWVlb47rvvIJfLa722f/9+fPLJJ0hJSUG7du3Qvn17HDlyBFqtFlZWVvXur3379tixYwcKCgoaHC3l4uICACgqKqr1fM2dv8YoLCxEVFQUli9fjqVLl5qej4uLq7Wdh4cHHB0dcebMmRvu86677oKHhwc2bNiAAQMGoKKiAo888kijayIiIiLzs6TrrsYIDAysUwvqOQ8AsLOzw7Rp0zBt2jRoNBrcf//9WLFiBZYsWQJra2sAgI+PD+bMmYM5c+YgJycHffr0wYoVKxhKEbVAvBVORI1ib2+Pzz77DMuWLcP48eMb3O7uu++GXq/H6tWraz3/4YcfQhAE08VAzddrV5H56KOPav0sl8vxwAMPYNu2bfWGLLm5uTd9Lhs2bMDQoUMxbdo0TJ48udZj0aJFAICNGzcCAB544AHk5eXVOR9U912o2UYURdMduvq2cXR0hLu7O/bu3Vvr9TVr1jS67poA7dolnq/9zGQyGSZOnIj//e9/OHbsWIM1AYBCocD06dPx448/Yt26dejevbukd0CJiIjIsq67GuPuu+/G0aNHcejQIdNz5eXl+OKLLxAUFISuXbsCAPLz82u9T6lUomvXrhBFEVqtFnq93tTOoIanpyd8fX2hVqubpHYiuj0cKUVEjdbQMO6rjR8/HiNGjMArr7yCpKQk9OzZEzt37sQvv/yCZ5991tTLoFevXpg+fTrWrFmD4uJiDB48GFFRUYiPj6+zz3feeQfR0dEYMGAAZs+eja5du6KgoAAnTpxAZGQkCgoKGn0OR44cQXx8PObNm1fv635+fujTpw82bNiAl156CY8++ii+/fZbLFy4EEePHsXQoUNRXl6OyMhIzJkzBxMmTMCIESPwyCOP4JNPPkFcXJxpKt2+ffswYsQI07FmzZqFd955B7NmzUK/fv2wd+9eXLp0qdG1Ozo6YtiwYXj33Xeh1Wrh5+eHnTt3IjExsc62b731Fnbu3ImIiAg89dRT6NKlCzIzM7Flyxbs37+/1jSARx99FJ988gmio6OxcuXKRtdDRERETccSrruutm3bNtPIp2vPc/Hixdi4cSPGjRuH+fPnw9XVFevXr0diYiK2bdtmaitw5513wtvbG0OGDIGXlxfOnz+P1atX45577oGDgwOKiorg7++PyZMno2fPnrC3t0dkZCRiYmKwatWqW6qbiJqY1Mv/EVHLdPXSxNdz7dLEYvUSvs8995zo6+srWllZiaGhoeJ7770nGgyGWttVVlaK8+fPF93c3EQ7Oztx/PjxYmpqap2liUVRFLOzs8W5c+eKAQEBopWVlejt7S2OGjVK/OKLL0zbNGZp4n//+98iAPHy5csNbrNs2TIRgHjy5ElRFEWxoqJCfOWVV8Tg4GDTsSdPnlxrHzqdTnzvvffEzp07i0qlUvTw8BDHjRsnHj9+3LRNRUWFOHPmTNHJyUl0cHAQp06dKubk5NQ539dff10EIObm5tapLS0tTZw0aZLo7OwsOjk5iVOmTBEzMjLq/cySk5PFRx99VPTw8BBVKpUYEhIizp07V1Sr1XX2GxYWJspkMjEtLa3Bz4WIiIiahqVed4miKEZHR4sAGnzs27dPFEVRvHz5sjh58mTR2dlZtLa2FsPDw8Xffvut1r7+7//+Txw2bJjo5uYmqlQqsX379uKiRYvE4uJiURRFUa1Wi4sWLRJ79uwpOjg4iHZ2dmLPnj3FNWvWXLdGIpKOIF47D4SIiNqc3r17w9XVFVFRUVKXQkREREREbQR7ShERtXHHjh1DbGwsHn30UalLISIiIiKiNoQjpYiI2qgzZ87g+PHjWLVqFfLy8pCQkGBatYaIiIiIiKipcaQUEVEbtXXrVjzxxBPQarXYuHEjAykiIiIiImpWHClFRERERERERETNjiOliIiIiIiIiIio2TGUIiIiIiIiIiKiZqeQuoDmZjAYkJGRAQcHBwiCIHU5RERE1EqJoojS0lL4+vpCJrOM+3y8TiIiIiJzaOx1UpsLpTIyMhAQECB1GURERGQhUlNT4e/vL3UZZsHrJCIiIjKnG10ntblQysHBAaj+YBwdHaUuh4iIiFqpkpISBAQEmK4tLAGvk4iIiMgcGnud1OZCqZqh6I6OjrzYIiIiottmSdPceJ1ERERE5nSj6yTLaIBAREREREREREStCkMpIiIiIiIiIiJqdgyliIiIiIiIiIio2TGUIiIiIiIiIiKiZsdQioiIiIiIiIiImh1DKSIiIiIiIiIianYMpYiIiIiIiIiIqNkxlCIiIiIiIiIiombHUIqIiIiIiIiIiJqdpKHU3r17MX78ePj6+kIQBPz88883fM/u3bvRp08fqFQqdOjQAevWrWuWWomIiIiIiIiIyHwkDaXKy8vRs2dPfPrpp43aPjExEffccw9GjBiB2NhYPPvss5g1axZ27NjR5LUSEREREREREZH5KKQ8+Lhx4zBu3LhGb//5558jODgYq1atAgB06dIF+/fvx4cffoixY8c2YaVERERERERERGROraqn1KFDhzB69Ohaz40dOxaHDh2SrCYiIiIiIiIiIrp5ko6UullZWVnw8vKq9ZyXlxdKSkpQWVkJGxubOu9Rq9VQq9Wmn0tKSpqlViIiIiIiIiIialirGil1K95++204OTmZHgEBAVKXRERERERERETU5rWqUMrb2xvZ2dm1nsvOzoajo2O9o6QAYMmSJSguLjY9UlNTm6laIiIiIiIiIiJqSKuavjdo0CD88ccftZ7btWsXBg0a1OB7VCoVVCpVM1RHRERERERERESNJelIqbKyMsTGxiI2NhYAkJiYiNjYWKSkpADVo5weffRR0/b/+te/kJCQgBdffBEXLlzAmjVr8OOPP+K5556T7ByIiIiIiIiIiOjmSRpKHTt2DL1790bv3r0BAAsXLkTv3r2xdOlSAEBmZqYpoAKA4OBg/P7779i1axd69uyJVatW4auvvsLYsWMlOwciIiIiIiIiIrp5giiKotRFNKeSkhI4OTmhuLgYjo6OUpfTapT+HY38r76CqNdJXQoREVGjKVzdEPDZmibZtyVeU1jiOREREVG18nwgLQZIPWL86ugL3P9FkxyqsdcUraqnFEkn7/8+R9XJU1KXQUREdFOKnRTgurtERETU5hj0QO4FYwCVWh1EFVyuvY29FyCKgCBIVSVDKboxURShSUgEAHi/vhQKL2+pSzILvajH87sXQi/qpS6FiIiaiJ2dEwZKXQQRERFRU6ssAtKPAalHjY+0Y4CmtO527p2AgP6AfzgQMECKSmthKEU3pM/Ph6G0FBAEOE2aBJm1tdQlmUVySTKOpomwltti4z0bIUiYDhMRUdOQC3KpSyAiIiIyL4MByI8H0o5eGQmVewHANd2ZlPaAX18goDqA8usL2LpKVXW9GErRDWkSjaOkrHx9LSaQAoDEYuN5BTkFoYNLB6nLISIiIiIiIqpLXQakH68eAVU9EqqqqO52LsHG8Cmgv/GrZ1dA1rJv0DGUohtSV4dSyuBgqUsxq5pQKtjRss6LiIiIiIiIWilRBAoTr/SBSjsKZJ8FREPt7RTWxpFP/v2NI6H8wwF7D6mqvmUMpeiGNIlJgCWHUk6WdV5ERERERETUSmgrgYx/rkzDSzsKlOfW3c4p4Er4FBAOeHcH5FZSVGxWDKXohjSmkVJBUpdiVgyliIiIiIiIqNmIIlCcdmUKXupRIOsUYNDV3k6uBHx6Gqfg1YyEcvSVquomxVCKbqgmlFKFhEhditmIooiE4gSAoRQRERERERE1BZ0ayDxVuyF5aUbd7ey9r/SB8g83BlJWltPP+XoYStF1iRoNNGlpgIVN3ytUF6JEUwIBAto5tpO6HCIiIiIiImrtSrOqR0AdAdJigIxYQK+uvY0gN069CxhQvSpeuHFqXhtdDZ6hFF2XJjUV0Oshs7WFwtNT6nLMJqHIOErK194XNgobqcshIiIiIiKi1kSvBbLP1G5IXpRSdztbtyt9oALCAd/egNJOiopbJIZSdF2mflJBQRAsKLlNLDGeV5CTZfXJIiIiIiIioiZQnl+7F1TGCUBbcc1GAuAVVt0HqnoklGtImx0F1RgMpei61KYm55YzdQ9XNzl3tKzzIiIiIiIiIjMozwMSdgMJ0UDyIaDgct1trJ2MAVTNSCi/voC1oxTVtloMpei6NIlJgCWHUmxyTkRERERERNoqIPUwcDkauPy3cVW8a7l3qt2Q3L0jIJNJUa3FYChF12WavhdsWdPcakKpECfLWVGQiIiIiIiIGkkUgZxzxgDqcjSQfBDQVdbexqsb0H4EEDQM8O8H2LpKVa3FYihF11UTSqlCLCe8qdJVIaPMuAwnR0oRERERERG1EaVZxil5l6ON0/LKsmu/bu9tDKHajwRChgP2lrPYV0vFUIoapCsshL6oCACgDAyUuhyzSS5JhggRjkpHuFoz6SYiIiIiIrJImgog5WD1lLxoIOds7dcVNkDQkOoQagTg2YVNyZsZQylqUM0oKYWPD2S2tlKXYzY1K+8FOwVb1IqCREREREREbZrBYOwFlVAdQqUcAvSaqzYQAJ+eV0ZDBQwAFCoJCyaGUtQg09Q9C+0nxal7RERERERErVxxenUI9bdxal5Ffu3XHf2B9sONIVTwcMDOTapKqR4MpahBpibnQZYV3jCUIiIiIiIiaqXUZUDygSsNyvMu1n5daQ8EDb0yGsqtA6fktWAMpahB6sQkAIAy2LLCm6Ri43kFO1rWeREREREREVkcgx7IiAUSqkOo1KOAQXvldUEG+Pa5EkL59wfkVlJWTDeBoRQ1yDRSyoJCKYNoQFJJdSjFkVJEREREREQtT2HyVVPy9gBVRbVfdw40BlDtRwDBwwAbF6kqpdvEUIrqJep00KSmAhbWUyq7PBuVukooZAr4OfhJXQ4RERERERFVFQOJ+64EUQUJtV9XOQHBQ68EUa4hUlVKZsZQiuqlTUsDtFoI1tZQ+PhIXY7Z1PSTaufQDlYyDukkIiIiIiJqdnodkH78SgiVdgwQ9VdeF+TGaXg1IZRvH0DO+MIS8U+V6qU2NTkPgiCTSV2O2SSWsMk5ERERERFRsxJF4+inmhXyEvcC6pLa27h1AEKq+0IF3QFYO0pVLTUjhlJUL01CTT8py5m6B668R0RERERE1DwqCozhU81oqKKU2q/buADBEVdGQzm3k6pSkhBDKaqXJskY3qgsqMk5GEoRERERERE1DZ0GSIupHg0VDWT8A4iGK6/LrIB2A4GQ4cYgyqcnIJNLWTG1AAylqF5qC1x5D1eHUo6WdV5ERERERETNRhSB4lRjCJV2zPjIPAno1bW38+h8ZUpe4GBAZS9VxdRCMZSiemkSkwAAyiDLCW9KNaXIrcwFAAQ5Wda0RCIiIiIioiajLjOOfKoJodKPAWXZdbezdTdOxQsZYfzq6CtFtdSKMJSiOvQlJdDn5wMW1lOqZpSUh40HHJQOUpdDRERERETU8hgMQH5cdQBVHULlnKs9FQ8AZArAu7txlTz//oBfX8A1BBAEqSqnVoihFNWhqZ66p/DwgNzecoZXsp8UERGRtAwGEYIACPyFhYio5agoqJ6CVx1CpZ8A1MV1t3P0B/z7XQmhfHoAVjZSVEwWhKEU1WHqJxUSInUpZsVQioiISFqffrMYpbnH4ai3goNeBRsoIAgKCDIZIMggyOTGhyADZHLIZHIIsivPy6q/yuXG52UyOWRyBWQyGWRyBeRyOWQyBWRyGeRyBRRyOWRy4/ZyuQIKhfGrXCGHovp1hUJhfM2q+me5AjKZHKiuCYLc+FUmv+pn4Zqfa16XG7/W+l5RvR2DOCJqAfRaIPtM7RCqIKHudgobwK/PlRDKrx/g6CNFxWThGEpRHaZ+UhY0dQ8MpYiIiCR30XAYe3wLTD9biSI8dHp46PXw1Ouv+V5n/KrXw8EgorVHOgbIIAry6ocxxBKFK+GVWB1eCdWhliBTVH81fi/IFdWB3bXBl+JKQGYKweoJx+psq7hBkFYdzMmsALkSkNd8beB7harhbbi6FpF0itNrT8PLjAV0VXW3cwutHgFVHUJ5dgXkjAuo6fG/MqpDk2BMylWWtvJeCUMpIiIiKXUM7ouM3GPI1VegyKCGVhCQYaVAhtX1L0mVogyusIKLwQouohwuBgVcDDI46+XGrzoZnHWAtQhA1EM0GCCIBmP/E1Fv+l4Q9dVfDRBQ/VU0QGaMjExf5TBAEIxfZTDUer7OdjBADgPkgnjdc5Chph6t8Qm9OT/ZFk6Q1RNWNRRyXSf4utnvFdfZn9IBsHE2fk9kKTQVxtDp6hCqNLPudtbOV03D62fsBWXjIkXFRAylqC5NUvX0PQsKpbQGLVJLUgEAIU6WNS2RiIiotZjt+Rge04yCKjQUsgB/5OuLkVOZg9yKXORU5CCnIge5lcbvcytykVOZg1JNKTSCAVlQI0uuvu7+7a3s4WHrAU8bT3jYepi+97Q1PjxsPeBh4wGlXFnrfXqDCK3eAI3eAK3OAK1ehEZnQJXeAG31Q6Orfr36tZrn1dXfa7R6aHU66HQ66LRaaPVaaLU66PU66HVa6Kq/1+mqn9NrodfpYdBrodfrYNDrqx86GPRa4/cGPWSiHrKa4AsGyKE3hWUKGCAT6n9NXvO6KTTTV28jVr/32v0aIBcMdV5TQA8r6GEFHawEHZTQQgk9lILO+Kj+3go6KKCDlWj8WotoMI7MqG90htRqwikbZ+Mv5dd7WF+1jZUNp2SStEQRyI+vPQ0v+ywgXpN4C3LAK+xKHyj//oBbe/73Sy0GQymqRdTroUlOASwslEorTYNO1MFGYQNPW0+pyyEiImqTin76CUWbNht/UCigDAqEW2gofDt0gCo0FKoOg6DsGQBBceUStVJXibyKvFrhlSm4qsxFbkUusiuyUamrRJm2DGXFZaYp+w1xVjnXDq9sPEyhVc1zPg5usJJJP4pGbzCGYDWhmKYmINNdCcVMr+muCtB0Bqivea7yqu2u3o9pm6v3V/1clU6PSo0BVVo9KjQ6GK4/IKyaeCXIgg7K6q9W1eGVquZnU9B11c/QVYdcetjI9LBVGGAr08NGboCNTA9rmR42Mh1UgvF7Yzimr7MPBXSQizooRC3kohYygw4ygxaCQQuZXg1oKyBABDSlxkdx6s39wchVDYRXztd8veahcmQYQLemshBIP35VCHUMqCqqu52DzzXNyHsBSlspKiZqFIZSVIs2IwOiRgNBqYSVr6/U5ZhNzcVpkGMQZIJM6nKIiIjaJGVAAGx69YI6Lg6G8nJo4i9DE38ZpVdtIyiVUIaEVIdUxrDKK7QD/P16GxuiN6BcW47siuxawVWdEKsiFxqDBkXqIhSpixBXGNfg/gQIcLNxqzew8rT1hIeNcSSWq7Vrk15byGUCbJRy2Cil78skiiI0egOqNAZUaHWo1OhRqdWbvlZo9Kiq/rmi+rkq7VXfX/V8zfsKr3p/zVcTPQBt05yLQjAgxF6PYActgm3U8LdWw1tVCQ95BVxl5XBCGewMpZCri41hwNUPgw7Qq4GyLOPjZgjy2oGVdSNGaNm4ANZO7O/Tluh1QM7Z6gCqOoTKr+ffK4W1MXS6OoRy8pOiYqJbxn/ZqBZNzcp7ge0gyKW/+DEXNjknIiKSntvMmXCbOROiKEKXlQV1XBzUcfHGr/HxUMfHQ6yqgvrCBagvXKj1XsHGBqr27Y1hVWgoVKHGwErh5QVBEGBnZYcQp5DrTtMXRRElmpJa0wOvDbGyK7KRV5kHvahHXmUe8irzcL7gfIP7VAgKuNm4wd/BH0N8h2CY/zB0dOkIwQJHwwiCAJVCDpVCDic0zSgyg0GEWmeoDrl01SGXARUaXZ2Qq1JTTyBWTzh29fOVWj00OgN0ogyXSmW4VGoFoOFRJC62VvBytIaPkzW8fa3h7WCNAHsDfK2r4GNVCTd5Bez0JRCqCoHKomsCrGt+1lUap1ZV5BsfN0vleP1phtbV0xCtnaof1d+rHI1N66nlKsk0Bk/p1SFUxj+AtqLudq4hV03D6wd4dWNfNGr1GEpRLaZQKsiywhuGUkRERC2HIAiw8vGBlY8P7IcNMz0vGgzQpqcbQ6pL1UFVXBw0CQkQKytRdeYMqs6cqbUvmb19rVFVNWGV3M2tTjAkCAKcVE5wUjkh1CW0wfoMogEFVQXIrcit0+Pq6hArvzIfOlGH7IpsZFdk43j2cXzyzyfwtvNGhH8EhvkPQ7h3OKwV1k3wKVom2VUjw1ztlI14x83T6Q0oKNcgq6QKmcVVyCquQlZJ9dfq7zOLK1GlNaCwQovCCi0uZJU2uD9bpQ28HV3g7WQNb0dreDtZw8fTujrMsoGXkwrudirI9FXGoKrq2vCqoUeR8aEuNh5IXWJ8FKXc5BkLxmDKFFbV86gVZl3zUDow1LpZoghoK43BkqbM2ID86u815cZRdjUjoUrS6u5D5QT49bkSQvn1BezcpDgboibFUIpqUdeEUiGW1QycK+8RERG1fIJMBmVAAJQBAXAYOdL0vKjTQZOSUntUVVwcNElJMJSVofKff1D5zz+19iV3dq4VUtUEV3Jn5xvWIRNkcLdxh7uNO7qgS4Pb6Qw65FfmI7cyF+fyz2Ff2j4czjyMrPIsbL64GZsvboa13BoDfQZiWMAwDPMbBi87r9v8lOh2KeQyeDpaw9PRGj38699GFEWUVOqQWVJZK6y6+mtmcRWKK7Wo0OiRkFeOhLzyho8pE+BVHVgZgytn+Dh5G4MrX2OA5eVoDaWinvBHrwOq6plGWPOoCbkqCozbXf3QVQIQjcGWuhgovpVPTACsHeuOwLK+TpB1ddiltG+5fbQMemNApK0Oimoe2prvq4MkbcU131+9bUX936NRDdiMBBng2bX2NDy3UIaB1CYwlKJaNIlJAABlcJDUpZiNKIocKUVERNSKCQoFVCEhUIWEAGPvND1v0GigSUyqDqqqpwLGx0Gbkgp9UREqYmJQERNTa18KDw9TUKXs0AHW1V/l9vY3XZdCpoCXnRe87LzQzb0bpnaaiipdFY5mHcXetL3Yk7YHWeVZ2J22G7vTdgMAurh2wTD/YYjwj0CYexh7XbZQgiDAydYKTrZW6Ozt2OB2lRr9VWFVJbKK1cgqrkRmcRWyq0di5ZapoTOISC+qRHpR5XWP626vrA6ubODtpDKOtKqePujl6A0fzyDYqW7iVzidGqgquSqoKmrg+wYeuipjuFLz860QZNcJruqZblhnpJYdoNdcE/xcNeJIW37N99eGSdcGRle91hwrQlrZGh9KuysPK1tjYOfTyxhA+fYGVDf/bxCRJRBEUbyJCLf1KykpgZOTE4qLi+Ho2PD/YNqquKHDoMvNRdDmTbDp2VPqcswirzIPI34cAQECYh6OgUqukrokIiKyAJZ4TWEp52SorIQ6IcE4mio+HlVxcdDExUObkdHgexS+PldNAQyFqkMoVO1DILOxueU6RFHEpcJLpoDqVO4piFeNnnCzdsNQ/6GI8I/AIN9BsLOyu+VjUcul1RuQW6quNcKqJrDKLq5CZkklsovV0OgNjdqfg0phDK6qR135OFnDy8n4tVeAi3mnPWqrjFMGK28mzKp+vbIIMDRRp3pzE+S1AyOlrXGEV31hktLe+PrV3yvtAKua7a56r5UtRztRm9XYawqGUmSiLyvDpX79AQAdjx6B3EI+n5isGDy540n42/vjzwf+lLocIiKyEJZ4TWGJ53Q1fVkZNNUN1a9usq7Lza3/DYIAq4CAOj2rlMHBkClv/hf/gqoC7E/fjz2pe3Ag4wDKtVemeylkCvT36o+IAGMvqgCHgNs5VWplRFFEQbmmdmB1zdes4iqUqXXX3Y9MAPoHueLOMG/c2dULAa4NN3FvcqJoHIl0o+DqeuGW4ZrzlatuEBg1JkyqJzxSqFruFEOiVoqhVAMs/WLrdlSePoOkKVMgd3NDxwP7pS7HbH68+CP+c/g/GOo3FGtGr5G6HCIishCWeE1hiefUGPqiItPqf6YG65cuQV9UVP8b5HIoAwNrhVU23bvByq/xS7Fr9VqcyDmBPWl7sCd1D1JKazevDnEKMTVL7+XZCwoZu24QUFqlRXZJFbKK1cgsrqwVWCUXVCA+p6zW9l18HHFnVy/cGeaFrj6OrWtVyJpm4ZoyY2hkZQfI+feAqLVo7DUF/1aTiSapusm5BfWTAlfeIyKiNiY9PR0vvfQS/vzzT1RUVKBDhw5Yu3Yt+vXrJ3VpLZbc2Rm2/frB9qrPSBRF6PPzawdV1U3WDaWl0CQkQJOQgNIdO4xvEAS4zZoJj3//G0IjRlFZya0wwGcABvgMwIv9X0RScRL2pO3B3rS9OJ59HAnFCUgoTsDas2vhqHTEEL8hiPCPwB1+d8BJ5dSUHwe1YA7WVnCwtkIHT4d6X08tqMCuc9nYeS4LRxMLcD6zBOczS/BxVBz8XWxwZ1dv3BnmhX6BLlDIW/i0MkGoHs0k4WgvImpyDKXIRFO98p4q2LLCG668R0REbUVhYSGGDBmCESNG4M8//4SHhwfi4uLg4uIidWmtjiAIULi7Q+HuDruBA03Pi6IIXXZ27ZUAL15E1dmzyP/yK5QfOAjf998zNmW/CUFOQQhyCsJjYY+hRFOCg+kHsSdtD/al70Oxuhh/Jv6JPxP/hEyQoZdHL0QERGC4/3AEOwW3rtEv1KQCXG3x5B3BePKOYBSUaxB1Phs7z2Vj76VcpBVW4psDifjmQCJcbK0wqosXxoZ5Y2ioO6yt5FKXTkRtFKfvkUnac8+h9M+/4LloEdxmPil1OWZz17a7kF6WjnV3rUNfr75Sl0NERBaiJV5TLF68GAcOHMC+fftu6f0t8Zxai5Jdu5D16mvQFxdDsLaG1+KX4Dxt2m0HRnqDHqfyTmFP6h7sSduD+KL4Wq/72/ub+lD18+oHpdyMTa7JYlRodNgXl4edZ7MRdSEbRRVXGpDbWMkxrKM77uzqjZGdPeFizkbpRNRmsadUA3ix1bCEiZOgvnAB/p+tgcOIEVKXYxaVukoM2DAAIkTsmbYHrtauUpdEREQWoiVeU3Tt2hVjx45FWloa9uzZAz8/P8yZMwezZ8+ud3u1Wg21Wm36uaSkBAEBAS3qnFoTbXYOMpcsRvnBQwAA+xEj4LPiTShczXf9kV6WblrN72jmUWivWt3MVmGLwb6DMcx/GIb6D4W7jbvZjkuWQ6c3ICapEDvPZWHn2WykF1WaXpPLBIQHueLOMC+M6eoFfxdOnSOiW8NQqgEt8QKyJRANBlzs0xdiVRXa//UnlEGW0VfqQsEFTPnfFDipnLBv2j4ObyciIrNpidcU1tbWAICFCxdiypQpiImJwYIFC/D555/jscceq7P9smXLsHz58jrPt6Rzam1EgwEF336L3FUfQNRqIXd3h+9bK2A/bJjZj1WhrcDhzMOmkCqvMq/W693du2OY/zBE+Eegs2tnXgdRHaIo4mxGCXaey8bOs1m4kFVa6/UwX0eMDTP2oerk5cD/hoio0RhKNaAlXkC2BNr0dMSPGg1YWaHzPycgKCyj3difiX/ixb0vopdHL3x393dSl0NERBakJV5TKJVK9OvXDwcPHjQ9N3/+fMTExODQoUN1tudIqaZTdfEiMl54Aeo443Q7l4cegueiFyCrDg7NzSAacL7gPPamGgOqs/lna73uaeOJYQHGgGqAzwDYKGyapA5q3VLyK4wjqM5l41hSAQxX/abYztW2eiU/b/QNdIFcxoCKiBrG1ffopqgTkwAAyoAAiwmkcNXKeyHON9dslIiIqDXy8fFB165daz3XpUsXbNu2rd7tVSoVVCpVM1XXtlh36oSgLVuQs+oDFH73HQo3bED5kcPwe/99WHfubPbjyQQZwtzCEOYWhmd6PYPcilzsS9+HPal7cCjzEHIqc7D10lZsvbQVKrkK4d7hiPA39qLysfcxez3UOrVzs8WsoSGYNTQE+WVqRJ3Pwc5zWdgbl4eUggp8tT8RX+1PhJudEqO7eOHOMC8M6cBG6UR06ywnfaDbUrPyntLSVt6rDqWCHS3rvIiIiOozZMgQXLx4sdZzly5dQmBgoGQ1tWUya2t4v/Iy7IcNRcaSl6GJv4ykKVPhsXAhXB97FIJM1mTH9rD1wP2h9+P+0Puh1qtxLOsY9qTtwZ7UPcgoz8C+9H3Yl74POAJ0dOloCqi6u3eHXMaAgQA3exWm9g/A1P4BKFfrsC8uFzvPZiPyfDbyyzXYfCwVm4+lwlYpR0RHD9wZ5oWRnbzgZGsldelE1IowlCLgqlBKFWwZvaRqmEIpJ4ZSRERk+Z577jkMHjwYb731FqZOnYqjR4/iiy++wBdffCF1aW2a/dChCPn1F2S++hrK/v4bOStXonzfXvi8/TasvLya/PgquQpD/IZgiN8QLAlfgstFl7EnbQ/2pu1FbG4sLhVewqXCS/jy9JdwUblgqP9QDPMfhsG+g+GgdGjy+qjls1MpcFc3H9zVzQdavQFHEwuw86xxml9mcRX+PJOFP89kQSETMCDEFWPDvDGmqxd8nDhNlIiujz2lCACQ8uSTKD94CD4r3oTzAw9IXY5ZGEQDwjeEQ61X4/dJv6OdYzupSyIiIgvSUq8pfvvtNyxZsgRxcXEIDg7GwoULG1x971ot9ZwshSiKKNr8I7LfeQdiVRXkTk7wfuMNOI69U7KaiqqKsD9jP/am7sX+9P0o1V5pdK0QFBgTOAZv3vEmlHKlZDVSyyWKIs6kl5hW8ruYXbtReg9/J1MfqlBPezZKJ2pD2Oi8AbzYql/ciJHQZWYi8IcNsO3TR+pyzCK9LB13bbsLVjIrHH3oKBQyDgwkIiLzscRrCks8p5ZInZCIjEWLUHXW2Izc6YH74f3yy5DZ2Ulal9agRWxOrGk1v5oR5w91eQiLwxdLWhu1Dkl55dh1Lhs7z2XhWHIhrv5NM8jNFneGeWNsmBd6BbBROpGlYyjVAF5s1WWoqMDFPn0BAKGHDkLh4iJ1SWaxP30/nol8Bh2cO+CnCT9JXQ4REVkYS7ymsMRzaqlEjQa5qz9F/pdfAqIIq3bt4Pfeu7Dp2VPq0kz+TvkbC6IXAAA+GvERRrUbJXVJ1IrklqoRdT4bO89lY398HjQ6g+k1d3sVxnT1xJ1dvTGovRsbpRNZoMZeUzRdd0VqNTTJyQAAubOzxQRSYD8pIiIiasEEpRKeC59Du/XroPDxgTYlBUkzHkLumjUQdTqpywMAjGw3Eo+HPQ4AeO3Aa8goy5C6JGpFPBxUeDC8Hb55vD9OvDYGax7qg4m9fOFgrUBemRobj6biiXUx6PufXZi74QR+iU1HSZVW6rKJqJkxlCKoExIAC155L8jRspq3ExERkeWwCw9HyM8/wfHuuwG9Hnmf/BfJjz4GTVqa1KUBAOb3no/u7t1RqinFi3tfhNbA0IBunr1Kgbu7++CjB3vj+Ktj8P3MAXhkYCC8Ha1RrtHj99OZWLApFn3/swuPfH0E3x1ORlZxldRlE1EzYChF0CQmARYcSnGkFBEREbVkcicn+K56H77vroTMzg6VJ04gccJEFP/yC6TutGElt8K7w96Fg5UDTuaexOp/VktaD7V+SoUMd4S64z8Tu+Hg4pH4Ze4QzB3RHqGe9tDqReyLy8NrP5/BwLejMOHTA/g0Oh6ZxZVSl01ETYShFEGTaAxvlMGWNaKoJpQKcQqRuhQiIiKi6xIEAU733YfgX36GTZ8+MJSXI+Olxch4/nnoi4slrc3fwR/LhywHAHxz5hscSD8gaT1kOWQyAT0DnLFobGfsWhiBv5+PwOJxndGnnTMEATiZWoT3dlzEHSuj8a/vjuNgfJ7kQS0RmRdDKTKFUioLGilVrC5GflU+ACDIybLCNiIiIrJcSn9/BH67Hh4L5gNyOUr++BMJEyeh/MhRSesaEzgG0zpNAwC8vP9l5FTkSFoPWaYQD3v8K6I9ts8ZgiNLRuGtSd0xINgVeoOIv85mYcZXRzDmw71YfzAJpew/RWQRGEq1caIoQpNkedP3kkqM5+Rp6wk7K2mXVyYiIiK6GYJCAfdnnkHQDxtg1a4ddJmZSHn8ceSs+gCiRiNZXYv6L0Inl04oqCrAkn1LoDfoJauFLJ+nozVmDGiHzU8Pws7nhuGRgYGwU8oRn1OG1389i4FvReHVn0/jYlap1KUS0W1gKNXG6XJyYKioAORyKAMCpC7HbNhPioiIiFo7m549EfLTdjhNfgAQReR/+SWSHpxuWqSmuankKrwf8T5sFDY4mnUUX5z+QpI6qO3p6OWA/0zshsMvj8IbE8LQwdMe5Ro9vj+cgrEf7cXU/zuE305lQKs3SF0qEd0khlJtnKmflL8/BKVS6nLMxhRKOTKUIiIiotZLZmcH3zffhN8nH0Pu5ISqc+eQeP8DKNy0SZLeOkFOQXht4GsAgM9Pfo6YrJhmr4HaLgdrKzw6KAi7nhuGH2YPwLhu3pDLBBxNLMC8H/7BkHf+xoe7LiG7hCv3EbUWDKXauCtNzi0rvOFIKSIiIrIkjnfeieBff4Hd4EEQq6qQtWw50ubMha6goNlrGd9+PCZ2mAiDaMDivYtRUNX8NVDbJggCBrd3x2cP98WBl0Zi/qhQeDiokFOqxsdRcRj8zt+Ys+E4Dl3OZ2N0ohaOoVQbp05gKEVERETUGlh5eSHgq6/g+dJLEKysUBYdjYT7JqBs795mr2VJ+BKEOIUgpzIHr+x/BQaR06ZIGt5O1lg4piMOvDQS/53eG+FBxsbof5zOwvQvD2PsR3vx3aEklKl1UpdKRPVgKNXGXRkpZTkr1Gn1WqSWpgIMpYiIiMjCCDIZ3J54HEFbfoQqtAP0eXlIfeppZL25Aoaq5puyZGtli/cj3odKrsL+9P1Yf3Z9sx2bqD5KhQzje/rix38Nwl/PDsWMAe1gq5TjUnYZXvvF2Bh96S9nEJfNxuhELQlDqTauJpRSWdBIqdTSVOhFPWwVtvCy9ZK6HCIiIiKzs+7cGUFbtsDl4YcBAIXff4+kKVNQdeFCs9UQ6hKKxeGLAQCfnPgEJ3NPNtuxia6ns7cj3prUHYdfHoVl47sixMMOZWodvj2UjDEf7sWDXxzCH6cz2RidqAVgKNWGGaqqoM3IACxs+t7VU/cEQZC6HCIiIqImIbO2hverryDgi/+D3N0d6rh4JE2Zivy16yAamueX7QdCH8BdQXdBJ+rw4p4XUawubpbjEjWGo7UVHh8SjKiFEdgwawDGhnlBJgCHEwowZ8MJ3LHyb3wcGYccNkYnkgxDqTZMk5wCiCJkDg6Qu7lJXY7ZJJawnxQRERG1HfbDhiHk119gP2IERK0WOStXInXWLGizs5v82IIg4PVBryPAIQAZ5Rl4/eDrbCxNLY4gCBjSwR3/90g/7H9pJOaN6AB3eyWyS9T4MPISBr/zN+b9cAJHEtgYnai5MZRqw0z9pEIsa0QRm5wTERFRW6NwdYX/mk/hvWwZBGtrlB88hMT7JqBkx84mP7a90h7vRbwHhUyBqJQobLq4qcmPSXSrfJ1t8MLYTji4eBQ+frAX+gW6QGcQ8dupTEz74jDGfbwP3x9ORjkboxM1C4ZSbZgmqbqfVJBlhTcMpYiIiKgtEgQBLg9OQ/D2bbDu2hX64mKkL1iAjFdegaG8vEmPHeYWhuf7Pg8AeC/mPZzPP9+kxyO6XUqFDBN6+WHrM4Px+/w7MD08ADZWclzIKsWrP5/BwLeisOzXs4jPKZO6VCKLxlCqDbuy8p7lhDeiKF4JpRwt57yIiIiIGksVEoKgTRvhNns2IAgo3rYdCZPuR+XJpm1E/lCXhzA8YDi0Bi1e2PMCyrVNG4QRmUuYrxPevr8HDr88Ckvv7YoQdzuUqnVYdzAJoz/Yg4e+Ooy/zmRCx8boRGbHUKoNUydYXiiVV5mHMm0ZZIIM7RzbSV0OERERkSQEpRKezy9Eu3XroPDxgTYlBUkzHkLumjUQdU0zLUkQBLw55E1423kjpTQFbxx6g/15qFVxsrHCk3cEI3JhBL6bGY4xXY2N0Q/E5+Nf35/A0Hej8d+oOOSWqqUulchiMJRqo0RRvGqkVJDU5ZhNzSgpf3t/KOVKqcshIiIikpTdgHCE/PwTHO8eB+j1yPvkv0h+9DFo0tKa5HhOKie8N+w9yAU5/kj8Az/H/9wkxyFqSjKZgKGhHvjy0X7Y++IIzBneHm52SmQWV2HVrksY/E4U5m/8B8eSChi8Et0mhlJtlD4vD4ayMkAQoAwMlLocs2E/KSIiIqLa5E5O8F21Cr4r34HMzg6VJ04gccJEFP/yS5P8Qt3Lsxfm9Z4HAHjryFu4XHTZ7Mcgai7+LrZ48a7OOLhkJD6c1hN92jlDqxfx68kMTP78EO7+ZD9+OJKCCg0boxPdCoZSbZS6epSUlZ8fZCqV1OWYTWIJQykiIiKiawmCAKcJExD8y8+w6dMHhvJyZLy0GBnPvwB9SYnZj/dktycx2HcwqvRVeGHPC6jUVZr9GETNSaWQY1Jvf2yfMwS//fsOTOsXAGsrGc5nluDln05jwFtRWP6/s0jIZWN0opvBUKqN0iQmARbWTwocKUVERER0XUp/fwR+ux7u8/8NyOUo+eMPJEyYiPKjR816HJkgw1t3vAV3G3fEF8Vj5dGVZt0/kZS6+Tlh5eQeOLJkNF69pwsC3WxRWqXD2gNJGLlqDx75+gh2ns1iY3SiRmAo1UbV9JNShVhWeMNQioiIiOj6BIUCHnPmIOiHDbBq1w66zEykPPY4clZ9AFGjMdtx3Gzc8M7QdyBAwLa4bfgj4Q+z7ZuoJXCytcKsoSGIfn441j3RH6M6e0IQgH1xeXjqu+OIeG83Po2OR14ZG6MTNYShVBt1pcm55YQ3FdoKZJZnAgCCHS3nvIiIiIiagk3Pngjevh1OD9wPiCLyv/wSSQ9OhzohwWzHGOAzAE/1eAoAsPzQciSXJJtt30QthUwmYHgnT3z9eH/sXTQC/4poDxdbK6QXVeK9HRcx+O2/8eymf3A8uZCN0YmuwVCqjVInVYdSQZYT3tRc5LioXOBs7Sx1OUREREQtntzeDr4rVsDv448hc3JC1blzSLz/ARRu2mS2X57/1fNf6OvVFxW6CizaswgavflGYxG1NAGutlg8rjMOLRmFVVN6omeAMzR6A36OzcADnx3Evf/dj01HU1Cp0UtdKlGLwFCqDTJoNNCmGpcBtqSRUpy6R0RERHRrHMfeiZBff4HtoIEQq6qQtWw50ubMha6g4Lb3rZApsHLoSjirnHG+4Dw+OP6BWWomasmsreR4oK8/fpk7BL/OG4LJff2hUshwNqMEi7efxoC3IvHqz6cRm1rE0VPUpjGUaoO0KSmAwQCZrS0Unh5Sl2M2XHmPiIiI6NZZeXmh3ddfw/PFFyFYWaEsOhpJU6bCUHn7K+d52XlhxR0rAAAbzm9AVEqUGSomah16+Dvj/Sk9cXjJKLx8d2e0c7VFSZUO3x9OwcRPD2D0B3vw2e7LyCqukrpUomYneSj16aefIigoCNbW1hgwYACO3mDlj48++gidOnWCjY0NAgIC8Nxzz6Gqin95b4b6qn5SgiBIXY7ZcKQUERER0e0RZDK4PfkEgrb8CLm7O7Tp6Sjbv98s+x7mPwyPhz0OAHjtwGvIKMswy36JWgsXOyWeGtYeu18Yjg2zBmBSbz9YW8lwObccK/+6gMHvROHRb47i15MZqNJyeh+1DZKGUps3b8bChQvx+uuv48SJE+jZsyfGjh2LnJycerf/4YcfsHjxYrz++us4f/48vv76a2zevBkvv/xys9femmkSkwALm7oHAAnFxqacDKWIiIiIbo91585wuuceAEBZZKTZ9ju/93z0cO+BUk0pXtz7IrQGrdn2TdRayGQChnRwx4fTeiHmldFY+UB3hAe5wiACey/lYv7Gf9B/RSSWbD/N5uhk8SQNpT744APMnj0bTzzxBLp27YrPP/8ctra2+Oabb+rd/uDBgxgyZAhmzJiBoKAg3HnnnZg+ffoNR1dRbVdW3guSuhSz0Rv0SC42NjrnyntEREREt89h9CgAQOnuPRC15gmPrORWeDfiXThYOeBk7kms/me1WfZL1Fo5WFthWv92+PFfg7D7heGYP7ID/JxtUFqlw8ajKXjgs4MYtWoPPo2OR2bx7U+lJWppJAulNBoNjh8/jtGjR18pRibD6NGjcejQoXrfM3jwYBw/ftwUQiUkJOCPP/7A3Xff3Wx1W4KaUEoVEiJ1KWaTUZ4BjUEDpUwJX3tfqcshIiIiavVs+vSB3MUFhuJiVBw7Zrb9+tn7YfmQ5QCAb858g/3p5pkeSNTaBbnbYeGdnbDvxRH4YfYA3N/HDzZWciTkleO9HRcx+J2/8cjXR/BLbDpX7yOLIVkolZeXB71eDy8vr1rPe3l5ISsrq973zJgxA2+88QbuuOMOWFlZoX379hg+fPh1p++p1WqUlJTUerR1mqt6SlmKmn5SgU6BkMvkUpdDRERE1OoJcjnsR44AAJRGmrcx+ZjAMXiw04MAgFf2v4KcivrbdxC1RTKZgMHt3fHB1F6IeXU03pvcAwOCXSGKwL64PCzYFIv+KyKxeNspHEsq4PQ+atUkb3R+M3bv3o233noLa9aswYkTJ7B9+3b8/vvv+M9//tPge95++204OTmZHgEBAc1ac0ujKyyEvrgYAKAMDJS6HLMxNTnn1D0iIiIis3GontVQGhVl9l98X+j/Ajq7dkZBVQGW7FsCvYEjP4iuZa9SYEq/AGx+ehD2LhqBZ0eHIsDVBmVqHTbFpGLy54cw4v3d+G9UHNKLOL2PWh/JQil3d3fI5XJkZ2fXej47Oxve3t71vue1117DI488glmzZqF79+6YNGkS3nrrLbz99tswGAz1vmfJkiUoLi42PVJTU5vkfFoLTYKxGbjC1wcyGxupyzEbrrxHREREZH52gwdDsLWFLisLVWfOmnXfKrkK7w17DzYKGxzNOoovTn9h1v0TWZp2brZ4dnRH7HlhBDY9NRCT+/rDVilHUn4FVu26hDtW/o2HvjqM7SfSUKHRSV0uUaNIFkoplUr07dsXUVFXhgIbDAZERUVh0KBB9b6noqICMlntkuVy41Sthu7cqFQqODo61nq0ZaZ+UkGWFd4wlCIiIiIyP5lKBfuhQwEApWZcha9GkFMQXhv4GgDg85OfIyYrxuzHILI0MpmAgSFueH9KT8S8MhqrpvTEoBA3iCJwID4fC388if5vRuLFrSdxNJHT+6hlk3T63sKFC/Hll19i/fr1OH/+PJ555hmUl5fjiSeeAAA8+uijWLJkiWn78ePH47PPPsOmTZuQmJiIXbt24bXXXsP48eNN4RRdn9oC+0kBQFJJEsBQioiIiMjsTKvwRZk/lAKA8e3HY2KHiTCIBry09yUUVBU0yXGILJGdSoEH+vpj41MDse/FEVg4piPaudqiXKPHj8fSMPX/DiHivd34ODIOqQUVUpdLVIdCyoNPmzYNubm5WLp0KbKystCrVy/89ddfpubnKSkptUZGvfrqqxAEAa+++irS09Ph4eGB8ePHY8WKFRKeReuiSTSGN5YUShVVFZkuXoIcg6Quh4iIiMii2EdEAAoFNPGXoU5MhKoJriOXhC/BqdxTSChOwCv7X8Gnoz6FTGhV7W+JJBfgaov5o0Lx75EdEJNUiG3H0/DbqQykFFTgw8hL+DDyEgaGuGJy3wCM6+YNO5WkcQARAEAQ29hYvpKSEjg5OaG4uLhNTuW7PO5uaBITEfD1V7AfMkTqcswiNicWj/z5CLztvLFr8i6pyyEiojbCEq8pLPGcyDxSnpyJ8oMH4fnC83CbNatJjhFXGIfpv0+HWq/Gwr4L8US3J5rkOERtSYVGhx1ns7D1eBoOXs5HzW//tko57u7ugwf6+GNAsCtkMkHqUsnCNPaagrcf2hBRq4WmutG7KiRE6nLMhivvERERETUthzHVq/BFRt1w21sV6hKKxeGLAQCfnPgEJ3NPNtmxiNoKW6UCk3r7Y8Osgdj/0ki8cGdHBLnZokKjx9bjaZj+5WEMey8aH+66hJR8Tu+j5sdQqg3RpKUBOh0EGxsoqqdIWgI2OSciIiJqWvYjRwIAKmNjoc3JabLjPBD6AMYFjYNO1OHFPS+iWF3cZMciamv8nG0wb2Qool8Yjm3PDML08AA4qBRIK6zEx1FxGPZeNKb+3yH8eCwVZWqu3kfNg6FUG2LqJxUUBEFmOX/0DKWIiIiImpaVlxese/YAAJT9Hd1kxxEEAUsHLUWAQwAyyjPw+sHXuXIYkZkJgoC+ga54+/4eOPrKaHz8YC8MDXWHIABHEwvw4tZT6P9mJBZujsXB+DwYDPw7SE3HcpIJuiFNYgIAQBVsWc3AE0sYShERERE1NYdRNVP4mmYVvhr2Snu8F/EeFDIFolKisPHCxiY9HlFbZqOUY0IvP3w3cwAOLh6JRWM7IcTDDpVaPbb/k44ZXx3B0Hej8cHOi0jKK5e6XLJADKXaEHWiMbxRBllOeKPRa5BWmgYwlCIiIiJqUg6jRwEAyo8cgb60tEmPFeYWhhf6vQAAeP/Y+ziff75Jj0dEgI+TDeaO6ICohRHYPmcwZgxoBwdrBdKLKvHJ3/EY/v5uTPn8IDbHpKC0Sit1uWQhGEq1Iabpe02wjK9UUktToRf1sLOyg4eNh9TlEBEREVksVUgIlCEhgFaLsj17m/x4MzrPwIiAEdAatHhhzwso13KUBlFzEAQBfdq54K1J3RHzymj8d3pvRHT0gEwAYpIK8dK20+i/IhLPbvoH++PyoOf0ProNDKXaEE3NSCkLCqWuXnlPELiMKREREVFTchhlHC1VGtW0U/hQ/Yvxf4b8B9523kgpTcEbh95gfymiZmZtJcf4nr5Y/2Q4Di4ehZfu6owOnvao0hrwc2wGHv76CO5Y+Tfe23EBCbllUpdLrRBDqTZCX1wMfUEBUN3o3FKwyTkRERFR83EYY+wrVb5nLwxqdZMfz0nlhPeGvQe5IMcfiX/g5/ifm/yYRFQ/bydrPDO8PXY9Nww/zx2Chwe2g6O1ApnFVfg0+jJGrtqDCav3450/LyD6Yg5X8KNGUUhdADWPmlFSCi8vyO3tpC7HbBKKjc3bGUoRERERNT3rbt2g8PSELicHFYcPwz4iosmP2cuzF+b1noePT3yMt468he7u3dHBpUOTH5eI6icIAnoFOKNXgDNevacros7nYOvxVOy5lIuTacU4mVaMz/dchlwmoJuvIwaEuGFgiCv6BbnC0dpK6vKphWEo1UaoLbCfFDhSioiIiKhZCTIZHEaPQuEPG1EaGdUsoRQAPNntScRkxeBgxkEs2rsIP9zzA2wUNs1ybCJqmLWVHPf08ME9PXyQU1KFvXF5OJKQjyOJBUgpqDCFVF/sTYBMALr6OmJAsBsGhrghPMgVTrYMqdo6hlJtxJV+UpYzdU8URYZSRERERM3MflR1KPX33/Be9joEubzJjykTZHjrjrcw+X+TEV8Uj5VHV2LZ4GVNflwiajxPR2tM7uuPyX39AQAZRZU4kpiPIwkFOJyQj6T8CpxJL8GZ9BJ8vT8RggB09nbEwBBXDAh2w4BgV7jYKaU+DWpmDKXaCE2icZqbyoJGSuVU5KBCVwG5IEc7h3ZSl0NERETUJtiFh0Pm4AB9fj4qT56EbZ8+zXJcNxs3vDP0HczeORvb4rYh3Dscd4fc3SzHJqKb5+tsg0m9/TGptzGkyiquwpHEfBxOKMCRxHwk5JbjfGYJzmeWYO0B48yeTl4OxpAqxA3hwa5wt1dJfBbU1BhKtRFqS1x5r8R4TgEOAbCSc9gnERERUXMQrKxgP3w4Sv73P5Tuimy2UAoABvgMwNM9n8bnJz/H8kPLEeYehkDHwGY7PhHdOm8na0zo5YcJvfwAADmlVTiaaBxFdSShAHE5ZbiYXYqL2aVYfygZANDB0/7KSKoQV3g6WEt8FmRuDKXaAFGvhzY5BbC0UKp66l6Qk+VMSSQiIiJqDRxGjzaGUlFR8HxxEQRBaLZjP93jacRkxeB49nEs2rMI39/9PZRyTvkham08Haxxbw9f3NvDFwCQV6bG0cQCU0+qC1mliM8pQ3xOGb4/bPx9NsTdztQ4fUCwG7ydGFK1dgyl2gBtejpErRaCUgkrHx+pyzEb9pMiIiIikob9HUMgKJXQpqRAfSkO1p06NtuxFTIFVg5dicn/m4zzBeex6tgqLBmwpNmOT0RNw91ehbu7++Du7sbfWQvKNcaQqrov1fmsEiTklSMhrxwbjxpDqkA3WwysHkU1IMQNfs5cAKG1YSjVBpianAcGNksjyuZiCqUcGUoRERERNSeZnR3sBg9G2e7dKI2KbNZQCgC87Lyw4o4VmBs1Fz9c+AHhPuEY1W5Us9ZARE3L1U6Ju7p5465u3gCA4gotjiZdGUl1NqMYyfkVSM6vwOZjqQCAAFcbU9P0gSFuCHC1lfgs6EYYSrUBpn5SISFSl2JWHClFREREJB2HMaONoVRkJDzmzGn24w/zH4bHwx7HurPr8NqB19DFtQt87X2bvQ4iah5OtlYY09ULY7p6AQBKqrQ4llRgWt3vTEYJUgsqkVqQhq3H0wAAfs42GBDsigEhxpCqnatts043phtjKNUGaBKNKxkogy2n91K5thzZFdkAQykiIiIiSdiPGAHIZFCfOw9tejqs/PyavYb5vefjRPYJnMo7hUV7F2HdXetgJeMCOERtgaO1FUZ29sLIzsaQqkytM4ZU1c3TT6cVI72oEtv/Scf2f9IBAN6O1sapfsHGvlTB7nYMqSTGUKoNqJm+p7KgJudJJcagzdXaFU4qJ6nLISIiImpzFK6usO3TBxXHjqE0Kgqujz7a7DVYya3wbsS7mPLrFJzKPYXV/6zGc32fa/Y6iEh69ioFhnfyxPBOngCACo0Ox5MLTSOpTqYVIaukCr/EZuCX2AwAgIeDqnoklRsGhbiivYc9Q6pmxlCqDVAnJgAWuvIeR0kRERERScd+9ChjKBUpTSgFAH72flg+ZDkW7l6Ib858g/7e/XGH3x2S1EJELYetUoGhoR4YGuoBAKjU6PFPSiEOJ+TjcGIBYlOKkFuqxm+nMvHbqUwAgLu9EuHBNSOp3BDqaQ+ZjCFVU2IoZeH0ZWXQ5+YBDKWIiIiIyMwcRo9GzjsrUXHsGHSFhVC4uEhSx5jAMXiw04PYdHETXtn/CraM3wJPW09JaiGilslGKcfgDu4Y3MEdAFCl1SM2tQiHE4yr+51IKURemQZ/nM7CH6ezAAAutlYID3ZF/yBXdPdzQpifE+xVjFHMiZ+mhauZuid3d4fcwUHqcsyGK+8RERERSU/p7w9V585QX7iAsujdcL5/kmS1vND/BcTmxuJCwQUs3rcYX475EnKZ5aw8TUTmZW0lx8AQ44goAFDr9DiVVozDl42r+x1PLkRhhRY7zmZjx1ljP2NBANp72KO7nxO6+zmhh78Tuvo6wlbJaOVW8ZOzcKZ+UkGW0+QcHClFRERE1GI4jB4N9YULKI2KkjSUUslVeG/Ye5j621TEZMXgi1Nf4Jlez0hWDxG1LiqFHP2DjKOi/g1AozPgdHoRDicU4GRqEU6nFyOzuArxOWWIzynDT9XN02UCEOrpgG7VIVV3fyd09XGEtRVD8cZgKGXh1NWhlCVN3dMb9EguSQYYShERERFJzmH0KOStXo3y/fthqKiAzNZWslqCnIKwdNBSLNm3BJ+f+hz9vPuhv3d/yeohotZLqZChb6Ar+ga6mp7LLVXjTHoxTqUV43R6EU6mFSO3VI2L2aW4mF2KbSfSAABymYCOXg7o7ueI7v7O6OHnhM4+DlApGFRdi6GUhdMkGlepU4aESF2K2WSUZUBr0EIlV8HHzkfqcoiIiIjaNFWnTrDy94c2LQ1lBw7AccwYSeu5N+ReHMk8gp/jf8ZLe1/C1vu2wtXatRHvJCK6Pg8HFUZ09sSIzld61mWXVOF0WjFOpRfjdJpxRFVemQbnM0twPrMEPx4zBlVWcgGdvB2qp/45o4e/Ezp6OUCpkEl4RtJjKGXhNKaRUpYzfS+xxHhOgY6B7BNAREREJDFBEOAwahQK1q9HWWSk5KEUACwJX4JTuaeQUJyAl/e/jDWj1kAmtO1f/IioaXg5WsOrqzVGd/UCAIiiiMziKpxOL64VVhVWaHEmvQRn0kuwEakAAKVchs4+Dqb+VN39nBHqZQ8redv594qhlAUTDQZokowjpVQWNH2P/aSIiIjqt2zZMixfvrzWc506dcKFCxckq4naBofRxlCqdPceiFotBCsrSeuxtbLF+xHvY/rv03Eg/QDWn12PJ7o9IWlNRNQ2CIIAX2cb+DrbYGyYN1AdVKUVVhqn/tWEVWlFKKnS4VSacTrghiPG96sUMnTxcawOqZzQw98Z7T3soLDQoIqhlAXTZmRCVKsBKytY+flJXY7ZJBQnAAyliIiI6hUWFobIyEjTzwoFL/eo6dn06QO5iwv0hYWoOHYMdoMGSV0SQl1CsTh8MZYfWo5PTnyC3p690cuzl9RlEVEbJAgCAlxtEeBqi3HdjS1oRFFEakElTqUXVYdUxTiTXoxStQ6xqUWITS0yvd/GSo6uvo6mEVU9/J0Q7G4PuUyQ8KzMg1cpFsw0da9dOwgWdEFqGinlyFCKiIjoWgqFAt7e3lKXQW2MIJfDfuQIFG/bjtLIqBYRSgHAA6EP4GjmUfyZ9Cde3PsitozfAieVk9RlERFBEAS0c7NFOzdb3NvDFwBgMIhILqjAqbQi09S/s+nFKNfocTy5EMeTC03vt1PKEeZrXO2vZlRVkJsdZK0sqLKcpILqsMR+UrgqlApxtpzm7UREROYSFxcHX19fWFtbY9CgQXj77bfRrl27erdVq9VQq9Wmn0tKSpqxUrI0DqNHG0OpqCh4vfoKBEH6X4wEQcDSQUtxJv8MUktT8frB1/Hh8A9bRG1ERNeSyQQEu9sh2N0OE3oZZzsZDCIS8spxOr3IuOpfWjHOZpSgXKPH0aQCHE0qML3fQaVAmJ8jevg7m0ZVtXO1bdH/5jGUsmCaJGN4Y0n9pAqrClGkNg5jDHQMlLocIiKiFmXAgAFYt24dOnXqhMzMTCxfvhxDhw7FmTNn4ODgUGf7t99+u04PKqJbZTd4MARbW+iyslB15ixsuneTuiQAgL3SHu9FvIeH/3gYUSlR2HhhI2Z0mSF1WUREjSKTCejgaY8OnvaY1NsfAKA3iLicW1YdUhXhVHoxzmWUoFStw+GEAhxOuBJUOVor0N3/yop/3f2c4O9i02KCKoZSFkxdM1IqyHJCqZpRUr52vrBR2EhdDhERUYsybtw40/c9evTAgAEDEBgYiB9//BEzZ86ss/2SJUuwcOFC088lJSUICAhotnrJsshUKtgPHYrSHTtQGhXZYkIpAAhzC8ML/V7AO0ffwfvH3kdvz97o4tZF6rKIiG6JXCago5cDOno5YHJfY1Cl0xsQl1NWPe3POP3vfGYpSqp0OBCfjwPx+ab3O9taobufE3oHOOO5MR0lDagYSlkwTaJx5T1liOWFUmxyTkREdGPOzs7o2LEj4uPj631dpVJBpVI1e11kuRxGjzKGUpGR8Hz2WanLqWVG5xk4knkE0anReOXAK9g2fluLGSlARHS7FHLjqn1dfBwxtb/xBpNGZ8Cl7FKcTr/SSP1CVgmKKrTYF5eHnBI1Ft7ZSdq6JT06NRlDRQV0WVmAhU3fYyhFRETUeGVlZbh8+TIeeeQRqUuhNsI+IgJQKKCJvwx1YmKLug4VBAFvDH4DI7eMRFxhHBKLE9mjlIgsmlIhQzc/J3Tzc8L0cONzap0eF7NKcSqtGEq5TOoSIX0F1CQ0ScZRUnIXF8idnaUux2wSSxhKERERNeSFF17Anj17kJSUhIMHD2LSpEmQy+WYPn261KVRGyF3dIRduPE3n7KoKKnLqcPZ2hnhPsb6olOjpS6HiKjZqRRy9PB3xsMDA00jqqTEUMpCqRNqVt6zrPCGI6WIiIgalpaWhunTp6NTp06YOnUq3NzccPjwYXh4eEhdGrUhDmNGAwBKI1teKAUAI/xHAAD2pO2RuhQiojaPoZSF0tQ0OQ8OkroUs1Hr1UgvSwcYShEREdVr06ZNyMjIgFqtRlpaGjZt2oT27dtLXRa1MfYjRwIAKmNjoc3JkbqcOiICIgAAsTmxKKgquOH2RETUdBhKWaiaUKolzeO/XSklKTCIBjhYOcDN2k3qcoiIiIioHlZeXrDu0QMAUPZ3y5si523njS6uXSBCxN60vVKXQ0TUpjGUslDqJMubvnf11D2ulEJERETUcjmMrpnCFyl1KfUaHjAcALAnlVP4iIikxFDKAomiCE1SMgBAGWw5K4rUhFJBTpYzJZGIiIjIEjmMHgUAKD9yBPrSUqnLqaNmCt+BjANQ69VSl0NE1GYxlLJAuuxsiBUVgEIBZYC/1OWYDVfeIyIiImodVCEhUIaEAFotyva0vClyXV27wtPGE5W6ShzNPCp1OUREbRZDKQtkanLu7w/BykrqcsyGK+8RERERtR4Oo4yjpUqjWt4UPkEQrkzh4yp8RESSYShlgdSJltdPShRFhlJERERErYjDGGNfqfI9e2HQaKQup46aKXzRqdEQRVHqcoiI2iSGUhZIk2B5oVR2RTYqdZVQCAoEOARIXQ4RERER3YB1t25QeHrCUFGBikOHpC6njgE+A2CjsEFORQ7OF5yXuhwiojaJoZQFMk3fC7achuA1o6T8HfxhJbOcKYlERERElkqQyUwNz0sjo6Qupw6VXIXBvoMBrsJHRCQZhlIWqCaUUlnQSKmE4gSAU/eIiIiIWhX7mr5Sf/8NUa+Xupw6IvyvTOEjIqLmx1DKwhiqqqDNzAQsbPoe+0kRERERtT524eGQOThAn5+PypMnpS6njmH+wyBAwPmC88gqz5K6HCKiNoehlIXRJCcDogiZkxPkrq5Sl2M2ScVJAIAQpxCpSyEiIiKiRhKsrGA/3LjKXemulrcKn5uNG3p69AQA7E3bK3U5RERtDkMpC2OauhcUBEEQpC7HbDhSioiIiKh1cqiZwhcV1SJXubt6FT4iImpeDKUszJUm55YT3pRpypBTmQMACHKynObtRERERG2B/dA7ICiV0KakQH0pTupy6hgRMAIAcCTzCCq0FVKXQ0TUpjCUsjBqCwylkkqMU/fcbdzhqHSUuhwiIiIiugkyOzvYDTauclca1fKm8IU4hSDAIQBagxaHMg5JXQ4RUZvCUMrCaBJqQinLGVHEqXtERERErZvDmNEAgNLIlhdKCYLAVfiIiCTCUMqCiKJ4paeUBY2UMoVSjpZzTkRERERtif2IEYBMBvW589Cmp0tdTh01U/j2pu2F3qCXuhwiojaDoZQF0eXmwlBeDshksAoMlLocs+FIKSIiIqLWTeHqCts+fQAApVF/S11OHb29esNB6YBCdSFO552WuhwiojaDoZQF0SQaey9Z+flBplRKXY7ZMJQiIiIiav3sR1evwtcCp/BZyaxwh98dAKfwERE1K4ZSFsS08l6I5YQ3OoMOyaXJAEMpIiIiolbNYbSxr1TFsWPQFRZKXU4dNVP4dqfulroUIqI2g6GUBTH1kwqynPAmvSwdOoMO1nJreNt5S10OEREREd0ipb8/VJ07AwYDyqJbXvAzxG8IFIICCcUJSClJkbocIqI2gaGUBVEn1ay8ZzmhVM3UvSCnIMgE/udKRERE1JrVjJYqjYqSupQ6HJWO6OvVF+BoKSKiZsPf8i1ITU8pSwyluPIeERERUevnUN1Xqnz/fhgqKqQup47hAcMBALvTGEoRETUHhlIWwqDRQJuWBgBQBgdJXY7ZsMk5ERERkeVQdeoEKz8/iGo1yg4ckLqcOiICIgAAJ7JPoFhdLHU5REQWj6GUhdAmJwMGA2R2dlB4eEhdjtkwlCIiIiKyHIIgmKbwlbXAVfgCHALQwbkD9KIe+9P3S10OEZHFYyhlIdSJV/pJCYIgdTlmIYoiEooTAIZSRERERBajZgpf6e49ELVaqcupo2YK357UPVKXQkRk8RhKWQhL7CdVqC5EiaYEAgS0c2wndTlEREREZAY2ffpA7uICQ3ExKo4dk7qcOiL8jVP49qfvh1bf8kIzIiJLwlDKQmiqR0qpQiwnlKqZuudr7wsbhY3U5RARERGRGQhyOexHjgAAlEa2vFX4urt3h6u1K0q1pTiec1zqcoiILBpDKQuhuWr6nqWomboX5GQ5jduJiIiICKa+UqVRURBFUepyapHL5KbRUpzCR0TUtBhKWQBRFKFOsrzpezUjpUKcQqQuhYiIiIjMyG7wYAi2ttBlZaHqzFmpy6mjZhW+6NToFheaERFZEoZSFkBfUABDcTEgCFAGBkpdjtlw5T0iIiIiyyRTqWA/dCgAoDSq5a3CN8hnEJQyJdLL0hFfFC91OUREFouhlAWombpn5eMDmbW11OWYjSmUcmQoRURERGRpTKvwRba8UMrWyhYDfQcCAPakcQofEVFTYShlAdQW2E+qSleFjLIMgCOliIiIiCySfUQEoFBAE3/ZdD3bktT0lYpOjZa6FCIii8VQygJoEi2vn1RySTJEiHBUOsLV2lXqcoiIiIjIzOSOjrALDwcAlEW1vFX4akKp07mnkVeZJ3U5REQWiaGUBbiy8p7lrFKXWHKln5QgCFKXQ0RERERNwN40ha/lhVJedl4IcwuDCBH70vZJXQ4RkUVSSF0A3b6aUEoVYjmr1LW0Jud6vR5arVbqMoioicnlcigUCobhRETNxGHUKGS/8R9UxsZCm5MDK09PqUuqJSIgAmfzzyI6NRqTQidJXQ41kiiK0Ol00Ov1UpdCZLHMdd3MUKqVE7VaaNLSAAubvteSQqmysjKkpaVxOWCiNsLW1hY+Pj5QKpVSl0JEZPGsvLxg3aMHqk6dQtnf0XB5cJrUJdUyImAE1sSuwaGMQ6jSVcFaYTmLClkqjUaDzMxMVFRUSF0KkcUzx3UzQ6lWTpOaBuh0EGxtofDykrocs0kqNvbJknrlPb1ej7S0NNja2sLDw4OjJ4gsmCiK0Gg0yM3NRWJiIkJDQyGTcZY7EVFTcxg9GlWnTqE0MrLFhVKdXDrB284bWeVZOJp1FMP8h0ldEl2HwWBAYmIi5HI5fH19oVQqef1O1ATMed3MUKqV0yQmAACUQYEW8w+uQTQgqaQ6lJJ4pJRWq4UoivDw8ICNjY2ktRBR07OxsYGVlRWSk5Oh0Whgbc074kRETc1h9CjkfvAByo8cgb60FHIHB6lLMhEEARH+Edh8cTOiU6MZSrVwGo0GBoMBAQEBsLW1lbocIotmrutm3gJu5Uz9pIKaNryJ+T0RXz67Bwe2xUNdqWvSY2WXZ6NSVwmFTAE/B78mPVZjWUrgR0Q3xtFRRETNSxUSAmVICKDVomzvXqnLqWNEwAgAwJ7UPTCIBqnLoUbg/8uJmoc5/q7xb2srpzatvNd0oZRea0BsZCo0VXrE7krBhqWHcGZvOgz6pvmfck0/qXYO7WAls2qSYxARERFRy+EwqmYVvkipS6mjv3d/2CpskVuZi/P556Uuh4jIojCUauU0icZpbk0ZSqWeL4CmUgcbByu4eNuislSLPT9cxOYVMUg5l2/24yWWtJwm59R0BEHAzz//LHUZN+3xxx/HxIkTpS6DiIjIojiMGQ0AKN+zFwaNRupyalHKlRjiNwQAEJ0aLXU5REQWhaFUK6cxjZQKarJjxB/PAQCE9vfCtNfCMXRaR6jsFCjIKMf/PjmJ31afREFmudmO15JW3mvNUlNT8eSTT5qaPAYGBmLBggXIzzd/kHg9y5YtQ69eveo8n5mZiXHjxjXZcYcPHw5BEBp8DB8+/Jb2+/HHH2PdunVmqTEtLQ1KpRLdunUzy/6IiIhaK+tu3aDw9IShogIVhw5JXU4dwwOM1w27U3dLXQqRZHhTmZoCQ6lWTF9UBH1hIQBAFdQ0oZROq0fiyVwAQIe+XpDLZegxwh8PvzEIPUcFQCYTkHwmH5v+cxR7N11CVZn2to/JUOr2JSQkoF+/foiLi8PGjRsRHx+Pzz//HFFRURg0aBAKCgqkLhHe3t5QqVRNtv/t27cjMzMTmZmZOHr0KAAgMjLS9Nz27dtrba/VNu6/XScnJzg7O5ulxnXr1mHq1KkoKSnBkSNHzLLPW6XX62EwsE8GERFJQ5DJ4DC6ZgpflNTl1DHUbyhkggwXCy8isyxT6nLIQvGmcsu9qdzQZ0K3j6FUK1bTT0rh7Q2ZnV2THCPlbAE0VXrYu6jgHexoet7azgp3TAnF9NcHILinO0SDiNO70/D90kOIjUyBXnfrv9yaQilHhlK3au7cuVAqldi5cyciIiLQrl07jBs3DpGRkUhPT8crr7xi2ra+Ox7Ozs61/uFOTU3F1KlT4ezsDFdXV0yYMAFJSUmm13fv3o3w8HDY2dnB2dkZQ4YMQXJyMtatW4fly5fj5MmTpv+Z1Oz32uOePn0aI0eOhI2NDdzc3PDUU0+hrKzM9HrNHY73338fPj4+cHNzw9y5cxsMk1xdXeHt7Q1vb294eHgAANzc3EzPubm54bPPPsN9990HOzs7rFixAnq9HjNnzkRwcDBsbGzQqVMnfPzxx7X2e+2dluHDh2P+/Pl48cUXTcdctmzZDf+MRFHE2rVr8cgjj2DGjBn4+uuv62xz4MABDB8+HLa2tnBxccHYsWNRWB1EGwwGvPvuu+jQoQNUKhXatWuHFStWmP48BEFAUVGRaV+xsbEQBMH057Zu3To4Ozvj119/RdeuXaFSqZCSkoKYmBiMGTMG7u7ucHJyQkREBE6cOFGrrqKiIjz99NPw8vKCtbU1unXrht9++w3l5eVwdHTE1q1ba23/888/w87ODqWlpTf8XIiIqO2yr+kr9fffEPV6qcupxcXaBb08jL+Q7k7jaCkyP95Ubh03lcn8GEq1Ylf6STX91L32fTwhyOquQOfsZYu7n+mBCc/2gpu/PdQVOhzYGo+NbxxB4slciKJ4U8cr1ZQit9I4MivIqenO61aJoogKjU6SR2M/y4KCAuzYsQNz5syBjY1Nrde8vb3x0EMPYfPmzY3en1arxdixY+Hg4IB9+/bhwIEDsLe3x1133QWNRgOdToeJEyciIiICp06dwqFDh/DUU09BEARMmzYNzz//PMLCwkz/M5k2bVqdY5SXl2Ps2LFwcXFBTEwMtmzZgsjISMybN6/WdtHR0bh8+TKio6Oxfv16rFu37rbueixbtgyTJk3C6dOn8eSTT8JgMMDf3x9btmzBuXPnsHTpUrz88sv48ccfr7uf9evXw87ODkeOHMG7776LN954A7t27brue6Kjo1FRUYHRo0fj4YcfxqZNm1BefmUabGxsLEaNGoWuXbvi0KFD2L9/P8aPHw999UX6kiVL8M477+C1117DuXPn8MMPP8DLy+umzr+iogIrV67EV199hbNnz8LT0xOlpaV47LHHsH//fhw+fBihoaG4++67TYGSwWDAuHHjcODAAXz//fc4d+4c3nnnHcjlctjZ2eHBBx/E2rVrax1n7dq1mDx5Mhxa0BLfRETU8tiFh0Pm4AB9fj4qT56Uupw6OIWvdWoN1+/gTWWgFdxUvp4bfRYNfd4AcPLkSYwYMQIODg5wdHRE3759cezYsduqpzVRSF3Ap59+ivfeew9ZWVno2bMn/vvf/yI8PLzB7YuKivDKK69g+/btKCgoQGBgID766CPcfffdzVp3S6BJTAAAqJqoyblOo0fSqTwAQIe+ntfd1r+zK6a+3B8XDmbi8K8JKM6pxB+fnYZfJxfcMaUD3P0b98toUrHxH0oPGw84KFveL7CVWj26Lt0hybHPvTEWtsob/5WNi4uDKIro0qVLva936dIFhYWFyM3Nhafn9f9cAWDz5s0wGAz46quvIAjGYHLt2rVwdnbG7t270a9fPxQXF+Pee+9F+/btTceoYW9vD4VCAW9v7waP8cMPP6Cqqgrffvst7KpH/a1evRrjx4/HypUrTWGLi4sLVq9eDblcjs6dO+Oee+5BVFQUZs+efcPzqM+MGTPwxBNP1Hpu+fLlpu+Dg4Nx6NAh/Pjjj5g6dWqD++nRowdef/11AEBoaChWr16NqKgojBkzpsH3fP3113jwwQchl8vRrVs3hISEYMuWLXj88ccBAO+++y769euHNWvWmN4TFhYGACgtLcXHH3+M1atX47HHHgMAtG/fHnfcccdNnb9Wq8WaNWvQs2dP03MjR46stc0XX3wBZ2dn7NmzB/feey8iIyNx9OhRnD9/Hh07dgQAhISEmLafNWsWBg8ejMzMTPj4+CAnJwd//PEHIlvgakpERNSyCFZWsB8+HCX/+x9Kd0XCtk8fqUuqJSIgAh8c/wBHs46iTFMGe6W91CVRI7SG6/eam8orVqy47k3lNWvWmK7Hr6fmpvKgQYOwb98+KBQKvPnmm7jrrrtw6tQpyGQyTJw4EbNnz8bGjRuh0Whw9OhR003lM2fO4K+//jJdvzk5OdU5Rs1N5UGDBiEmJgY5OTmYNWsW5s2bVysci46Oho+PD6KjoxEfH49p06ahV69et3z9vmzZMrzzzjv46KOPoFAoat1UdnNzw8GDB/HUU0/Bx8fnutfv69evx8KFC3HkyBEcOnQIjz/+OIYMGXLd6/eG3OizqLmJX9/nDQAPPfQQevfujc8++wxyuRyxsbGwsmo7q9BLGkpt3rwZCxcuxOeff44BAwbgo48+wtixY3Hx4sV6f1nWaDQYM2YMPD09sXXrVvj5+SE5ObnNDsWrmb6nDGqaUCrlbAG0aj3sXVXwumrqXkNkMgFd7/BFh36eOP5XMk5GpiL9YiE2r4hB18E+CL8vBHZO1x/umVBsDNpCnEKuux3d2I3uzCiVykbt5+TJk4iPj68zyqWqqgqXL1/GnXfeiccffxxjx47FmDFjMHr0aEydOhU+Pj6NrvX8+fPo2bOnKZACgCFDhsBgMODixYumUCosLAxyudy0jY+PD06fPt3o41yrX79+dZ779NNP8c033yAlJQWVlZXQaDQ3nD/eo0ePWj/XhDENKSoqwvbt27F//37Tcw8//DC+/vprUygVGxuLKVOm1Pv+8+fPQ61WY1T1NIdbpVQq69SenZ2NV199Fbt370ZOTg70ej0qKiqQkpJiqsvf398USF0rPDwcYWFhWL9+PRYvXozvv/8egYGBGDZs2G3VSkREbYPDqFHGUCoqCp4vLmrUL+DNJdgxGIGOgUguScbBjIO4M+hOqUsiC8Gbyo0n5U3lhtzos7Cysrru552SkoJFixahc+fOpnraEklDqQ8++ACzZ882/Uf1+eef4/fff8c333yDxYsX19n+m2++QUFBAQ4ePGhKDoOaqMF3a3Bl+l7ThFLxx7MBAB36eN7UBYHSWoFBE9sj7A5fHPr5MuKP5eDcgUzEHctB33GB6DkqAAoreb3vrekn1RKn7gGAjZUc594YK9mxG6NDhw4QBAHnz5/HpEmT6rx+/vx5eHh4mMJcQRDqBFhXD6ktKytD3759sWHDhjr7qhlWu3btWsyfPx9//fUXNm/ejFdffRW7du3CwIEDb/o8r+faOwaCINxWc267a3qxbdq0CS+88AJWrVqFQYMGwcHBAe+9994Nm5DfbF01/+MaMGCA6TlRFGEwGHDp0iV07Nixzl2yq13vNQCQyWSmfdaob5i0jY1Nnb/bjz32GPLz8/Hxxx8jMDAQKpUKgwYNgqZ6ee4bHRvVo6U+/fRTLF68GGvXrsUTTzzRon6pICKilst+6B0QlEpoU1KgvhQH60713wSRgiAIGO4/HOvPrcfu1N0MpVqJ1nD9XoM3lW9MqpvK13Ojz2LYsGHX/bwXLlyIWbNm4bvvvsPo0aMxZcoUU3jVFkjWU0qj0eD48eMYPXr0lWJkMowePRqHGlgG9tdff8WgQYMwd+5ceHl5oVu3bnjrrbdMPVbaElGng6Z65EJThFJajR6Jp42rPHToe3N9amo4uttg7KxuuH9RX3gGOUKr1uPwzwn44fUjiDuWXe8/ui195T1BEGCrVEjyaOwv9W5ubhgzZgzWrFmDysrKWq9lZWVhw4YNptE4qA6WMjOvrCITFxeHiooK0899+vRBXFwcPD090aFDh1qPq4fy9u7dG0uWLMHBgwfRrVs3/PDDD0D1/zxv9He0S5cuOHnyZK2eSgcOHIBMJkOnTp0add7mcODAAQwePBhz5sxB79690aFDB1y+fNnsx/n666/x/PPPIzY21vQ4efIkhg4dim+++Qao/h9lVFT9qw+FhobCxsamwddrwsKr/1xjY2MbVduBAwcwf/583H333QgLC4NKpUJeXp7p9R49eiAtLQ2XLl1qcB8PP/wwkpOT8cknn+DcuXOmKYZEREQ3IrOzg93gwQCA0qiWN/U7IiACALAvfR90Bp3U5VAjtIbr96tvKtfnVm8qX32tGRsbi0uXLmHGjBlA9U3lQ4cOYfDgwdi8eTM6duyIw4cP38YnXb/muqk8c+ZM7Ny5E7GxsXjiiSdMN1Sbq64bud7nvWzZMpw9exb33HMP/v77b3Tt2hU//fRTk9XS0kgWSuXl5UGv19dpzOvl5YWsrKx635OQkICtW7dCr9fjjz/+wGuvvYZVq1bhzTffbPA4arUaJSUltR6WQJueDmi1EFQqWPk2PtFurJQz+dCp9XBwtYZn0O31dvJp74TJL/bF6Ce6wt5FhdKCKuz86ix+ev8EspNq/3kklrTsUKq1WL16NdRqNcaOHYu9e/ciNTUVf/31F8aMGYOOHTti6dKlpm1HjhyJ1atX459//sGxY8fwr3/9q9Y/0g899BDc3d0xYcIE7Nu3D4mJidi9ezfmz5+PtLQ0JCYmYsmSJTh06BCSk5Oxc+dOxMXFmYakBgUFITExEbGxscjLy4Nara5T70MPPQRra2s89thjOHPmDKKjo/Hvf/8bjzzyyE03774doaGhOHbsGHbs2IFLly7htddeQ0xMjFmPERsbixMnTmDWrFno1q1brcf06dOxfv166HQ6LFmyBDExMZgzZw5OnTqFCxcu4LPPPkNeXh6sra3x0ksv4cUXX8S3336Ly5cv4/Dhw6YV/Dp06ICAgAAsW7YMcXFx+P3337Fq1apGfwbfffcdzp8/jyNHjuChhx6qNToqIiICw4YNwwMPPIBdu3YhMTERf/75J/766y/TNi4uLrj//vuxaNEi3HnnnfD39zfrZ0hERJbNYYzxpnVpC+xH2NuzNxyVjihSF+Fkbstrxk6tE28q37rmuql8PY39LBr6vAGgY8eOeO6557Bz507cf//9dRYOsmStavU9g8EAT09PfPHFF+jbty+mTZuGV155BZ9//nmD73n77bfh5ORkegQEBDRrzU3lSj+pIAgy8/8x1qy616HvzU3da4ggE9BpgDdmLB+I8PHBUChlyLxcjK3vHMOutWdRVlgFrUGL1JJUgD2lbltoaChiYmIQEhKCqVOnIjAwEOPGjUPHjh1Nq+fVWLVqFQICAjB06FDMmDEDL7zwAmxtbU2v29raYu/evWjXrh3uv/9+dOnSBTNnzkRVVRUcHR1ha2uLCxcu4IEHHkDHjh3x1FNPYe7cuXj66acBAA888ADuuusujBgxAh4eHti4cWOdem1tbbFjxw4UFBSgf//+mDx5MkaNGoXVq1c30ydm9PTTT+P+++/HtGnTMGDAAOTn52POnDlmPcbXX3+Nrl27muaMX23SpEmmxuAdO3bEzp07cfLkSYSHh2PQoEH45ZdfoFAYZ12/9tpreP7557F06VJ06dIF06ZNMw05trKywsaNG3HhwgX06NEDK1euvG54f219hYWF6NOnDx555BHMnz+/Tu+Cbdu2oX///pg+fTq6du2KF198sc6Fy8yZM6HRaPDkk0/exqdFRERtkf2IEYBMBvW588YbsS2IQqbAMH9jn8Q9qXukLocsCG8q35rmuKlco7Kyss7os8uXL9/ws7je511ZWYl58+Zh9+7dSE5OxoEDBxATE9NgfzGLJEpErVaLcrlc/Omnn2o9/+ijj4r33Xdfve8ZNmyYOGrUqFrP/fHHHyIAUa1W1/ueqqoqsbi42PRITU0VAYjFxcVmPJvml/fNWvFcp85i6oJnzb5vTZVO/Pzf0eLqp6PE7KSm+ZxKC6rEyLVnxdVPR4mrn44SP58XLf7143Gx19d9xP7f9xf1Bn2THPdmVVZWiufOnRMrKyulLuW2LV26VLS3txcPHTokdSnUBnz77beim5tbg/82t2SW9PeemlZxcbFFXFNczRLPiVqnpIceFs916izmr/9W6lLq+DPxT7Hbum7ivdvvlboUukZr/394YmKi+Nhjj4leXl6iIAgiAPH+++8Xy8vLa22Xnp4u3nnnnaKdnZ0YGhoq/vHHH6KTk5O4du1a0zaZmZnio48+Krq7u4sqlUoMCQkRZ8+eLRYXF4tZWVnixIkTRR8fH1GpVIqBgYHi0qVLRb3e+DtYVVWV+MADD4jOzs4iANN+AdT6/f3UqVPiiBEjRGtra9HV1VWcPXu2WFpaanr9scceEydMmFCr9gULFogRERGN+iwAiP/884/puWuPX1Pr448/Ljo5OYnOzs7iM888Iy5evFjs2bNng3VERESICxYsqLWfCRMmiI899liD9bz++usigDqPmnziep/F9T5vtVotPvjgg2JAQICoVCpFX19fcd68ea3mv+Hr/Z1r7DWFIN6om1oTGjBgAMLDw/Hf//4XqB4J1a5dO8ybN6/eRucvv/wyfvjhByQkJJga+X788cdYuXIlMjIyGnXMkpISODk5obi4GI6ON15RrqXKXPo6in78EW7P/AueCxaYdd/xx3Ow48szcHS3xsP/GdSkDYpzkkuwf0scMuOLAQDlVkVI7XoCnzz9Hwgy6RsjV1VVITExEcHBwbC2tpa6nNu2du1aFBcXY/78+aa/Q0TmVFFRgczMTNx3332YOHEiVqxYIXVJN83S/t5T07GUa4qrWeI5UeuUv24dct5ZCdvwcAR+u17qcmop1ZRi2OZh0Bl0+N/E/7XYBXraIkv7f/jrr7+ODz74oEkWECIyh+v9nWvsNYWkv5UuXLgQX375JdavX4/z58/jmWeeQXl5uWk1vkcffRRLliwxbf/MM8+goKAACxYswKVLl/D777/jrbfewty5cyU8C2loEhIAAKomaHJuWnXPTFP3rscz0BGTnu+DsbO7QXDUwk7rjM4nR2LrymPIiCtq0mO3RU888QSeffZZBlLUZN5991107twZ3t7etf79JiIiuhkO1YshVRw7Bl1hodTl1OKgdEB/r/4AgD1pnMJHTWf58uX45JNPcPjw4SZtwk0kJUl/M502bRref/99LF26FL169UJsbCz++usv0xzUlJSUWg3cAgICsGPHDsTExKBHjx6YP38+FixYUO+oKkunTkoCmmDlPU2VDsm3uerezRIEAR36eiLjngM43O4XwEqPnORS/LTqBP764jRK8iobsRciagmWLVsGrVaLqKioWr3LiIiIbobS3x+qzp0BgwFl0bulLqeOmlX4olOjpS6FLBxvKpOlU0hdwLx58zBv3rx6X9u9u+7/gAYNGtQkS1W2JvrSUuirl2g3dyiVfCYfOq0Bjh42cA9o3l8oE8sv45TfKTw44W7YxQbg3P4MXD6Ri8RTeeg5MgD9xgVBaSP5f7JERERE1AwcRo+G+sIFlEZFwfn+SVKXU8vwgOF45+g7+CfnHxRVFcHZ2lnqkoiIWiXGra2QpnrlPbmHO+RmHolg7lX3GksURSQWG88r1DcYwx/qjGmvhiOgiwsMOhH/7EzB90sP4czedBj0HLpKREREZOkcRo8CAJTv3w/DVcvdtwR+9n7o6NIRBtGAfen7pC6HiKjVYijVCtWEUqrgEPPut0qH5DM1U/c8b7i9OeVX5aNUUwoBAgIdAwEAbn72GD+/F+6Z2wPOXraoLNVizw8XsXlFDFLPFTRrfURERETUvFSdOsHKzw+iWo2yAwekLqeOCH/jFL7dqS1veiERUWvBUKoVUleHUuaeupd0Og96rQFOnjZw92/mqXvVo6T87P2gkqtMzwuCgKDu7nhwaTjumBoKla0CBRnl+PWTWPz+6UkUZpU3a51ERERE1DwEQTA1PC+LjJS6nDpGBIwAABzIOACtXit1OURErRJDqVZIk1jT5Ny8y8/GH5Nm6h6uCqWCneoP2uRyGXqODMDD/xmEHiP9IZMJSDqdj01vHMW+zZdQVc4LASIiIiJLUzOFr3T3HojalnW9F+YeBncbd5RryxGTHSN1OURErRJDqVboyvQ9842U0lTqkHLWOCWuuVbdu9qNQqka1nZWGDq1Ix5cGo6gHu4wGEScik7D968dwsmoVOjZb4qImpBBb2AITkTUjGz69IHcxQWG4mJUHDsmdTm1yAQZp/AREd0mhlKtjKjXQ5NUM1LKfKFU4qk86HUGOHvZws3Pzmz7bfTxSxoXStVw8bbDPXN64L4FveDmZwd1hQ77t8Rh0xtHkXgqD6IoNnHFdLsEQcDPP/8sdRk3tGzZMvTq1UvqMqgF0Gn02P7+CXyzaD+O/i+Biy4QETUDQS6H/UjjNLnSyCipy6ljeMBwoDqU4vUnEdHNYyjVymgzMyFqNBCsrGDl52e2/Uq16l6NpGJj0NbYUKpGQBdXTH0lHMMf6gQbBysUZVfgjzWn8OvHschLK2uialuH1NRUPPnkk/D19YVSqURgYCAWLFiA/Pz8Zq2joVAnMzMT48aNa7Ljrlq1Ci4uLqiqqqrzWkVFBRwdHfHJJ5+Y9Zhjx46FXC5HTAyH8FsaURSxZ9MlZCeWQDSIiPk9CT+tOoHi3EqpSyMisng1faVKo6JaXPAzwGcArOXWyCzPxKXCS1KXQ9SkeFOZmgJDqVamZuqeVWA7CHK5WfaprtQh5Zw0q+4BQKWuEhllGcAthFIAIJMJCBvqh4ffGIQ+Y9tBphCQdqEQP644iugNF1BRommCqlu2hIQE9OvXD3Fxcdi4cSPi4+Px+eefIyoqCoMGDUJBgfSrF3p7e0OlUjViy1vzyCOPoLy8HNu3b6/z2tatW6HRaPDwww+b7XgpKSk4ePAg5s2bh2+++cZs+71V2hbWd6O1O7c/AxcOZkIQgL53BUJpo0BWQgk2v3kU5w9mtrhfkoiILInd4MEQbG2hy8pC1ZmzUpdTi43CBgN9BgKcwkdmwJvKzXNTOSkpCYIgIDY29rb3RbePoVQr0xT9pJJO5sKgE+HibQtX3+afupdckgwRIpxUTnBRudzyfpQ2Cgya1AEPLRuI9n08IYrAuX0Z+H7pIZzYkQydVm/WuluyuXPnQqlUYufOnYiIiEC7du0wbtw4REZGIj09Ha+88opp2/rueDg7O2PdunWmn1NTUzF16lQ4OzvD1dUVEyZMQFL1NFIA2L17N8LDw2FnZwdnZ2cMGTIEycnJWLduHZYvX46TJ09CEAQIgmDa77XHPX36NEaOHAkbGxu4ubnhqaeeQlnZldFujz/+OCZOnIj3338fPj4+cHNzw9y5cxsMXzw9PTF+/Ph6A6JvvvkGEydOhKurK1566SV07NgRtra2CAkJwWuvvXZLgc7atWtx77334plnnsHGjRtRWVl7BE1RURGefvppeHl5wdraGt26dcNvv/1mev3AgQMYPnw4bG1t4eLigrFjx6KwsBAAEBQUhI8++qjW/nr16oVly5aZfhYEAZ999hnuu+8+2NnZYcWKFdDr9Zg5cyaCg4NhY2ODTp064eOPP6738wgLC4NKpYKPjw/mzZsHAHjyySdx77331tpWq9XC09MTX3/99U1/Rq1VdmIJ9m423v0eMCEEAye2x7RX+8OngxO0aj3+/vY8dnx5lr2miIiaiEylgv3QoQCA0qiWtwrf1VP4iG4Vbyo3/01lahkYSrUy6upQShkcYrZ9Sj11r6bJeYhTiFmO7+hug7ue6oZJz/eBRzsHaKv0OPTTZWxcfgTxx3Nub0SDKAKacmkejay7oKAAO3bswJw5c2BjY1PrNW9vbzz00EPYvHlzoz8HrVaLsWPHwsHBAfv27cOBAwdgb2+Pu+66CxqNBjqdDhMnTkRERAROnTqFQ4cO4amnnoIgCJg2bRqef/55hIWFITMzE5mZmZg2bVqdY5SXl2Ps2LFwcXFBTEwMtmzZgsjISFM4UiM6OhqXL19GdHQ01q9fj3Xr1tUKz641c+ZM/P3330hOTjY9l5CQgL1792LmzJkAAAcHB6xbtw7nzp3Dxx9/jC+//BIffvhhoz6bGqIoYu3atXj44YfRuXNndOjQAVu3bjW9bjAYMG7cOBw4cADff/89zp07h3feeQfy6tGOsbGxGDVqFLp27YpDhw5h//79GD9+PPT6mwtSly1bhkmTJuH06dN48sknYTAY4O/vjy1btuDcuXNYunQpXn75Zfz444+m93z22WeYO3cunnrqKZw+fRq//vorOnToAACYNWsW/vrrL2RmZpq2/+2331BRUVHvn6MlqizV4K8vTsOgExHSywN9xgYCABzdbDBxYR8MnBgCmUzA5RM52PSfo0i7WCh1yUQm77zzDgRBwLPPPit1KUS3zbQKX2TLC6UiAozNzs/kn0FuRa7U5dC1WsH1O3hTGZDgpnJD1Go15s+fD09PT1hbW+OOO+6o1Z6jsLAQDz30EDw8PGBjY4PQ0FCsXbsWAKDRaDBv3jz4+PjA2toagYGBePvtt81WmyVSSF0A3RxNonmbnKsrtEg5Z0zd20swdQ83sfLezfINdcaUxf1w8WgWDv90GSV5Vdjx5Rn4dHDCHVNC4RnoePM71VYAb/matc5GezkDUN54JFtcXBxEUUSXLl3qfb1Lly4oLCxEbm4uPD1v/Ge+efNmGAwGfPXVV6bQcO3atXB2dsbu3bvRr18/FBcX495770X79u1Nx6hhb28PhUIBb2/vBo/xww8/oKqqCt9++y3s7IznuHr1aowfPx4rV66El5dxRUgXFxesXr0acrkcnTt3xj333IOoqCjMnj273v2OHTsWvr6+WLt2rWlU0bp16xAQEIBRo4wXt6+++qpp+6CgILzwwgvYtGkTXnzxxRt+NjUiIyNRUVGBsWPHAgAefvhhfP3113jkkUdMrx89ehTnz59Hx44dAQAhIVeC5XfffRf9+vXDmjVrTM+FhYU1+vg1ZsyYgSeeeKLWc8uXLzd9HxwcjEOHDuHHH3/E1KlTAQBvvvkmnn/+eSxYsMC0Xf/+/QEAgwcPRqdOnfDdd9+ZPo+1a9diypQpsLe3v+n6WhuD3oCdX51HWaEazl62GPVYl1rBuUwmoO9dQQjo4oqdX59FcU4lfvnoH/Qe3Q4D7guB3Ir3fUg6MTEx+L//+z/06NFD6lKIzMI+IgJQKKCJvwx1YqJZZw3cLncbd3R3747TeaexJ20PJnecLHVJdLVWcP1ec1N5xYoV172pvGbNmkbdxK+5qTxo0CDs27cPCoUCb775Ju666y6cOnUKMpkMEydOxOzZs7Fx40ZoNBocPXrUdFP5zJkz+OuvvxBZHQI7OTnVOUbNTeVBgwYhJiYGOTk5mDVrFubNm1crHIuOjoaPjw+io6MRHx+PadOmoVevXg1ev8+cORP33nsvkpOTERhovBlYc1N5x44dwFU3lX19fXH69GnMnj0bDg4ON3X9fj0vvvgitm3bhvXr1yMwMBDvvvsuxo4di/j4eLi6uuK1117DuXPn8Oeff8Ld3R3x8fGmWRKffPIJfv31V/z4449o164dUlNTkZqaapa6LBWvmFuZK9P3gsyyv8STeTDoRbj62sHNV5pfMk2hlKP5Ly4EmYDOA33w0BuD0P+eICisZMiML8aWt48hct05lBWqzX7MluJGI6GUSmWj9nPy5EnEx8fDwcEB9vb2sLe3h6urK6qqqnD58mW4urri8ccfx9ixYzF+/Hh8/PHHtUbWNMb58+fRs2dPUyAFAEOGDIHBYMDFixdNz4WFhZlGFwGAj48PcnJyGtyvXC7HY489hnXr1kEURRgMBqxfvx5PPPEEZDLjP3+bN2/GkCFD4O3tDXt7e7z66qtISUm5qfq/+eYbTJs2DQqFMeefPn06Dhw4gMuXLwPVI6H8/5+9846v6f7/+PPurJspJFZixd6hdoJoqqg9WrVHW1RbtF+qVvGrKh1KtVVC1Z5VLUUIGlozoQRBIkGIlZ2bu87vjyS3rgRJJLk3yXk+HudBzjn3c17n3HHe5/15j8qVTQ6pJ8mOlHpRfH19c6xbtmwZzZs3x93dHQcHB3788UfT+cXHx3P79u1nHnv06NGmmZ+7d++yZ88eRo4c+cJaSwLhwbHcuvwIuUpG17caorTNfR6nvJcjA6e3pF77iiDA2f0xbF14iodxqcWuWUQEICUlhcGDB7NixQpcXAqeFi8iYk3IHB2xb9kSgJRg6+7CJyKSX/IzqZwXHp9UbtiwIXXr1iUoKIiYmBhCQkJISkoym1SuW7cuw4YNo2rVqtja2ppNKnt4eORwlPHEpHKDBg3o1KkTS5cuZe3atdy9e9e0X/akcp06dejevbtpUvlpPD6pnE1uk8pt2rTB29ubHj16MGXKFLNMgBchNTWV5cuX88UXX9C1a1fq1avHihUrsLW1NZWviImJoWnTpvj6+uLt7U1AQAA9evQwbatVqxbt2rXDy8uLdu3a8frrrxeKttKKGClVgjCkpKLP+oIXVqTU46l7lqKoIqUeR6GS0bJHdeq1q8jfO69z+Z87XP77DtfOxNOoYxVqNHPHvYoaifQ5Mw8Ku8wZD0ugsMvTbjVr1kQikRAREUHv3r1zbI+IiMDd3R1nZ2fICsN90oH1ePhrSkoKzZs3Z926dTnGcnd3h6zomYkTJ7J37142bdrEJ598wv79+2nVqlW+T/NZKBQKs78lEglGo/GZrxk5ciSfffYZBw8exGg0Ehsba4omOn78OIMHD2bOnDkEBgbi5OTExo0bWbx4cZ41PXz4kB07dqDT6Vi+fLlpvcFgYNWqVbnOeD3J87ZLpdJnvkfZPO7UA9i4cSNTpkxh8eLFtG7dGrVazRdffME///yTp+MCDB06lKlTp3L8+HGOHTtGtWrVaJ9V16M0o9MauBia+XvbeWjd59bbU6hkdBxcB6/6bhxae4n7sSls/r+TtO1bkwZ+lSySGi1Sdhk/fjzdunUjICCAefPmPXPfjIwMMjL+m6BJSkoqBoUiIgXDIaAzqceOkXwgGLfRoy0txwy/yn58e/Zb/o77m3R9Orby599jRYqJEmC/Z1MUk8qPkz2p/PLLL5smlbt06UJAQAADBgzA09Mzz1qfN6mcnemQ26Ty+fPnnzru45PKs2bNQhCEXCeVlyxZwrVr10hJSUGv1+PoWIAsmFy4du0aOp2Otm3bmtYpFApatmxJREQEAO+88w59+/blzJkzvPzyy/Tq1Ys2bdpAVspily5dqF27Nq+88grdu3fn5ZdfLhRtpRUxUqoEoc3KAZa5uiLLJYQyv2hSdcRmp+41s4xTyigYiU7KPK+idEpl4+BiQ8CIevT7ny+eNZzQa42c+fMGWz47RdD//mJ/0AUu/3OH9JSndOyTSDJDcC2x5PGh1s3NjS5duvDdd9/lKLZ9584d1q1bx/Dhw03r3N3dzSKbIiMjSUtLM/3drFkzIiMjKV++PDVr1jRbHg/lbdq0KdOmTePYsWM0aNCA9evXQ9bN83m1kerWrUt4eDipqf9FloSGhiKVSqldu3aezvtp1KhRAz8/P1atWkVQUBABAQGmUOBjx47h5eXF9OnT8fX1pVatWmb1p/LCunXrqFy5MuHh4YSFhZmWxYsXs3r1agwGA40aNeLmzZtcuZJ7q+hGjRo9c8boyfcoKSmJqKyoyWcRGhpKmzZtGDduHE2bNqVmzZqm6C2yQp+9vb2feWw3Nzd69epFUFAQq1evzpEeWBrR6wxoUjKdfk0CquTLaV+9iTuDZrakSj1XDDojRzZe4ffvzpXJLqAilmHjxo2cOXMmz/UrPvvsM5ycnExLlSpVilyjiEhBUWdFSaSHhaF7RqS0JfBx8aGifUUyDBn8fftvS8sReZwSYL8/PqmcGwWdVH7cNg0LC+PKlSu88cYbkDWpfPz4cdq0acOmTZvw8fHh778L/7Nb0EnlmJgYDh48SHBwcK6Tyq+++iq7d+/m7NmzTJ8+Ha22+Gytrl27cuPGDT744ANT1sGUKVMg69kpKiqKuXPnkp6ezoABA+jXT0zpfRb5dkp5e3vz6aef5ju9ReTF0ZqKnBeO8yYq/B5Go4BbJXtcPYu/6x5AXGocGYYMFFIFFR2KL9e7QjVHek9pxitjG1C9iTsKGxnpyTqu/HOXA0EXWfXhX2z57CThh2Ix6I0lrt370qVLycjIIDAwkCNHjhAbG8vevXvp0qULPj4+zJw507Rvdqjt2bNnOXXqFG+//bbZzWPw4MGUK1eOnj17cvToUaKioggJCWHixIncvHmTqKgopk2bxvHjx7lx4wb79u0jMjLSFH7s7e1NVFQUYWFh3L9/32xG/vFj2NjYMGzYMP79918OHTrEu+++y5AhQ0yzLC/CqFGj2L59Ozt27DAVOAeoVasWMTExbNy4kWvXrrFkyRJ27NiRr7FXrlxJv379aNCggdkyatQo7t+/z969e/Hz86NDhw707duX/fv3ExUVxZ49e9i7dy8A06ZN4+TJk4wbN45z585x6dIlli9fzv379yHrPVq7di1Hjx7l/PnzDBs2zGzG6WnUqlWLU6dO8eeff3LlyhVmzJhhVqSRrOLoixcvZsmSJURGRnLmzBm+/fZbs31Gjx7NmjVriIiIYNiwYfm6PiUNo1Eg+ZEGBKjgraZ17xr5HsPeSUWPCY1p178WMrmUG+cfsHHuP0Sfv18kmkVEsomNjeW9995j3bp12NjY5Ok106ZNIzEx0bSIdS9ErBlFhQrYZNVJSzl4yNJyzJBIJP+l8N0UU/hE8oc4qWxOUU8qP+/YSqWS0NBQ0zqdTsfJkyepV6+eaZ27uzvDhg3jl19+4euvv+bHH380bXN0dGTgwIGsWLGCTZs2sW3bNqvonmit5Nsp9f7777N9+3aqV69Oly5d2LhxY64PmSKFz39OqcKpJ2VNqXtejl7IpcWbTSqRSKjRrDxd327IqMXt6TWpKc0CvXCr7AACxN9I5t+QW6Qlanl0J43Ee+mkp2gx6J/t2bcGatWqxcmTJ6levToDBgzAy8uLrl274uPjY+qel83ixYupUqUK7du354033mDKlCnY2f0XamxnZ8eRI0eoWrUqffr0oW7duowaNQqNRoOjoyN2dnZcunSJvn374uPjw9ixYxk/fjxvvfUWAH379uWVV16hY8eOuLu7s2HDhhx67ezs+PPPP3n48CEtWrSgX79+dO7cmaVLlxbK9ejbty8qlQo7Ozt69eplWv/aa6/xwQcfMGHCBJo0acKxY8eYMWNGnsc9ffo04eHh9O3bN8c2JycnOnfubMo937ZtGy1atOD111+nXr16fPTRR6abvY+PD/v27SM8PJyWLVvSunVrfv31V1ONqmnTpuHn52fKw+/Vq5epqPyzeOutt+jTpw8DBw7kpZde4sGDB4wbN85sn2HDhvH111/z3XffUb9+fbp3705kZKTZPgEBAXh6eppy/EsrgiCQ/CAdo05AIpXQtn8tpLKCBRRLpBIad65C/2m+uFa0Jz1Zx+/LznFkw2X02vx1VRQRySunT58mPj6eZs2aIZfLkcvlHD58mCVLliCXy3N9wFCpVDg6OpotIiLWjDogAKy8C9/h2MMYBeu3F0WsC3FS2ZyinFTO5vLlyzmiyZRKJe+88w4ffvghe/fu5eLFi4wZM4a0tDSTjpkzZ/Lrr79y9epVLly4wO7du03X7ssvv2TDhg1cunSJK1eusGXLFjw8PExRbiK5IBSQ06dPC++++65Qrlw5wcXFRRg/frxw+vTpgg5XbCQmJgqAkJiYaGkp+ebmBx8IF2vXEe7/9NMLj5WerBW+e+egsPStYOFhXEqh6CsIP1/4WWiwuoHwwaEPLKYhN1IeaYSLobeE/WvChX/+OiPcvHpPuBudaFoe3E4Rkh+mCxnpOsFoNFpabp6YOXOm4ODgIBw/ftzSUkRKGMnJyYKjo6Owbds2S0spUlITNMLd6ETh5tV7wvlz/wrp6emFMq5OqxeObroiLH0rWFj6VrCwbtZxIT4mqVDGFrEs1mZTJCUlCefPnzdbfH19hTfffFM4f/58nsawtnMSEXkSzbVrwsXadYSLDRoK+iTr+i3V6rXCS+teEhqsbiCEx4dbWk6ZJD09Xbh48WKh3cOLm6ioKGHYsGFChQoVBIlEIgBCnz59hNTUVLP9bt26Jbz88suCvb29UKtWLeGPP/4QnJychKCgINM+cXFxwtChQ4Vy5coJKpVKqF69ujBmzBghMTFRuHPnjtCrVy/B09NTUCqVgpeXlzBz5kzBYDAIgiAIGo1G6Nu3r+Ds7CwApnEBYceOHaZjnDt3TujYsaNgY2MjuLq6CmPGjBGSk5NN24cNGyb07NnTTPt7770n+Pn5PfdapKWlCU5OToKrq6ug0WjMtn344YeCm5ub4ODgIAwcOFD46quvBCcnJ9P2WbNmCY0bN37mdQZyXWJjY4X09HSTr0OlUglt27YVTpw4YXr93Llzhbp16wq2traCq6ur0LNnT+H69euCIAjCjz/+KDRp0kSwt7cXHB0dhc6dOwtnzpx57vmWVJ71ncurTSERXjAvSafT8d133/G///0PnU5Hw4YNmThxIiNGjLDKwq5JSUk4OTmRmJhY4mYDr/fuQ0ZEBJW/+w51p44vNNbF0NscWnsJt8oODPqkZaFpzC+fHv+ULVe2MKbhGCY2m2gxHU9Do9Fw/fp1KleqilRQoE3X54hykEglKG1kKG3lKG3kyOTWW6otKCiIxMREJk6caCoUKCLyNIxGI/fv32fx4sWm2ajs6K3ShlajJ+FuZti70gHi4m9RrVq1PKdA5YWYiw8IXh1BWpIWqUxCq541aBJQ5fkNFkSslpJgU/j7+9OkSRO+/vrrPO1fEs5JROTaq93QXr9OxcWLcOrWzdJyzJhyeAp/Rv9ptbZtaUej0RAVFVXo93BLMWvWLL788ssiaSAkIlIYPOs7l1ebosBPpTqdjs2bN/Paa68xefJkfH19+emnn+jbty8ff/wxgwcPLujQIrkgGI2mQueFkb5nDal7FFPnvRdFIpGgVMlxcFbh6mmPW2UHHN1sUNkpkEglCEaBjDQ9yQ80PLiVwsPbKaQ80qDV6K2uFtWIESN4//33RYeUSJ6IiYmhQoUKrF+/nlWrVpVah5RBbyTpXmb9Bht7BSo7xXNfUxCq1nNj0MyWVGtcDqNB4Nj2q/z6TRgpjzRFcjwRERGR0kp2wXOrTOGrnJnCJ9aVEikM5syZw5IlS/j777+fWxxcRKSkku8njDNnzhAUFMSGDRuQSqUMHTqUr776ijp16pj26d27Ny1atChsrWUa/d27COnpIJejrFz5hcZKT9Fy89IjAGpaqOteNtlOqepO1S2qIz/IZFJkDkpsHDJr0Oi1BrTpBjKyoqj0OiN6nZa0JG2mQys7isrWuqOoRESexNvb2+ocq4WNYBRIvJeO0SggV8pQu9qQoS26Oom2Dkq6vt2QiNA4jm6+wq3Lj9g49wT+g+tYfJJApHQSEiI+GIuUPtRdAniwYgWph49g1GqRKpWWlmSiQ+UOyCQyIh9FcivlFpUcKllakkgJpyx0PhYp2+T7CblFixZERkayfPlybt26xaJFi8wcUgDVqlVj0KBBhamzzGMqcl6lChLFi83iXz97D8EoUK6KA84V7PLwiqIhMSORB5oHAHg7FU7x9uJGIpGgUMmxz4qiKlfZAcdyttjYK5BKM1u1ZqTrSX6YGUX14HYKyQ81aNP1CMbS/bAvIlISSHmUgV5rQCKV4FTOtlhS6SQSCfXaVWTg9JaU91KTkabnzxX/ErzmIlqNvsiPLyIiIlLSsWnQAHn58hjT0kg7ftzScsxwUjnRtHxTAEJiRaewiIiIyPPIt1Pq+vXr7N27l/79+5tV+H8ce3t7goKCCkOfSBYZ17M77714mpu1pO5FJ2WmI5a3K4+9wt6iWgoLqUyKjb0Cx3K2uFV2wMXDHntnFQqVDACDzkh6spaE+DTu30whIT6NtGQtep3YjUtEpLhJT9GSnqIFwLGcLTJF8UYyOlewo89HzWn+ihdI4NLxO2yad4I71xOLVYeIiIhISUMilaIOyE7hC7a0nBz4V/EH0SklIiIikifybYHHx8fzzz//5Fj/zz//cOrUqcLSJfIEpkipF6wnlZ6s5dblrNQ9sZ5UkZIZRSXD3kmFi8cTUVSyzCgqbbqelIcaHt5O5cGtzCiqDDGKSkSkyNFlGEh+mJmmZ++kQmVrmXpZMpmUVr1q0HtSMxxcVSTd17B90RlO/h6F0SDWjhARERF5Gg7ZdaUOHkQwWNfkXrZT6tSdUyRrky0tR0RERMSqybdTavz48cTGxuZYf+vWLcaPH19YukSeINsppXrBSKlrZ+8hCOBeVY2Tu+VS93jcKeVYOp1ST2IWRVXJARfPJ6Ko9JlRVInxady7mULC3TTSkjKjqEp7XR8RkeLEaDCSeC8dBAGlrRw7J8vXIqlYy5lBn7SkVosKCEaBE79FsWPx2UydIiIiIiI5sG/RAqlajeHBA9LDwy0txwwvRy+qOVVDL+gJvR1qaTkiIiIiVk2+nVIXL16kWbNmOdY3bdqUixcvFpYukSfIiC6c9D1rSd2jDERKPQuJRIJC+VgUVRU1Tu622DgokMqkIAhoNXpSHmVGUT28nUryAw0ZaTqMYhSViEiBEQSBpPsajAYjMrkURzcbJJKiryOVF1R2Cl4eVZ+AEfVQ2si4cz2RTfNPcOnvONExLSIiIvIEEqUSB//MiKTk/dbXhc+/spjCJyIiIpIX8u2UUqlU3L17N8f6uLi4Utsu3NIY09PR344DQFm94F3q0pK03L5iHal7lHGn1JNIpRJUdgoc3Wxxq2SPq6c9Di4qlDZykGRFUaVoSbyXzv2byVlRVJkFmsWHVRGRvJOaqEWr0SORSHB0t810AlsZtV/yYOAnLfGs6YROYyB4dQT7frqAJlVnaWkiIiIiVoU6O4UvONjq7KHsFL6jN4+iN4pNLERERESeRr6t8Zdffplp06aRmPhfIdaEhAQ+/vhjunTpUtj6RADtjRsAyJyckLu4FHic62fjEQQo76XGsZxtISrMPzqjjpvJN0F0SuVAIpEgV8qwc1ThXMGOcpUzo6hsHZTI5FIQyIqiyuBhXCoPbqWS9CBdjKJ6AWbPnk2TJk0sLUOkiMlI05GWmFlHSu1qg0Ips7Skp+JYzpZek5rxUs/qSKUSrp6OZ9O8E6aagCIiIiIi4NC+HRKlEl1MDBlXIi0tx4zG7o1xVjmTpE3ibPxZS8sRESl1iPZ76SHfTqlFixYRGxuLl5cXHTt2pGPHjlSrVo07d+6wePHiolFZxvmvyHlhpe5VKBRdL0JsUix6QY+d3I4KdpbXY81kR1Gp3WxwrWiPa0V7HFxssqKoJBgNRjQpuswoqthkHt1JJTUxA61Gz19/hSKTyejWrZulT6NQGD58OBKJ5KmLt3fBGgFMmTKF4ODC6d6Tnp6Oq6sr5cqVIyMjo1DGFHlx9DoDSfc1ANiqldg45N491pqQSiX4dvWmz0fNcSpvS8qjDHZ+fZZj269i0ItF0EVERESk9vbYt2kDQHKwdaXwyaQyOlTuAGIKn0g+OX78uGi/54HCsN9Xr16Ns7PzC40h8uLk2ylVqVIlzp07x8KFC6lXrx7Nmzfnm2++4fz581SpUqVoVJZxMgrBKZWamMGtyAQAajR3LzRtBeXx1D1rqedSEpBIJMgVMuwclVlRVA44lbfDVp0VRZXVVSw1IYOEu2ksX/oDo4e/xeHDR7h0/hopjzSkp2SmLxn0RqsLdX8crVabY90333xDXFycaQEICgoy/X3y5MnnjpEbDg4OuLm5FYrubdu2Ub9+ferUqcPOnTsLZcyCIggCer2YMmA0CiTeS0cQBBQqGQ4uKktLyhcVvB0Z8HEL6rX1BAHO7oth28LTPLqTamlpIiIiIhZH3SUAgJQDhTO5VJhkp/CFxIZYtc0lYl2sXLmSd999lyNHjnD79m1Ly8kXJdV+F7EsBSqmYW9vz9ixY1m2bBmLFi1i6NChKBTWP+tcUtFef3Gn1PWz90CACtUccXSzbOoeQFSSWE+qMJBKJahs5ahdbXCr5JAZReVqg9JWTpomjV9372DY4FEEdHyZn9euIS1JS/IDDQl309i1dQ9SqZQdm3bTtEkz7OzsaPVSa86fu2ByWIWHh9OxY0fUajWOjo40b96cU6dOIQgC7u7ubN261aSlSZMmeHp6mv7+66+/UKlUpKWlQVaa7+jRo3F3d8fR0ZFOnToR/li3nOwQ3J9++olq1aphY2OT43ydnJzw8PAwLQDOzs6mv1u0aMHcuXMZOnQojo6OjB07FoD//e9/+Pj4YGdnR/Xq1ZkxYwY6nS7HsbMZPnw4vXr1YtGiRXh6euLm5sb48ePNXvM0Vq5cyZtvvsmbb77JypUrc2y/cOEC3bt3x9HREbVaTfv27bl27Zpp+6pVq6hfvz4qlQpPT08mTJgAQHR0NBKJhLCwMNO+CQkJSCQSQkIyZ2BDQkKQSCTs2bOH5s2bo1Kp+Ouvv7h27Ro9e/akQoUKODg40KJFCw4cMJ9RzsjI4H//+x9VqlRBpVJRs2ZNVq5ciSAI1KxZk0WLFpntHxYWhkQi4erVq8+9JpZEEASSH2gw6IxIZRIcy9mWSEe40kZOxyF16fpWQ2zsFdyLSWbz/JP8e+SW+KAjIiJSpnHo2BGkUjQXL6K7dcvScsxoU7ENCqmCmOQYk+0rIvIsUlJS2LRpE++88w7dunVj9erVZtuzbb3g4GB8fX2xs7OjTZs2XL582bSPaL/n335/GjExMfTs2RMHBwccHR0ZMGCAWX3tp11rgBs3btCjRw9cXFywt7enfv36/PHHHwXWUpopcGXyixcvEhMTk8OT+dprrxWGLpHH+C99r2ChjVhZ1z1KcJFzQRBI11umRbut/PkP03KFLDOSSq1k++6N1K1bh5btmjDs0RCmfDiZqR9Nw2gQzFJ/5i2Yw6xp83BzK8dH0z9g1MhR7N62D4lEwqCBr9OoYWNCDvyFUinn34vnkUoy6/B06NCBkJAQ+vXrx6NHj4iIiMDW1pZLly5Rp04dDh8+TIsWLbCzswOgf//+2NrasmfPHpycnPjhhx/o3LkzV65cwdXVFYCrV6+ybds2tm/fjkxWsHo/ixYtYubMmcyaNcu0Tq1Ws3r1aipWrMj58+cZM2YMarWajz766KnjHDp0CE9PTw4dOsTVq1cZOHAgTZo0YcyYMU99zbVr1zh+/Djbt29HEAQ++OADbty4gZeXFwC3bt2iQ4cO+Pv7c/DgQRwdHQkNDTVFMy1fvpxJkyaxYMECunbtSmJiIqGh+W8lPXXqVBYtWkT16tVxcXEhNjaWV199lfnz56NSqfj555/p0aMHly9fpmrVqgAMHTqU48ePs2TJEho3bkxUVBT3799HIpEwcuRIgoKCmDJliukYQUFBdOjQgZo1a+ZbX3GSnqwjIy3TGHEsZ2uKKCypVG/qToVqjgSvuUhsxCMOr7/MjX8f0PHNOtg5Ki0tT0RERKTYkbu6YtesGWmnTpEcfBDXoUMsLcmEvcKelh4tCb0dSkhsCNWdCt6wSKTgWLv9/jibN2+mTp061K5dmzfffJP333+fadOm5Rhj+vTpLF68GHd3d95++21GjhxpshkHDx5M06ZNWb58OTKZjLCwMBQKBRKJRLTf84HRaDQ5pA4fPoxer2f8+PEMHDjQNCH8tGsNMH78eLRaLUeOHMHe3p6LFy/i4OBQoOtT2sm3U+r69ev07t2b8+fPI5FITDO02V8Ug8FQ+CrLMIIgmJxSqgJGSqUmZHD7albqXjPRKfUipOvTeWn9SxY59j9v/IOdwi7P+2dH7MiVMnr07M7Yt8dw5t9/8M9qn+xcIXOsefPm4de+Iwa9kQ8mTmbgm33RaDTY2Nhw89ZNxo2ZSBWPzPepQrvMFN17sSm0aNqan39ZRcpDDfv3BdOkcRM8PD04dOgQderUISQkBD8/P8iadTlx4gTx8fGoVJmpU4sWLWLnzp1s3brVNCOi1Wr5+eefcXcveIppp06dmDx5stm6Tz75xPR/b29vpkyZwsaNG595U3NxcWHp0qXIZDLq1KlDt27dCA4OfuZNbdWqVXTt2hWXrIYEgYGBBAUFMXv2bACWLVuGk5MTGzduNN2wfHx8TK+fN28ekydP5r333jOta9GiRb6vwaeffmrWeMLV1ZXGjRub/p47dy47duxg165dTJgwgStXrrB582b2799PQEBmGkT1xzp9Dh8+nJkzZ3LixAlatmyJTqdj/fr1OaKnrI3MhgCZdaRMddhKAfbOKnq824Rzh25ybMdVos/dZ+O8E3QeWhevBmIYu4iISNnDIaBzplPqwAGrckqRlcKX7ZQa2WCkpeWUSUqi/Q7wyiuvkJiYyOHDh032ezbz58832dlTp06lW7duJvs9JiaGDz/8kDp16gBQq1Yt0+v8/f354YcfADhy5AhNmzbFw8ODkJCQMmu/P43g4GDOnz9PVFSUqUzRzz//TP369Tl58iQtWrR45rWOiYmhb9++NGzYEJ6wrUXMyfeU8XvvvUe1atWIj4/Hzs6OCxcucOTIEXx9fU0eQ5HCQx9/D2NaGkilKLIiGvLL1TPxIIBHdUfUrjlDKosbQRD+c0o5liynVEnh8uXLnDhxgtdffx0AuVzOwIEDzdLJsh3Jvi2bYeeoRO1qQ616me+HYJOOa0V73pv4PpOmvsvAob1YtuJrYm5GZ75YEHjJtw2XrlwiJvo2Bw+E0LJ5G3wbt+bPPQe4c+MRx0KP0bJZG9KStZw+eYaUlBTc3NxwcHAwLVFRUWapa15eXi90QwPw9fXNsW7Tpk20bdsWDw8PHBwc+OSTT4iJiXnmOPXr1zeb7fH09CQ+Pv6p+xsMBtasWWMyJADefPNNVq9ejdGYGZkWFhZG+/btc013jo+P5/bt23TOam/9Ijx5DVJSUpgyZQp169bF2dkZBwcHIiIiTNcgLCwMmUxmMkKepGLFinTr1o1Vq1YB8Ntvv5GRkUH//v1fWGtRYdAbSbqfOSuqslNgqy5dKeYSqYTGnavQf2oLXCvak56kZffScI5svIJeK04OlURiY2O5efOm6e8TJ07w/vvv8+OPP1pUl4hISUCdNaGSduoU+kfW1aU0u65U+L1wHmoeWlqOiBWTF/s9m0aNGpn+n51+l22nTpo0idGjRxMQEMCCBQvMbG0/Pz8uXrzIvXv3TM4uf39/QkJC0Ol0HDt2zOQACw8PL/X2+7OIiIigSpUqZnWz69Wrh7OzMxEREfCcaz1x4kTmzZtH27ZtmTVrFufOnSuQjrJAvqeNjx8/zsGDBylXrhxSqRSpVEq7du347LPPmDhxImfPii1PC5PsKClFlcpIlQVLzbhmRV33AO6n3ydFl4JUIqWqY8EcbZbCVm7LP2/8Y7Fj55WVK1ei1+upWLGiaZ0gCKhUKpYuXYqTk5Np/eMOkmxHlSAIyBUy5s3/lKHD3uT3339nz549LPhiPhs2bOC1Hr1o7d4CVxdXTp/7m79PhvLxhzMp5+rO0u+/5vTpU+j0OhrVa0bKQw337z6iQnkPdmzcjVQmRaaQZv4rk+BazhW9zoAgCNjb27/wdXpyjOPHjzN48GDmzJlDYGCgKVLped1Cn3QcSSQSk3MpN/78809u3brFwIEDzdYbDAaCg4Pp0qULtrZPfw+ftQ1AKs2cQ3i8ftDTcuSfvAZTpkxh//79LFq0iJo1a2Jra0u/fv1M6dfPOzbA6NGjGTJkCF999RVBQUEMHDjQFNptbQiCQNL9dIwGAZlCitrNpkTWkcoL5So70H+aL8d3XOPcwZucD7nJzcuPeHlUPcpVVltankg+eOONNxg7dixDhgzhzp07dOnShfr167Nu3Tru3LnDzJkzLS1RRMRqUVaujKpOHTIuXSLlUAjOfXpbWpIJD3sP6rjW4dLDSxy9eZSeNXtaWlKZo6zY79l26uzZs3njjTdM9vusWbPYuHEjvXv3pmHDhri6unL48GEOHz7M/Pnz8fDw4PPPP+fkyZPodDraZHW0TElJwdPTM9fAk8c71pVk+/1Feda1Hj16NIGBgfz+++/s27ePzz77jMWLF/Puu+8WmZ6SSr4jpQwGA2p1pqFbrlw5U0cALy8vswJrIoWDNjordc+7YBFFKY80xF1LBCtM3avsUBmlrGTVQJFIJNgp7Cyy5PWhWq/X8/PPP7N48WLCwsJMS3h4OBUrVmTDhg35OmcfHx8++OAD9u3bR58+fVi9ejVyhRQbOwXtO7RnX/AeLl2O4NVeXfALbI1Or2Xj9p9p1rQ55Sq4oLSV06RJU+Lv3UUmk+NVpRqVPbyo6F6FCq6VURjteHg7lbRELQadkYS7aSQ/1JCWpCUjTWdyWBWUY8eO4eXlxfTp0/H19aVWrVrcuHGjwOM9jZUrVzJo0CCzax4WFsagQYNMM1yNGjXi6NGjuTqT1Go13t7eT21tmz0Dld21hKwIp7wQGhrK8OHDTcaIh4cH0dHRpu0NGzbEaDRy+PDhp47x6quvYm9vz/Lly9m7dy8jR1pvCkLKowx0GQYkEglO7rZIpaXTIZWNXCGj/QAferzbGDtHJY/iUtmy4BRn98cgGMUi6CWFf//9l5YtW0JWTZEGDRpw7Ngx1q1bl6PQrYiISE7UWZHGyS/YIr4oeLwLn0jxI9rvfQgKCjJdi/bt2/Prr79y4cIF2rVrR6NGjcjIyOCHH37A19fX5CBq1qwZd+7cQS6XU7NmTbOlXLlyBXgn8k5x2e/Pom7dusTGxhIbG2tad/HiRRISEqhXr55p3dOuNUCVKlV4++232b59O5MnT2bFihXFeg4lhXxHSjVo0IDw8HCqVavGSy+9xMKFC1Eqlfz4449inmQR8F+R84I5pa6duQeAZ00nq2mDXlLrSZUUdu/ezaNHjxg1apTZjApA3759WblyJW+//fZzx0lPT+fDDz+kX79+VKtWjZs3b3Ly5En69u1r2sff35/Jkyfj6+trKtzXoUMHNmzcwIcffmhKF+0zsAetl7Vm9PghzJ/3GTWq1eDmzVvs3buHVwK706h+U8jMCkSr0YMmpx6ZXIpMLkXyhCs9NTGDxHuZHUKMRoH0FK3pb4CK5asSExPDqh/X0KxJc/48sJft23cgCJj206TqMOiNpr+1Gj26DIPZOBnpOvQ6o9m6bO7fv8dvv/3GhrWbqVLB/Hewb88BvDn8daKv3GTooJEsWfItfXv3Z9J7U3B0dOTkqRM0b9aCRk3qM3v2bN5++23Kly9P165dSU5OJjQ0lHfffRdbW1tatWrFggULTCnUj+faP4tatWqxfft2evTogUQiYcaMGWazRt7e3gwbNoyRI0eaCp3fuHGD+Ph4BgwYkHn9ZTKGDx/OtGnTqFWrFq1bt87TsYsbTaqO9OTMCDDHcjbIFQUruFkSqVrfjUEzWnLol0tEhd/n2LarxFx4QOdh9azm91/k6eh0OlPNjgMHDpgax9SpU8fMGS0iIpI76i4B3F+2jNS//sKYlobUiqJ5/Sv7833494TeDiXDkIFKJv4mi5hjDfb7unXr+PDDD037BQQE0Lp1a3r16sXChQvx8fHh9u3b/P777/Tu3TvXlLvColatWsTExLBx40ZatGjB77//zo4dO4rkWAaDIcdEr0qlIiAggIYNGzJ48GC+/vpr9Ho948aNw8/PD19f3+de6/fff5+uXbvi4+PDo0ePOHToEHXr1i2Scyjp5DtS6pNPPjE9zHz66adERUXRvn17/vjjD5YsWVIUGss0GS/olLp6OrNlpbV03QNMLXFFp1TRsHLlSgICAnLc0Mi6qZ06dSpPOc0ymYwHDx4wdOhQfHx8GDBgAF27dmXOnDmmffz8/DAYDGbFF/39/XOsk0gk/PHHH3Tw68DYt0fTqFkDRo4dxp37t6ndoBruVRywdVQiU0hQu9pg56hEZSdHrpD910RBb0Sr0ZOR9t8CoMsw/Pe3EfRao9k+nTsE8taocXw4dRLtOrXm+PHjfDDhQxAw7WPQGRGM//1t1AsYDYLZOAadgPDEuuzll3W/YGdrR6vm7XNsa9W8PTYqG9atX4+9jRNb1+0iOSmZV3sG4hfQjtU/B2HUQ0J8Gn17DOSrL7/iu+++o379+nTv3p3IyEjTdVy1ahV6vZ7mzZvz/vvvM2/evDx9Jr788ktcXFxo06YNPXr0IDAwkGbNmpnts3z5cvr168e4ceOoU6cOY8aMITU11WyfUaNGodVqGTFiRJ6OW9zotAaSH2R6NO2clKjsSlcdqbxgq1bS9e2G+A+ujVwp5ealR2yc9w/XzhSsnoJI8VG/fn2+//57jh49yv79+3nllVcAuH37Nm5uYgF7EZHnoapdG0WlSggZGaQUoHNtUVLXrS7lbcuTrk/n5J2TlpYjYoVYtf3eoQMjRozAx8eHQYMGcePGDSpUKNqyMK+99hoffPABEyZMoEmTJhw7dowZM2YUybFSUlJo2rSp2ZI9kfvrr7/i4uJChw4dCAgIoHr16mzatAnycK0NBgPjx4+nbt26vPLKK/j4+PDdd98VyTmUdCTCi+TFZPHw4UNcXFxKRM2OpKQknJycSExMxNHR0dJynsvVgC7obt6k6s9rsM8K688ryQ81/PzxMZDA8M/aYu9sHbMyb+1/i2O3jzGnzRz61OpjaTnPRKPREBUVRbVq1bCxsXyR+LKIIGQ6iAx6Iwa9kRf/xbI+9BkGNKmZKX1yhSwzwkdpfRE+R48epXPnzsTGxha5MZJfjAYjj+6kYdAbUdrIcSqfvxbMj1NavveP7qSyf9VF7sUkA1C3jSftBtQqNV0IrYHCtClCQkLo3bs3SUlJDBs2zNRY4OOPP+bSpUts3769kFQ/m5JmJ4mIPM7dzxbwcM0anHq+RsXPP7e0HDM+Pf4pW65sYWDtgXzSKm+RziL5p7Tcw0VESgrP+s7l1abIl2Wq0+mwtbUlLCyMBg0amNa7uroWRL/IczBmZKC7dQsAVQEipbJnxivWdLYahxRi+p5IPpFIJMjkEmTyfAd2lhzUoLKTk/RAg15n4OGdNBycVdiqFVbh7M/IyODevXvMnj2b/v37W51DShAEkh5oMOiNSOVSHMuV3sLm+cHFw56+HzXnxO4ozvx5g4hjcdyKTKDLyHp4VMs5EytiWfz9/bl//z5JSUm4uLiY1o8dO9ZqmwqIiFgb6oDOPFyzhuSQwwg6HZJcut1aCv8q/my5soWQ2BCmvzRdvE+JiIiIZJEvp5RCoaBq1aoYDGK76eJAe+MGCAJSBwdkBSgmd9XUdc96UvfSdGnEpWbWxqjmaHmn1OFfVnH1xPGnblc5OlO7a08eqpQo5NYXuVLWkAB2Ts7YOTnnYe+ShcpOgatSRvIDDVqNnpRHmf+q3WyQySzrkNuwYQOjRo2iSZMm/PzzzxbVkhtpiVq06XqQSHAqZ4u0CK/Xqd07CN//B5SwiD05BtKStdxLFFj/sQSVvRyVnRwJ/z0UedaqTZcxE1CIM8sWIT09HUEQTA6pGzdusGPHDurWrUtgYKCl5YmIlAhsmzVD5uKC4dEj0k6fxr5VK0tLMtHSoyW2clvupt3l0sNL1HUTa8uIiIiIUJBC59OnT+fjjz9m7dq1YoRUEaONyuyOpaxWLd+zKUn307kblQQSqN7UvYgU5p8bSZldE1xULjjbWNaxcO30CU799ux0CDudDqPBgEGvQyoUXTtRkbyT8ugBto5OpXKGUSaX4lTelvRkHSkJGWjT9Ty6nYrazcai9ZGGDx/O8OHDLXb8Z5GRric1MQMAtasKharonMd6rZZjm9ehy8ilEn8JQ5OcuTxOwt040pOT6PXRDGRy64kuKCv07NmTPn368Pbbb5OQkMBLL72EQqHg/v37fPnll7zzzjuWligiYvVIZDIcOnUkcdt2kvcfsCqnlI3chtaerTkYe5CQ2BDRKSUiIiKSRb6dUkuXLuXq1atUrFgRLy8vU8vIbM6cOVOY+so02Z33VNULkrqX2XWvUi1n7J3E1L0n0WVoOBj0PQCNAl6hXofOue6nNxpJ0hlwquCBjcp6rmOZRMh8aDYaDGg16ahsS2c6i0Qiwc5RidJGRtL99KyOf+nYOhiwd1EhlZY+Z1xBMeiMJN1PB8DWQYGtg7JIjxdzIRxdhgYHF1e6fzCtSI9VZAgCMREPCdsfg15rRK6U0iSgCq4VJez97iuiw8+wZ+mXvDpxClKpGB1anJw5c4avvvoKgK1bt1KhQgXOnj3Ltm3bmDlzpuiUEhHJI+qAgEynVHAwFT6xrjQ5/yr+mU6pmyG800T8TouIiIhQEKdUr169ikaJSA60L9B5zxq77mFFnff+3raRpHvxqMu54z9k9FPTVTQaDWlRUShVNijFlBaLo7KzJz05iYzU1FLrlMpGrpTh4mFPSkIG6cla0lO0aDP0OLrZFmk0UElBMAok3k9HMArIlTIcXIr++3nt5D8A1PBtRaXaJXeGu1IdqN8+nQNBF4m7lsiZfTpq+pbnlXf+xx/f/h+Xjx9FaWuP/7C3rephrsBIQGGFjQOeJC0tDbVaDcC+ffvo06cPUqmUVq1acePGDUvLExEpMdi3aYPEzg79nTto/r2AbcMGeXhV8dC+cnskSLj44CJ3U+9Swd66ajSKiIiIWIJ8O6VmzZpVNEpEcpARneWU8s6fAyfpfjrxN5KRSKB6UytzSllBpNT92Buc2r0DgE4j3hbrp5QgVPZZTqm0VAShXOl4YH4GEqkEtasNKls5SQ/SMeiMPLqTir2zCjtHZak//6chCALJDzXotQakUglO7rZIijiCTDAauXY60ylV0/elIj1WceBYzpZek5py5s8bnNgdzdVT8Vw9BTKbQIypv3P+4F4uHnuEwratpaW+MA4uKoZ9Zv3nUbNmTXbu3Env3r35888/+eCDDwCIj48Xu+CJiOQDqUqFQ/v2JP/5J8nBB6zKKVXOthyN3BsRfi+cwzcPM6D2AEtLEhEREbE4pbidVclGEASzmlL5IbvAeUUfF+wcizadJb9Y2iklGI0c+GkZRoOBGr4vlYqHy7KE0tYOiUSCQadDr9VaWk6xobSV4+ppj8o2cx4hNSGDhLtpGPRls86ZJkWHJlUHWc6V4ujMeOdaJKkJj1Da2lK5fqMiP15xIJVJ8X21Gn0/bI6LR2bkoUxZG7ldAAAGzT/oNactrLLsMHPmTKZMmYK3tzctW7akdevWkBU11bRpU0vLExEpUagDMssyJB84YGkpOfCv4g9ASGyIpaWIiIiIWAX5jpSSSqXPnJ0XO/MVDoYHDzAmJYFEgtKrar5ea41d9wAMRgPRiZmONks5pS4cDubWpYvIVSo6DX/LIhpECo5UKkVpZ0dGaioZqSkoylCdL6lMiqO7LZoUHSmPMtBlGHgYl4ra1QYb+7JTlFqXoSf5YWahcXtnFUrbfN/GCsTVU38D4N24OXIrajFeGFSo5sjrs15Cr8t2cvpxcpcHx7f8gj79MB2HNKFu+04WVllwSko8Yb9+/WjXrh1xcXE0btzYtL5z58707t3botpEREoaDh06gFyO9uo1MqKiUBWgFEZR4V/Zn2/OfMM/cf+QpkvDTlG6yxGIiIiIPI98W/M7duww+1un03H27FnWrFnDnDlzClNbmSa7npSiYkWk+UgvS7yXxr2YzNS9GlbUdQ/gdupttEYtSqmSivYVi/346clJHF4XBECbfm/g6G5dTjuRvKGys890SqWl4uDqZmk5xYpEIsFWrURhIyPpfmb6WtL9dLTpehxcbUp9EXSDwUjivUyHlMpOXqyRoNdOlZ7UvdyQSCRmdZda9x2INi2F07/v5MBP32LnqKZmC+vpYlVa8fDwwMPDg5s3bwJQuXJlWrZsaWlZIiIlDpmTE/YtW5J67BgpwcGoRo+2tCQTNZxrUNmhMjdTbnI87jidq+bebEdERESkrJDvnIeePXuaLf369WP+/PksXLiQXbt2FY3KMkhGAYucZ0dJVartgq3aOlP3vJy8kFmgq9ORdavRJCdRrooXzV7tWezHFykcVHaZHT91GRkYdLoCjbF69WqcnZ0LWVnxIVfIcPGww84p8zuuSdXxKC4VrUZvaWlFhiAIJN1Lx2gwIlNIUbvZFltNrUd3bvPgZgwSqZRqTVsUyzEtjUQiwW/IKOr7BSAYjez+5nNiL5yztKxSjdFo5NNPP8XJyQkvLy+8vLxwdnZm7ty5GI1lM1VXRORFcDCl8AVbWooZEolETOETESkAJd1+F3k6hVaIo1WrVgQHW9ePfknmRetJWVvqHo/Xk3Is/hDqm5cu8O+hfQAEjB6PTF48KT+W5vjx48hkMrp162ZpKYXCtm3bUKpU3H+UAEBGWqrZ9lq1ajFp0qRCPeZbb72FTCZjy5YthTruiyKRSHBwtsG5gh1SmRSD3kjC3TRSEzIQBMHS8gqd1KyURYkks7B5cUaFXTuZmbpXpV4DbBwciu24lkYikfDyW+9Ss0UrDDodO7+Yy93rVy0tq9Qyffp0li5dyoIFCzh79ixnz57l//7v//j222+ZMWOGpeWJiJQ41J0znVLpYWHo4uMtLceMbKfUkZtHMBjF0ici5pRG+10mk3Hr1q1ctxem/S6RSNi5c2ehjCVSfBSKUyo9PZ0lS5ZQqVKlwhhO5LH0PVX1vDtwEu6mcT82BYlUQnUrS93DgkXODXo9B1YsA6Bhp5epVKdesR7fkqxcuZJ3332XI0eOcPv2bUvLyRfaXAqZv/baa7i5ubH1118B0DzmlDpy5AhXr15l1KhRhaYhLS2NjRs38tFHH7Fq1apCG7eg5HZNlDZyXCvam+pKpSZm8OhOGnpd6TFyNak60pIzz13tZoNcUbyRllezUvdq+Ja99DWpTEa3iR9RpX4jtOnpbPu/mTy4FWtpWaWSNWvW8NNPP/HOO+/QqFEjGjVqxLhx41ixYgWrV6+2tDwRkRKHokIFbBplNqZIOXjI0nLMaFahGWqFmoeah5y/f97SckSsjNJqv69ZsybHtqKw30VKHvl2Srm4uODq6mpaXFxcUKvVrFq1ii+++KJoVJZBtAVI37t6JnMWqHIdF2wdrCt1Dws6pU7/vpMHN2OwVTvS/o3hxXpsS5KSksKmTZt455136NatW46HmpCQECQSCcHBwfj6+mJnZ0ebNm24fPmyaZ/w8HA6duyIWq3G0dGR5s2bc+rUKQRBwN3dna1bt5r2bdKkCZ6enqa///rrL1QqFWlpaQAkJCQwevRo3N3dcXR0pFOnToSHh5v2nz17Nk2aNOGnn36iWrVq2ORSS02hUDBkyBDWb9wEgC49HWNWc4VVq1bx0ksvUb9+fb788ksaNmyIvb09VapUYdy4caSkpOT7Gm7ZsoV69eoxdepUjhw5Qmys+cN4RkYG//vf/6hSpQoqlYqaNWuycuVK0/YLFy7QvXt3HB0dUavVtG/fnmvXrgHg7+/P+++/bzZer169GD78v8+ot7c3c+fOZejQoTg6OjJ27FgA/ve//+Hj44OdnR3Vq1dn1qyZ2DrJcSyXmdKm1xrYuHYbzZv7YmNjQ7ly5UyFkj/99FMaNMjZHrtJkyZWGY2h1xpIfpBZR8rOUVnsRd3TkhK5fTkCgJpl0CkFIFcq6TnlEypUr0l6chLb5s8k6f49S8sqdTx8+JA6derkWF+nTh0ePnxoEU0iIiUddUBmN9FkK8vmUEgVtKvUDsQUPpEnKM32e24TLEVhvz+N7DT5ypUro1KpaNKkCXv37jVt12q1TJgwAU9PT2xsbPDy8uKzzz6DrDISs2fPpmrVqqhUKipWrMjEiRMLTVtZJ99Oqa+++spsWbJkCbt37+bGjRu89tprRaOyjCFotWizipzmyyllxal7ANFJxd95LzH+Lse3bgDAb8gobNWOLzSeIAgY09IssuQ3JWvz5s3UqVOH2rVr8+abb7Jq1apcx5g+fTqLFy/m1KlTyOVyRo4cado2ePBgKleuzMmTJzl9+jRTp05FoVAgkUjo0KEDISGZhtSjR4+IiIggPT2dS5cuAXD48GFatGiBnV1mV5n+/fsTHx/Pnj17OH36NM2aNaNz585mD1tXr15l27ZtbN++nbCwsFzPa9SoUURevcqJs2cRBIGM9DRSUlLYunWraZZFKpWyZMkSLly4wJo1azh48CAfffRRvq4fWTNVb775Jk5OTnTt2jXHzXTo0KFs2LCBJUuWEBERwQ8//IBDVnrXrVu36NChAyqVioMHD3L69GlGjhyJXp+/uk+LFi2icePGnD171uQ0UqvVrF69mosXL/LNN9+wYsUKvvrqK2zsFbhWtOfQ0f0MH/sGHdsFcCT4GPv37TcVSx45ciQRERGcPHnSdIyzZ89y7tw5RowYke9rVJQYjQKJ99IRBAGFjQx75+Lvtnj9zEkEwYi7V7Uy3RxBZWdHn2lzcKlYmeQH99g2fwZpSYmWllWqaNy4MUuXLs2xfunSpTTKivYQERHJH+qsulKpf/+NITnZ0nLMEOtKFR+i/W4l9ntkJEeOHDGtKyr7/Wl88803LF68mEWLFnHu3DkCAwN57bXXiIyMBGDJkiXs2rWLzZs3c/nyZdatW4e3tzdkpSB+9dVX/PDDD0RGRrJz504aNmxYaNrKOvkurPP4LL5I0aC9eRMMBqR2dsjL5+0h6NGdVB7cTEEqlVC9sfWl7iVoEnioyfzx8nb0LpZjCoLAwaDv0WszqFyvAfU6vHhLcyE9ncvNmheKvvxS+8xpJHZ5bxuc7VABeOWVV0hMTOTw4cP4+/ub7Td//nz8/PwAmDp1Kt26dUOj0WBjY0NMTAwffvihafa+Vq1aptf5+/vzww8/QFbobdOmTfHw8CAkJIQ6deoQEhJiGvevv/7ixIkTxMfHo1JlOhYWLVrEzp072bp1qykCSKvV8vPPP+Pu/vTPcL169WjVqhWbtm2nZdOmZKSmsv33PxAEgUGDBgGYRSB5e3szb9483n77bb777rs8X7/IyEj+/vtvtm/fDsCbb77JpEmT+OSTT5BIJFy5coXNmzezf/9+ArJmYqtXr256/bJly3BycmLjxo0oFJnRPT4+Pnk+fjadOnVi8uTJZus++eQTs/ObMmWKKc1QJpfyzXeL6de3Px9N+hgAqUzK5Pczb5yVK1cmMDCQoKAgWrTILNodFBSEn5+fmX5LIwgCyffTMeiNSGVSUxRYcXPtVGY9qbKYuvckdo5O9Js+l40zP+Lh7Zts/2w2A2bOR2krtjMvDBYuXEi3bt04cOAArVu3hqy6IrGxsfzxxx+WliciUiJRVa+Osnp1tNevk3LkCE5WVKOnbaW2yCVyriVeIzYpliqOVSwtqdQi2u/WY7+vWrWKDh06QJYDrrDt92exaNEi/ve//5mO9/nnn3Po0CG+/vprli1bRkxMDLVq1aJdu3ZIJBK8vLxMr42JicHDw4OAgAAUCgVVq1YVu+MWIvmOlAoKCsq14O+WLVtyzRMVyT/a69cBUHp75/kh7Fp26l5dF2wcije9JS9kR0l52HtgpyieB5irp/7m+pmTSGVyAkaNt8gDraW4fPkyJ06c4PXXXwdALpczcOBAs9SybB6fgc8O343PKgg6adIkRo8eTUBAAAsWLDClngH4+flx8eJF7t27Z7pZ+vv7ExISgk6n49ixY6YbaHh4OCkpKbi5ueHg4GBaoqKizMb08vJ65g0tm5EjR/Lrb7tJSUkhIy2VVatW0b9/f9RqNQAHDhygc+fOVKpUCbVazZAhQ3jw4IEpFDkvrFq1isDAQMqVKwfAq6++SmJiIgcPHgQgLCwMmUxmunE/SVhYGO3btzc5pAqKr69vjnWbNm2ibdu2eHh44ODgwCeffEJMTIzZsQNfeRkXD3tkcilGg5GE+DRSHmkQjAJjxoxhw4YNaDQatFot69evN5thswbSkrRkpOtBAk7utshkhdaXI8/otFqiz50FoKbvS8V+fGvEsZw7/T6Zi63akbvXI9n5xTz0udSPEMk/fn5+XLlyhd69e5OQkEBCQgJ9+vThwoULrF271tLyRERKLNkFz5MPHLC0FDOcVE40q9AMgJCbYrSUSNmw37du3UpyVtRiUdjvTyMpKYnbt2/Ttm1bs/Vt27YlIiKzTMPw4cMJCwujdu3aTJw4kX379pn269+/P+np6VSvXp0xY8awY8eOfGc/iDydfEdKffbZZybv6uOUL1+esWPHMmzYsMLSVmbJKEg9KStP3SvuzntaTToHgzI/py1e64Nb5cKZfZLY2lL7zOlCGasgx84rK1euRK/XU7FiRdM6QRBQqVQsXboUJycn0/rHnSbZjrvs9uOzZ8/mjTfe4Pfff2fPnj3MmjWLjRs30rt3bxo2bIirqyuHDx/m8OHDzJ8/Hw8PDz7//HNOnjyJTqejTZs2kBWe6+npaQoXfpzHW7va29vn6fwGDRrEBx98wG97/+Ql3+aEhoaacr6jo6Pp3r0777zzDvPnz8fV1ZW//vqLUaNGodVqTeHIz8JgMLBmzRru3LmD/LFOjQaDgVWrVtG5c2dsn/N+PG+7VCrNEY6t0+ly7PfkNTl+/DiDBw9mzpw5BAYGmqKxFi9enOPYCpUMF097Uh5p0KToSEvSotUY6Br4KiqVih07dqBUKtHpdPTr1+85V6X40KbrSU3IAEDtYoNCVbyFzbOJi4xAn5GB2s2d8tVqWESDNeJasTJ9P/6UzZ9OI/bCOX5fspAeH0xDKrPM+1SaqFixIvPnzzdbFx4ezsqVK/nxxx8tpktEpCSj7hLAgxUrSD18BKNWi1RpPXVX/av4c+LOCUJiQxhSb4il5ZRaRPvduuz3zZs306FDh0K331+UZs2aERUVxZ49ezhw4AADBgwgICCArVu3UqVKFS5fvsyBAwfYv38/48aN44svvuDw4cMvPAEtUgCnVExMDNVycZZ4eXmZzdSLFBxtVGZUUV6dUg/jUnlwKxWpTEI1K0zdwwJFzo9tWU/Kg/s4la/AS70HFNq4EokkXyG4lkCv1/Pzzz+zePFiXn75ZbNtvXr1YsOGDbz99tt5Hs/HxwcfHx8++OADXn/9dYKCgujduzcSiYT27dvz66+/cuHCBdq1a4ednR0ZGRn88MMP+Pr6mm5SzZo1Mzl4snOzXwS1Wk3//v3ZtG07UdHR1KxRg/bt2wNw+vRpjEYjixcvRirNjK7ZvHlzvsb/448/SE5O5uzZs8gee9D+999/GTFiBAkJCTRs2BCj0cjhw4dN6XuP06hRI9asWYNOp8v1ZuXu7k5cXJzpb4PBwL///kvHjh2fqe3YsWN4eXkxffp007obN27kOHZwcDAjRoxAKpXg6GaLylZO0gMNeq2BpPtG3nj9TYKCglAqlQwaNOi5TrTiwqA3kng/HQAbe4VFIz9jzp8DoIZvyzIVaZkXKlSvSa8PZ7Dts1lcPfk3+378lsC33xOvk4iIiNVh06AB8vLl0cfHk3b8OA5PiXC2BP6V/Vl4ciGn754mMSMRJ5VTHl4lkl9E+9267PdVq1Zx7do1fHx8CtV+fxaOjo5UrFiR0NBQsyyH0NBQszQ8R0dHBg4cyMCBA+nXrx+vvPIKDx8+xNXVFVtbW3r06EGPHj0YP348derU4fz58zRr1qzQdJZV8p0PUb58ec6dO5djfXh4OG5uboWlq0yT3XlPVT1vDpzs1L0qdV2LvTNVXilOp1R89HXO/PErAJ1Gvo1ClbMLRGlm9+7dPHr0iFGjRtGgQQOzpW/fvrmGAOdGeno6EyZMICQkhBs3bhAaGsrJkyepW7euaR9/f382bNhAkyZNcHBwQCqV0qFDB9atW2f2gx8QEEDr1q3p1asX+/btIzo6mmPHjjF9+nROnTpVoPMcNWoU/5w8ydoNGxnUr68p6qhmzZrodDq+/fZbrl+/ztq1a/n+++/zNfbKlSvp1q0bjRs3Nrt+AwYMwNnZ2VT4cNiwYYwcOZKdO3cSFRVFSEiI6QY6YcIEkpKSGDRoEKdOnSIyMpK1a9eauqN06tSJ33//nd9//51Lly7xzjvvkJCQ8FxttWrVIiYmho0bN3Lt2jWWLFnCjh07zPaZNWsWGzZsYNasWURERHD+/Hm+/vZLXD3tUdrIQRAY0HMwBw8eZO/evVaTuidkFzY3CsiVMtSuNhZzcgiCQOzFbKeUWE8qN6rUb0T39/6HRCLlQsgBDv+SezFWEREREUsikUpx6JxZVzT5gHV14aviWIUaTjUwCAZCb4VaWo6IBSlL9vuxY8f4/vvvzezPwrDfs4mKiiIsLMxsSU1N5cMPP+Tzzz9n06ZNXL58malTpxIWFsZ7770HwJdffsmGDRu4dOkSV65cYcuWLXh4eODs7Mzq1atZuXIl//77L9evX+eXX37B1tbWrO6USMHJt1Pq9ddfZ+LEiRw6dAiDwYDBYODgwYO89957pqJhIi+GNp/pe9aeugcQlVQ8TinBaOTAT8sQjEZ8XmpL9aYtivR41sjKlSsJCAgwC/HNpm/fvpw6dSpXx/KTyGQyHjx4wNChQ/Hx8WHAgAF07dqVOXPmmPbx8/PDYDCYFV/09/fPsU4ikfDHH3/QoUMHRowYgY+PD4MGDeLGjRtUqFChQOfZrl07ateuTXJKCv16voZem5nu1bhxY7788ks+//xzGjRowLp160yhwXnh7t27/P777/Tt2zfHNqlUSu/evU2GwfLly+nXrx/jxo2jTp06jBkzhtTUVADc3Nw4ePAgKSkp+Pn50bx5c1asWGGKmho5ciTDhg1j6NChpiLjz4uSAnjttdf44IMPmDBhAk2aNOHYsWOmrnzZ+Pv7s2XLFnbt2kWTJk3o1KkTJ06cQCaX4lTeFgcXG6pXr0mL5i9Rq4YPTRpaxwxP8qPMSC6JVIJTOVskUstF3Rj0ejTJySht7ahSr4HFdFg7NVu04uW3M1sin969gxM7c9acFBEREbE06qyI5uSDBxEMBkvLMUPswidCGbTfk5KSGDp0qGn9i9rvjzNp0iSaNm1qtpw9e5aJEycyadIkJk+eTMOGDdm7dy+7du0yFYJXq9UsXLgQX19fWrRoQXR0NH/88QdSqRRnZ2dWrFhB27ZtadSoEQcOHOC3334Tg3IKCYmQz2lNrVbLkCFD2LJli6nWitFoZOjQoXz//fcorShPOzeSkpJwcnIiMTERR0dHS8vJgf7RIyJbZ+bx1j5zGulzQk0f3E5h46cnkMokjPyiHSo764uU0hq0tFzXEoNgILh/MOXtis55du7AXvavWIrCxpYRXy1H7VruhcbTaDRERUVRrVo1bGzKVsRVSSHhzm00qak4uLji4CreGPKKLkNP7Tq1Gf7mKN4ePQFbByX2LiqkFnIEpadoSX6gAcCpvB0q23xnlxcaGo2GiH/P8/fKZVSpU4/u7xVeO+LSyqndOzi8NtNZGzB6PI27dLW0pGKhMGyKPn36PHN7QkIChw8fxlBMD9LWbieJiBQEQavlStt2GJOT8Vq/DjsrSrcJiw9jyJ4hqBVqDg86jEJqfbZ8SUK03UVEipdnfefyalPk2+pXKpVs2rSJefPmERYWhq2tLQ0bNhRD1wqJ7HpSck/P5zqkAK5lRUlVredqlQ4pgNjkWAyCAXuFPe62RVfzKi0xgSPrgwBoN/DNF3ZIiZQMVPYOaFJT0aSlik6pPHLv3j02btxI/L27DB8xArKcQtoMPY7lbFEoi7dgtS7DQPLDzEg3e2eVRR1S2egzMvWIXffyhm/33mhSkvlnx2YOrPwOGwcHardub2lZJYLcZsWf3P74bLKIiEj+kSiVOPj7k/TbbyTvP2BVTqmG5RriauPKQ81Dztw9w0ue4n1HRESkbFFgy79WrVqmUDeRwsNUT6ra84vJCYJQMlL3Huu8V5T1YQ6vXUlGairlvWvQJLB7kR1HxLpQZjlv9RkZ6HU65GIHjOdSvnx5ypUrx48//kjV6p5kpOtJfpCOQWfkUVwq9s4q7ByVxVLPyWgwkngvHQQBpa0cO0fLR9vqtVqMBgMSmYxqTX0tLafE0HbgENKTkzh3YC9/fLsYla0d3k2aW1qW1RMUFGRpCSIiZQJ1586ZTqngYMp/9KHVNGaQSWV0qNyBnVd3EhIbIjqlREREyhz5rinVt29fPv/88xzrFy5cSP/+/QtLV5lFG3UdAKX382svPbydyqM7aUjlEryttOsexVTkPObfc1w8eggkEgLGjBNbk5chZDI5SpvMznEZaamWllMiEASBe/fu8cYbbwCgspXj6mlvilBKTcggIT4dg95Y5DqS7mswGozI5FIc3SxX2PxxtJo0ADxr+qCyy1ubY5HM2hOdR71D7dbtMRr0/Prl/3H7yiVLyxIREREBwKF9OyRKJbqYGDIiIy0txwz/ypl1fA7FHhIbRoiIiJQ58u2UOnLkCK+++mqO9V27duXIkSOFpavMkpGVvpeXIudXTal7blaR7vI0itoppdfpOLDyOwAaB3TFs2btIjmOiPWiympdm5GaYmkpJRapTIqju62p451Oo+dhXCqaVF2RHTM1IQOtRo9EIsHJ3RapLN+3pCIhIz0dgCoNGllaSolDKpXRdcIkvBs3Q5+RwY4Fs7kfE21pWSIiIiJI7e2xb5NZtzX5wAFLyzGjdcXWKKVKbqXc4lrCNUvLERERESlW8v0EkJKSkmsxc4VCQVJSUmHpKrPktfNeSUnd4zGnVHWn6kUy/qld23h0+yZ2Ts60e12su1EWyXZKaTXpGK2sq05JQiKRYKtW4uJph1wpQzAKJN1PJ+l+OkZj4c7cZqTpSEvSAqB2s0FezHWsnoZBrzfVk6pav7Gl5ZRIZHIFr036GE+fOmhSU9j6fzNJjL9jaVkiIiIiqLtkduFLORBsaSlm2CnsTGl7ITfFLnwiIiJli3w7pRo2bMimTZtyrN+4cSP16tUrLF1lEkGvRxsbC4Cq+rOdUg9upZJwNw2ZXEq1RtZb0FsQBKKSii5SKuFOHP/s2AyA/9DR2Ng7FPoxRKwfuUKJXKkEQUzhKwzkChkuHnam+k6aVB2P4lLRZegLZXy9zkDS/cxOe7ZqJTb21lMHLPvzI5XLcXBxtbScEovCxobe/5tFuSpepD56yNZ5M0hNeGRpWSIiImUch44dQSpFc/Eiulu3LC3HDP8qmSl8IbGiU0pERKRskW+n1IwZM5g7dy7Dhg1jzZo1rFmzhqFDhzJv3jxmzJhRNCrLCLqbN0GnQ2Jjg9zD45n7Xj19F4Cq9V1RWnHqXnxaPKm6VGQSGVXUVQp1bEEQCA76Hr1OS9UGjanT1q9QxxcpWWTX/hGdUoWDRCLBwcUG5wp2SGVSDHojj+6kkZqQ8UL1LoxGgcR76QiCgEIlw8FFVai6X5Tsz49CZV26SiK2Dmr6Tp+LU/kKJNyNY9v/zUQjptiKiIhYELmrq6nzXnLwQUvLMaND5Q4AnLt3jvvp9y0tR0RERKTYyLdTqkePHuzcuZOrV68ybtw4Jk+ezK1btzh48CA1a9YsGpVlhIzs1D1vbyTSp781Zql7vlaeupcVJVVFXQWFrHCjIa78HUp02GlkcjmdR42zigLJIpZDlRUll5GWhmAs2gLdZQmljRxXTztUdpnf39TEDBLupqHX5f8aC4JA8gMNBp0RqUyCYzlbq/reGo1GtGmZRc7lStEpVRg4uLjSb/o87J1duHcjih2ff4ouQ2NpWSIiImUYh4DOYIV1pTzsPajnVg8BgaM3j1pajoiIiEixUaCqst26dSM0NJTU1FSuX7/OgAEDmDJlCo0bi/U3XgStqci59zP3u38zhcT4dGQKKd4NrTd1j8fqSXk7Pfuc8ktGWhqH1vwIQMte/XGtWKlQxxcpeShUKqRyOYLRiFaTbmk5pQqpTIqTuy2ObplOJF2GgUdxqaSnaPMVNZWerCUjLbNwumM5W2Ry6yhsno02PQ1BEJDJFcjk1huBWtJw9vCk78eforK35/bli/z21QIM+sJJBRURERHJL+qAzLpSaadOoX/40NJyzMjuwiem8ImIiJQlCvxEcOTIEYYNG0bFihVZvHgxnTp14u+//y5cdWWM7CLnqucUOc+OkvJq4IbSxrofnIqq817o5rWkPnqIs4cnLXv2L9SxRYoHiUTCzp07C3U8m+wUvtSyk8IXEhKCRCIhISGhyI9l46DA1dMehUpminpKuq/BaHh+1JRWoyflUWYBcQcXG6v87cr+3ChtbS0tpdTh7lWN3h/NQq5UEXX2FHu/+0qMaBQREbEIysqVUdWrC0YjycHWVfA8u67U8bjjZBgyLC1HRCQHhW2/l1WK034vCeTLKXXnzh0WLFhArVq16N+/P46OjmRkZLBz504WLFhAixYtik5pGSAj6jo8p/NeSeq6x+NOKcfCc0rdvX6VsL2/A9B51LjMAtciOYiNjWXkyJFUrFgRpVKJl5cX7733Hg8ePChWHbNnz6ZJkyY51sfFxdG1a9dCPVZ2F76MtFT8/f2RSCRPXfz9/Qv12M9j9erVz9QjkUiIjo7O97ht2rQhLi4OJyenQtEZGBiITCbj5MmTuW6XKaQ4V7DD3jkzvS0jTcfDuDS0mqdHvhj0RpLuZUav2dgrsFVbT2HzbARBMNWTEp1SRUOlOvV4bdI0pDIZl0IPc3D1Dy9Un0xERESkoDi+/DIAyfv2W1qKGXVc61DBrgLp+nT+ifvH0nJELEBZtN8fR7Tf8050dDQSiYSwsLACj2Et5Nkp1aNHD2rXrs25c+f4+uuvuX37Nt9++23RqitjmNL3vJ/uwLkfm0LSvXTkCileDdyKUV3BKOxIKaPRwP4VyxAEI3Xa+uHdqGmhjFvauH79Or6+vkRGRrJhwwauXr3K999/T3BwMK1bt+ahFYSre3h4oCrkYtJKG1skUikGvZ5N69cTFxdHXFwcJ06cAODAgQOmddu3by/UYz+PgQMHmo4dFxdH69atGTNmjNm6KlX+awag1WrzNK5SqcTDw6NQajPFxMRw7NgxJkyYwKpVq566n0Qiwd5JhYuHPTK5FKPBSMLdNFIeaXI4GQRBIOl+OkajgFwhw8HVJs9adTrdC59TXtFpNBgNBqQyKQqVTbEdt6xRrakvr4yfBBIJYX/+zrEt6y0tSUREpAyiznJKpf79N4akJEvLMSGRSMQufGWYsmq/P8727dtF+70Mkmen1J49exg1ahRz5syhW7duyGSyolVWxjAkJWHI8oA/q6ZUdtc9r4bWn7qXqkvlblqm3sJySoXv38Pd65Go7OzxHzq6UMYsjYwfPx6lUsm+ffvw8/OjatWqdO3alQMHDnDr1i2mT59u2je3MFxnZ2dWr15t+js2NpYBAwbg7OyMq6srPXv2NJsVCAkJoWXLltjb2+Ps7Ezbtm25ceMGq1evZs6cOYSHh5tmE7LHffK458+fp1OnTtja2uLm5sbYsWNJSfmvU9fw4cPp1asXixYtwtPTEzc3N8aPH2/muJBIpahs7QCwt1Hh4eGBh4cH7u7uALi5ueHh4cEbb7zBzJkzzc753r17KJVKgrNC+b29vZk7dy6vv/469vb2VKpUiWXLlpm9JiEhgdGjR+Pu7o6joyOdOnUiPDw81/fE1tbWpMfDwwOlUomdnZ3p76lTp9K3b1/mz59PxYoVqV27NgBr167F19cXtVpt0h4fH2927R8P/129ejXOzs78+eef1K1bFwcHB1555RXi4uKe+ZkBCAoKonv37rzzzjts2LCB9HTz2lwJCQm89dZbVKhQARsbG5o2b0zo6UPYOGRGPoUcPEL7th2ws7PDxcWFwMBAYq/fQZdhwLddQ4I2/IBU+t/Nt0mTJsyePfu/908iYfny5bz22mvY29szf/58DAYDo0aNolq1atja2lK7dm2++eabHNpXrVpF/fr1UalUeHp6MmHCBABGjhxJ9+7dzfbV6XSUL1+elStXmtZlR0mpbO1FA6GIqdvWj84j3gbg720bOLNnl6UliYiIlDFU1aujqlUTdDpSDh2ytBwzsp1Sh2MPi9GkZYyyar8/jqurq2i/59N+fxoZGRlMnDiR8uXLY2NjQ7t27cwyIR49esTgwYNxd3fH1taWWrVqERQUBFnOtQkTJuDp6YmNjQ1eXl589tlnBdbyPPLslPrrr79ITk6mefPmvPTSSyxdupT798V2pYVFdj0pefnyyBwcct3HPHWvQrHqKwjRSZk/eq42rjipXjy1KOXRQ/7a8DMA7QYNxd7Z5YXHzC+CIKDLMFhkyath8vDhQ/7880/GjRuH7RNpSB4eHgwePJhNmzbleTydTkdgYCBqtZqjR48SGhpq+qHUarXo9Xp69eqFn58f586d4/jx44wdOxaJRMLAgQOZPHky9evXN80mDBw4MMcxUlNTCQwMxMXFhZMnT7JlyxYOHDhgcixkc+jQIa5du8ahQ4dYs2YNq1evNrv58lgKn+YZdaVGjx7N+vXrycj4r17DL7/8QqVKlejUqZNp3RdffEHjxo05e/YsU6dO5b333mP//v9C/fv37098fDx79uzh9OnTNGvWjM6dOxd4Jis4OJjLly+zf/9+du/ebbr+c+fOJTw8nJ07dxIdHc3w4cOfOU5aWhqLFi1i7dq1HDlyhJiYGKZMmfLM1wiCQFBQEG+++SZ16tShZs2abN261bTdaDTStWtXQkND+eWXX7h48SILFixAoZDj6GZL9O3L9Bv8GrVq1Ob37Qc48OchAl/uSmpSZqc1iVSCTPb8W87s2bPp3bs358+fZ+TIkRiNRipXrsyWLVu4ePEiM2fO5OOPP2bz5s2m1yxfvpzx48czduxYzp8/z65du0zdYEePHs3evXvNbuq7d+8mLS3N9FkUBIGM1EwDKvvzI1K0NAnsRpsBgwE4tPpHLh61rodCERGR0o+6S2a0VJKVpfC19GiJndyO+PR4Lj68aGk5pQLRfrd++z0viPZ7/vjoo4/Ytm0ba9as4cyZM9SsWZPAwEDTec6YMYOLFy+yZ88eIiIiWL58OeXKZTZRW7JkCbt27WLz5s1cvnyZdevW4e1duI3LHifPoTatWrWiVatWfP3112zatIlVq1YxadIkjEYj+/fvp0qVKqjV6iITWtrJyHJKPaue1L2YZJLua5Ary2bqXsjPP6FNT8OjRi0adXmlUMbML3qtkR/fO2yRY4/9xg+F6vkRipGRkQiCQN26dXPdXrduXR49esS9e/coX/75dck2bdqE0Wjkp59+MkWQBAUF4ezsTEhICL6+viQmJtK9e3dq1KhhOkY2Dg4OyOVyPDw8nnqM9evXo9Fo+Pnnn7HPcgosXbqUHj168Pnnn1OhQqYT1sXFhaVLlyKTyahTpw7dunUjODiYMWPGmMZS2dmDBPTaDPQ6HXJFzvpFffr0YcKECfz6668MGDAAsmYohg8fbhYl07ZtW6ZOnQqAj48PoaGhfPXVV3Tp0oW//vqLEydOEB8fbwpjXrRoETt37mTr1q2MHTv2udf2Sezt7fnpp59QPlYnbeTIkab/V69enSVLltCiRQtSUlJweIoDW6fT8f3335vejwkTJvDpp58+89gHDhwgLS2NwMBAAN58801WrlzJkCFDTNtPnDhBREQEPj4+Jj3ZfP3tVzRv7stXi5aY6ku92S9zu52TirwGH73xxhuMGDHCbN2cOXNM/69WrRrHjx9n8+bNpvdu3rx5TJ48mffee8+0X3aNwzZt2lC7dm3Wrl3LRx99BFmf3/79+5uun0GnQ6/TIZFIUNrZodUWX9pgWaZVn0FokpM5s2cXe7/7CpWdPTWat7S0LBERkTKCOvBl7n/3HalHj2JISUXmYB2TEkqZkjYV23Ag5gAhsSHUd6tvaUklHtF+t377PS+I9nveSU1NZfny5axevdpUA2zFihXs37+flStX8uGHHxITE0PTpk3x9fWFrCizbGJiYqhVqxbt2rVDIpHg5eVVIB15Jd/d9+zt7Rk5ciR//fUX58+fZ/LkySxYsIDy5cvz2muvFY3KMoCpntSzUvdOZUZJeTcsl6cfN0tTmE6p6PAzXD52BIlESsDo8Uil1n/+luZ5MynKPBaIDw8P5+rVq6jVahwcHHBwcMDV1RWNRsO1a9dwdXVl+PDhBAYG0qNHD7755pt8h5pGRETQuHFj0w2NrBuK0Wjk8uXLpnX169c3Sx329PQ0C4UFkMpkKG0yZ5ie1oXPxsaGIUOGmOomnTlzhn///TfHDEbr1q1z/B0REWG6LikpKbi5uZmui4ODA1FRUVy7di1f559Nw4YNc7wvp0+fpkePHlStWhW1Wo2fnx9k3Syehp2dnemGxlOu05OsWrWKgQMHIpdnzlW8/vrrhIaGms4lLCyMypUrmxxSTxIWFkZAQGecytvi4GIDWbaB0kaOvVPemxFk3xgfZ9myZTRv3hx3d3ccHBz48ccfTecfHx/P7du36dy581PHHD16tCkc+e7du+zZs8fMWNBkRUkpbW3F35ZiRCKR4D90NPXad0QwGtn91QJuXvzX0rJERETKCCofHxReVRG0WlKPWMZh8TTEulJll7Jqv+cF0X7PO9euXUOn09G2bVvTOoVCQcuWLU3X4p133mHjxo00adKEjz76iGPHjpn2HT58OGFhYdSuXZuJEyeyb9++AunIKy9UlKh27dosXLiQzz77jN9+++2ZhXFFnk12+p7qKZFSJa3rHoXYeU+nzSB45XIAmr7SnQrVaxaKvoIgV0oZ+42fxY6dF2rWrIlEIiEiIoLevXvn2B4REYG7uzvOzs6Q9WD45A3w8TzvlJQUmjdvzrp163KMlZ3rHRQUxMSJE9m7dy+bNm3ik08+Yf/+/bRq1Srf5/ksFE9EPUkkEoy5tJVX2TmgTU8nIy0F+6zzfJLRo0fTpEkTbt68SVBQEJ06dcrXLEBKSgqenp6EhOQ0GJ2fcsznYf9E6lh2WHRgYCDr1q3D3d2dmJgYAgMDn1lIMbfr9Cwj5+HDh+zYsQOdTsfy5ctN6w0GA6tWrWL+/Pk5QsmfJHu7RCLBzlGJ0kaGVqPHxkGJRCJBKpU+83P2tGuwceNGpkyZwuLFi2ndujVqtZovvviCf/75x+y4z2Lo0KFMnTqV48ePc+zYMapVq0b79u1N2031pOxzn7kSKTokUikvv/0emrRUrp8+wY6FnzJg1mdUqFYjD68WERERKTgSiQTHl1/mwYqfSNq3H8dXX7W0JBPtK7dHKpFy6eEl7qTewcP+6dEqIs9HtN/NsVb7PS+I9nvh0bVrV27cuMEff/zB/v376dy5M+PHj2fRokU0a9aMqKgo9uzZw4EDBxgwYAABAQFmpT0Kk3xHSuWGTCajV69e7NolFistKNrnpO/FRyeT/FCDXCWjaglI3aMQI6VO7NxKwt04HFxcaTPgzUJSVzAkEgkKlcwiS16LL7u5udGlSxe+++67HIWq79y5w7p168xmFNzd3c1mRiIjI0lLSzP93axZMyIjIylfvjw1a9Y0Wx5vY9q0aVOmTZvGsWPHaNCgAevXZ3bVUiqVGAyGZ2quW7cu4eHhpD4W2RQaGopUKjUVDMwP2XWBtJp0jE85dsOGDfH19WXFihWsX7/eLHImm7///jvH39mhzc2aNePOnTvI5fIc1yU7H/tFuXTpEg8ePGDBggW0b9+eOnXqFHjG5FmsW7eOypUrEx4eTlhYmGlZvHgxq1evxmAw0KhRI27evMmVK1dyHaNRo0amIpMAcqUMO0eVqbD5k5+zpKQkorJ+955FaGgobdq0Ydy4cTRt2pSaNWuazWSp1Wq8vb3Njv0kbm5u9OrVi6CgIFavXm2WHmjQ69FpMuteqeysI3WjrCGTy+n+/v+oXLcB2vQ0tn82i0dxtywtS0REpAyQ3YUv5cgRjFn3AmvA1caVxu6NQYyWKhRE+71k2O95QbTf80aNGjVQKpWEhoaa1ul0Ok6ePEm9evVM69zd3Rk2bBi//PILX3/9NT/++KNpm6OjIwMHDmTFihVs2rSJbdu2FVkHyEJxSom8GILBgPbGDXiGUyoyq+tetYZuKJTWn15iMBq4kZR5Ti/ilHp4+yYnf90CQMfhY1HZ2RWaxtLM0qVLycjIIDAwkCNHjhAbG8vevXvp0qULPj4+Zp0rOnXqxNKlSzl79iynTp3i7bffNvPUDx48mHLlytGzZ0+OHj1KVFQUISEhTJw4kZs3bxIVFcW0adM4fvw4N27cYN++fURGRpp+/L29vYmKiiIsLIz79++bFSd8/Bg2NjYMGzaMf//9l0OHDvHuu+8yZMgQUz56fpArFMiVKhD+i4LJjdGjR7NgwQIEQch1Vio0NJSFCxdy5coVli1bxpYtW0x1iwICAmjdujW9evVi3759REdHc+zYMaZPn86pU6fyrTk3qlatilKp5Ntvv+X69evs2rWLuXPnFsrYj7Ny5Ur69etHgwYNzJZRo0Zx//599u7di5+fHx06dKBv377s37/fNHuyd+9eAKZNm8bJkycZN24c586d49KlSyxfvtzUEKNTp06sXbuWo0ePcv78eYYNG5anLq61atXi1KlT/Pnnn1y5coUZM2aYdQ4hqzj64sWLWbJkCZGRkZw5c4Zvv/3WbJ/Ro0ezZs0aIiIiGDZsmGl99udDobJBJrfujqalGYVSRa+PZlDeuwZpiQlsnT+D5AdiMxUREZGixaZBA+QVPRHS0kj96y9LyzFDTOEre5R1+z2viPa7OZcvXzabVA4LC0OpVPLOO+/w4YcfsnfvXi5evMiYMWNIS0tj1KhRAMycOZNff/2Vq1evcuHCBXbv3m16/7/88ks2bNjApUuXuHLlClu2bMHDw6PA0WTPQ3RKWQG627cRtFokSiWKihVzbBeMAtdKUNc9gNspt9EZdahkKjztPQs0hiAIBK/8DoNeT7Umzan1Uts8vEqErAf5kydPUr16dQYMGICXlxddu3Y1Fft7vMDe4sWLqVKlCu3bt+eNN95gypQp2D3m/LOzs+PIkSNUrVqVPn36ULduXUaNGoVGo8HR0RE7OzsuXbpE37598fHxYezYsYwfP5633noLgL59+/LKK6/QsWNH3N3d2bBhQw69dnZ2/Pnnnzx8+JAWLVrQr18/OnfuzNKlSwt8DWyyoqWeVleKrLpJcrmc119/HRsbmxzbJ0+ezKlTp2jatCnz5s3jyy+/NBUCl0gk/PHHH3To0IERI0bg4+PDoEGDuHHjRqHdiN3d3Vm9ejVbtmyhXr16LFiwgEWLFhXK2NmcPn2a8PBw+vbtm2Obk5MTnTt3ZuXKlQBs27aNFi1a8Prrr1OvXj0++ugj0yyaj48P+/btIzw8nJYtW9K6dWt+/fVXU42qadOm4efnR/fu3enWrRu9evUyy5t/Gm+99RZ9+vRh4MCBvPTSSzx48IBx48aZ7TNs2DC+/vprvvvuO+rXr0/37t2JjIw02ycgIABPT08CAwOp+NjvbPbnQ+y6Z3lUdvb0/XgOLp6VSLoXz7b/m0l6cpKlZYmIiJRiJBIJjl26AJBUxDVT8ku2U+rEnROk6p5uy4iUHkT7PW+I9rs5gwYNomnTpmbL3bt3WbBgAX379mXIkCE0a9aMq1ev8ueff+LiktnBXqlUMm3aNBo1akSHDh2QyWRs3LgRsjIRFi5ciK+vLy1atCA6Opo//vgDqbRo3EcSoSgTFa2QpKQknJycSExMxNHR0dJyICtkOHbsW6hq1aT6b7/l2H7neiLbFp5GoZIx8ot2yEtApNSRm0cYHzweHxcftr22rUBjRBw9xB9LFyNXKBm2+DucKxR/Pr1GoyEqKopq1arl+qNXkpg1axZffvllkeSKWyM6jYYHt2KRSKWU96qGJJcf0ejoaGrUqMHJkydp1qyZ2TZvb2/ef/993n///WJULVJUpKSkUKlSJYKCgujTpw8ARqORe9HXEQQBt8pVUWR1YSlN3/uSSNK9eDbM+oiUB/fxqOlD/0/mobS1zihZa7QpXpTSeE4iIs8i7fRpbgx+E6lajU/oX0jyWEi6qBEEge47uhOTHMOX/l/SxauLpSWVCErbPbys2e95QbTfrYtnfefyalOIkVJWwH/1pKrnuj276161xuVKhEOKQqgnpUlJIWRtZnTGS30GWsQhVdqYM2cOS5Ys4e+//y5wccGShFylQiaXIxiNaDXmufk6nY47d+7wySef0KpVqxw3NJHSg9FoJD4+nrlz5+Ls7GzWJVabloYgCMgUCuRW8hAiAo7u5en38Vxs1I7cuXqFXxfNR59LUXwRERGRwsC2aVNk7uUwJieT+kQtGksikUjEFD6RMme/PwvRfi+9iE4pKyDjGUXOBaPA1TMlq+sejzmlqjvl7mh7Hn9t/Jm0xARcK1bGt0efQlZXdhkxYgTvv/9+kYVeWhMSicRUuPrJFL7Q0FA8PT05efIk33//vYUUihQHMTExVKhQgfXr17Nq1SpTOiFARloKZKWN5bUQqUjx4Fa5Cn2mzkKhsiHm33D++PYLjMZnF1wVERERKQgSqRR1QABYcQrfkZtHMIi/gWWWsmS/PwvRfi+9WMUne9myZXh7e2NjY8NLL73EiRMn8vS6jRs3IpFI6NWrV5FrLEq0UdEAKKt559h253oiqQkZKG1kVKnnagF1BeN64nUoYKRUXORlwg/sASBg9DjkT7THFBHJK9l1gjRpKWYtVf39/REEgcuXL9OwYcNcXxsdHS2G/pYCvL29EQSB2NhYOnfubFovCAIZWV1qbMR6UlaJZ83a9PzwE2RyOZH/HOPAimVF2hpZRESk7OKYVW8m5UAwgl5vaTkmmpZviqPSkYSMBMLvhVtajoiIRRHt99KLxZ1SmzZtYtKkScyaNYszZ87QuHFjAgMDn9s2MTo6milTptC+ffti01pUZKfvqXKJlLp6Ojt1zx25omSk7vEC6XtGg4H9Py0DQaBeh05Uqd+oiBSKlAWUNrZIpFKMegO6XLqGiJRddJp0jAYDUpkMhY2tpeWIPAWvhk3oNvEjJBIp5w/u4+iGNZaWJCIiUgqx8/VF5uyMISGBtELqwFUYyKVy2lfOfNYRU/hERERKKxZ3Sn355ZeMGTOGESNGUK9ePb7//nvs7OxYtWrVU19jMBgYPHgwc+bMoXr1gqWHWQuGlFT0WQ64J9P3Smrq3iPNIxIyEgDwcvTK12vP7t3Nvejr2Ng74PfmyCJSKFJWkEilqLI6kWSkplhajogVYeq6Z2cnpu5ZObVeakOXsRMAOPnrVk7uKljzDBEREZGnIZHLcQjIjKZN+vNPS8sxw79yVl2pm6JTSkREpHRiUaeUVqvl9OnTBGTlcQNIpVICAgI4fvz4U1/36aefUr58eUaNGlVMSouO7CgpmZsbsicq0sddSyQtUYvSVk6VuiUndS87SqqifUVs5XmPQEh+cJ/Qzb8A0H7wcOycnItMo0jZwVRXKk1spyySiSAIaNKynVIOz91fxPI07PQyHQaPAODIuiDOH7Suui/WxPLly2nUqBGOjo44OjrSunVr9uzZY2lZIiJWj+PLLwOQfOAAghUVlG5bqS1yiZyoxCiiE6MtLUdERESk0LGoU+r+/fsYDAYqVKhgtr5ChQrcuXMn19f89ddfrFy5khUrVuTpGBkZGSQlJZkt1oQ2OrvIec56Utmpe9Ubl0OmsHhQW54paOreoTU/otOk4+lTh4YdXy4idSJlDZWdPUhAr9Wi12ktLUfECtBrtRh0OiQSCcqsSDoR66fFa31p0bMfAPt/XErkP8csLckqqVy5MgsWLOD06dOcOnWKTp060bNnTy5cuGBpaSIiVo19q1ZI1WoM9+6TfvaspeWYUCvV+Hr4AnD45mFLyxEREREpdEqOpwNITk5myJAhrFixgnLlyuXpNZ999hlOTk6mpUqVKkWuMz88rZ6U0ShwLSt1r0YJSt2jgE6p62dOEvnPMSRSKV1Gj0dSxrtLiBQeUpkMZVbNoCe78ImUTbKj5pS2dmW+k01Jo/3rw2jYORBBMPL7koXcOBdmaUlWR48ePXj11VepVasWPj4+zJ8/HwcHB/62olb3IiLWiESpxKFjZqpcspV24RPrSomIiJRGLGqNlytXDplMxt27d83W3717Fw8Pjxz7X7t2jejoaHr06IFcLkcul/Pzzz+za9cu5HI5165dy/GaadOmkZiYaFpiY2OL9JzyS0ZUdqSUeW2suKsJpCVpUdmVrNQ9gKik/DmldBkagldltvVs3q0X7l7579gnIvIsVPaZKVqiU0qEx+tJiV33ShwSiYSA0ePweaktBr2eXxfNI+7qZUvLsloMBgMbN24kNTWV1q1b57qPtUeUi4gUJ9kpfEn791tVt0+/yn4AnI0/S4ImwdJyRERERAoVizqllEolzZs3Jzg42LTOaDQSHBycq/FUp04dzp8/T1hYmGl57bXX6NixI2FhYblGQalUKlNdhezFmtBGZeaGP5m+Z+q618QdmbxkzeTnN1Lq7+2bSLp3F7WbO637vV7E6kSsBYlEws6dO4vlWDZZdaW0mnQMButp9VwQoqOjkUgkhIWJESIFwaDXo8vQwGP1xkRKFlKpjK7vTsGrUVN0GRq2fzabBzdjLC3Lqjh//jwODg6oVCrefvttduzYQb169XLd19ojykVEihP7du2Q2Nmhvx2H5t9/LS3HRGV1ZWq51MIgGDh666il5YiUYYrTfi9NiPb7s7G4t2PSpEmsWLGCNWvWEBERwTvvvENqaiojRmQWNB06dCjTpk0DwMbGhgYNGpgtzs7OqNVqGjRogFKptPDZ5A/BaEQbnemUejx97/HUvZLUdQ8gw5DBrZRbkEen1P3YG5z6bTsAnUa8ZUqzEnlxYmNjGTlyJBUrVkSpVOLl5cV7773HgwcPilXH7NmzadKkSY71cXFxdO3atciO6+/vj0QiQSKRIFcq8azpg2dNH+RyBRKJBH9//yI7dm7cvXsXhULBxo0bc90+atQomjVrVqjH3LBhAzKZjPHjxxfquCWZ7NQ9hY0NMrnc0nJECohcoeC1yR/jWbM2mpRkts6fQdK9eEvLshpq165NWFgY//zzD++88w7Dhg3j4sWLue5r7RHlIiLFidTGBocOHcAaU/iyuvCJdaVKN6L9/p/9nttSmu13f39/3n///UIZq6RhcafUwIEDWbRoETNnzqRJkyaEhYWxd+9eU/HzmJgY4uLiLC2zSNDfuYOg0YBCgaJyZdP625EJpCfrUNnJqVzHxaIa80tMUgxGwYhaocbNxu2Z+wqCwIGfvsNoMFDD9yVqtmhVbDpLO9evX8fX15fIyEg2bNjA1atX+f77701RiA8fPrS0RDw8PFCpVEU2/vbt24mLiyMuLo4TJ04AsPnn1VwKP0tcXBzbt28vsmPnRoUKFejWrRurVq3KsS01NZXNmzcXekfRlStX8tFHH7FhwwY0Gk2hjp1ftFrrKDKfkZoCYpRUqUBpY0vvqbNwq1yVlIcP2Dr/E1ITHllallWgVCqpWbMmzZs357PPPqNx48Z88803ue5r7RHlIiLFjePLXQBI2rfPqlL4sutK/XXrL3QGnaXliBQBov2eu/1+4MAB07qyYL+XRSzulAKYMGECN27cICMjg3/++YeXXnrJtC0kJITVq1c/9bWrV68usSGEpnpSVaogeWzG3tR1r6k7MplVvEV55vHUPYlE8sx9LxwO5talC8hVKjoNf6uYFJYNxo8fj1KpZN++ffj5+VG1alW6du3KgQMHuHXrFtOnTzftm1sYrrOzs9n3LjY2lgEDBuDs7Iyrqys9e/YkOvq/tsQhISG0bNkSe3t7nJ2dadu2LTdu3GD16tXMmTOH8PBw0wxH9rhPHvf8+fN06tQJW1tb3NzcGDt2LCkpKabtw4cPp1evXixatAhPT0/c3NwYP348Ol3uhpmrqyseHh54eHjg7u4OgIuzM85qB9544w1mzpxptv+9e/dQKpWmdGJvb2/mzp3L66+/jr29PZUqVWLZsmVmr0lISGD06NG4u7vj6OhIp06dCA8Pf+r7MmrUKIKDg4mJMU812rJlC3q9nsGDB7N3717atWuHs7Mzbm5udO/ePdd6ec8jKiqKY8eOMXXqVHx8fHK9ia9atYr69eujUqnw9PRkwoQJZuf21ltvUaFCBVOU6u7du+Eps2dff/013t7/pSFnv1/z58+nYsWK1K5dG4C1a9fi6+uLWq3Gw8ODN954g/h48wiXCxcu0L17dxwdHVGr1bRv355r165x5MgRFApFju6s77//Pu3bt3/uNTEaDWjT0wGwEetJlQps1Y70nf4pju7leRR3m22fzTJFw4n8h9FoJCMjw9IyRERKBPYd/JAolehuxJBx5Yql5ZhoUK4BbjZupOpSOXn3pKXliBQBov2eu/3u5uZmshlLu/3+LLZt22ay2729vVm8eLHZ9u+++45atWphY2NDhQoV6Nevn2nb1q1badiwoel9CggIINWKau2WLI9HKUN7PbvI+WOpewYj18+WzNQ9HnNKeTt5P3O/9OQkDv+S6XFu0+8NHN1LxrkKgoBOo7HIktfZuocPH/Lnn38ybtw4bG3N0yE9PDwYPHgwmzZtyvN4Op2OwMBA1Go1R48eJTQ0FAcHB1555RW0Wi16vZ5evXrh5+fHuXPnOH78OGPHjkUikTBw4EAmT55M/fr1TTMcAwcOzHGM1NRUAgMDcXFx4eTJk2zZsoUDBw6YOUkADh06xLVr1zh06BBr1qxh9erVz3RaP4lUJkcwCgwd8ibr1683e0j75ZdfqFSpEp06dTKt++KLL2jcuDFnz55l6tSpvPfee+zfv9+0vX///sTHx7Nnzx5Onz5Ns2bN6Ny581Nnsl599VUqVKiQQ3NQUBB9+vTB2dmZ1NRUJk2axKlTpwgODkYqldK7d2+MRmOezzN7zG7duuHk5MSbb77JypUrzbYvX76c8ePHM3bsWM6fP8+uXbuoWbMmZD3Adu3aldDQUH755RcuXrzIggULkMlk+dIQHBzM5cuX2b9/v8mhpdPpmDt3LuHh4ezcuZPo6GiGDx9ues2tW7fo0KEDKpWKgwcPcvr0aUaOHIler6dDhw5Ur16dtWvXmvbX6XSsW7eOkSNHPlePNi0NQRCQKRTIFCUr3Vvk6ahdy9Fv+lzsnJy5F32dnQvnotOWXQfMtGnTOHLkCNHR0Zw/f55p06YREhLC4MGDLS1NRKREIHOwxz5roiP5T+tJ4ZNKpPhVySx4fjhWTOHLD6L9XrLt92xGjx5d6u33p3H69GkGDBjAoEGDOH/+PLNnz2bGjBkmTadOnWLixIl8+umnXL58mb1799IhKxU5Li6O119/nZEjRxIREUFISAh9+vSxqkhQsaCGBdFmRUqpHityfisrdc/GXkGl2iUrdY98dN47sm41muQkylXxotmrPYtJ3Yujz8hgybB+ediz8Jm4ZisKG5vn7hcZGYkgCNStWzfX7XXr1uXRo0fcu3eP8uWf7wzctGkTRqORn376yRT9FhQUhLOzMyEhIfj6+pKYmEj37t2pUaOG6RjZODg4IJfLc+2omc369evRaDT8/PPP2GdFsCxdupQePXrw+eefm9J5XVxcWLp0KTKZjDp16tCtWzeCg4MZM2bMc88DQJl1k+/auTOTgF9//ZUBAwZAVtTl8OHDzSL82rZty9SpUwHw8fEhNDSUr776ii5duvDXX39x4sQJ4uPjTWHMixYtYufOnWzdupWxY8fmOL5MJmPYsGGsXr2aGTNmIJFIuHbtGkePHjXdLPv27Wv2mlWrVuHu7s7Fixdp0KBBns7TaDSyevVqvv32WwAGDRrE5MmTiYqKolqWE3zevHlMnjyZ9957z/S6Fi1aQFaY9IkTJ4iIiMDHxweA6tWr53qsZ2Fvb89PP/1kVu/vcedR9erVWbJkCS1atCAlJQUHBweWLVuGk5MTGzduRKFQQNa1z2bUqFEEBQXx4YcfAvDbb7+h0WhM7+OzyO66Z2Nv/9xITpGShYtnJfpMm8PmOdO4GfEvu7/+nNcmfVwm64bFx8czdOhQ4uLicHJyolGjRsvaQZ0AAIF8SURBVPz555906dLF0tJEREoMji93ISU4mOT9+3Cf+K6l5Zjwr+zP9sjthMSGMLXlVPFelkdE+71k2+/Z9OnThwkTJpRa+/1ZfPnll3Tu3JkZM2aYzuvixYt88cUXDB8+nJiYGOzt7enevTtqtRovLy+aNm0KWU4pvV5Pnz598PLyAqBhw4YvrKkwESOlLIg2OmekVElO3SOPnfduXrrAv4cyZ54CRo8vkw8NxcHzvN95bQwQHh7O1atXUavVODg44ODggKurKxqNhmvXruHq6srw4cMJDAykR48efPPNN/muAxcREUHjxo1NNzSybihGo5HLl/9r916/fn2zaB1PT88cqV/PIruQvsRo4M033zTlh585c4Z///3XLGIHyNEFtHXr1kRERJiuS0pKCm5ubqbr4uDgQFRU1DPDdUeOHElUVBSHDh2CLAPB29vbNMMTGRnJ66+/TvXq1XF0dDSlxD0ZMvws9u/fT2pqKq+++ioA5cqVo0uXLqbzjY+P5/bt23Tu3DnX14eFhVG5cmUzZ1BBaNiwYY7P2enTp+nRowdVq1ZFrVbj55c565t9fmFhYbRv397kkHqS4cOHc/XqVf7++2/IMkYGDBhg9tnJDUEQyEjPdEqp7Bxe6LxErJMK1WrQ+38zkSuUXD99gn3ff4NQSDOUJYmVK1cSHR1NRkYG8fHxHDhwQHRIiYjkE4eOHUGhICPyKhnXr1tajolWFVuhkqm4nXqbyIRIS8sRKQJE+/3p2NjYMGTIkFJrvz+LiIgI2rZta7aubdu2REZGYjAY6NKlC15eXlSvXp0hQ4awbt060tLSAGjcuDGdO3emYcOG9O/fnxUrVvDokXXV4BS9ARYkIyozp1dZLTMCwWgwcv3MPSihqXuCIDzXKWXQ6zmwIjOvt0HHl6lUJ/cW1daKXKVi4pqtFjt2XqhZsyYSiYSIiAh69+6dY3tERATu7u44OztDVm74kzfAx/O8U1JSaN68OevWrcsxVnaud1BQEBMnTmTv3r1s2rSJTz75hP3799OqVeEWr3/SUSGRSPIVFquwUSGRSjEaDAwfOoQWL7Xi5s2bBAUF0alTJ9PsQV5ISUnB09OTkJCQHNuyr21u1KpVi/bt2xMUFIS/vz8///wzY8aMMc3w9OjRAy8vL1asWEHFihUxGo00aNAgX4XCV65cycOHD83Cv41GI+fOnWPOnDk5wsKf5HnbpVLpMz8z2TzpKMoO8w4MDGTdunW4u7sTExNDYGCg6fyed+zy5cvTo0cPgoKCqFatGnv27Mn1PXgSrSYdo8GIVCbL04ylSMmkct0GdP9gKr8umsfFo4ewcVDjP2yMGE0gIiKSL2SOjti3akXq0aMk79uH6u23LS0JAFu5La08W3H45mFCYkPwcXmxyaOygmi/m1PS7PfHGT16NE2aNCmV9vuLoFarOXPmDCEhIezbt4+ZM2cye/ZsTp48ibOzM/v37+fYsWPs27ePb7/9lunTp/PPP/+YMigsTckLxSklGNPS0Gd5o5VZ6Xu3LiegSdVh46Cgks/TvxTWyt20u6Tr05FL5FRRV8l1n9O/7+TBzRhs1I50GDw8132sGYlEgsLGxiJLXh+q3Nzc6NKlC9999x3pWUWds7lz5w7r1q0zm1Fwd3c3mxmJjIw0edYBmjVrRmRkJOXLl6dmzZpmi5OTk2m/pk2bMm3aNI4dO0aDBg1Yv349ZM3oGAyGZ2quW7cu4eHhZgX3QkNDkUqlpgLZhYFEIjV1XatVrRq+vr6sWLGC9evX51qTKDsa5/G/s0ObmzVrxp07d5DL5TmuS7ly5Z6pY9SoUWzbto1t27Zx69Yt0/vx4MEDLl++zCeffELnzp1Nodr54cGDB/z6669s3LiRsLAw03L27FkePXrEvn37UKvVeHt7m4pCPkmjRo24efMmV55S4NXd3Z07d+6YGUNhYWHP1Xbp0iUePHjAggULaN++PXXq1MkxU9aoUSOOHj361AKYZBkkmzZt4scff6RGjRo5Zo5yIzt1T2Unpu6Vdmo0b0nXcR8AcGbPLv7ennsbZxEREZFnoX6sC581kd2FLyT2+RMyIpmI9nvJtt8fp2HDhqXSfn8edevWJTQ01GxdaGgoPj4+pig0uVxOQEAACxcu5Ny5c0RHR3Pw4EHI+g60bduWOXPmcPbsWZRKJTt27ChUjS+C6JSyENobNwCQOTsjd8msHXX19F0AajR1R1qCU/cqqyujkOZMvUm6F8/xbRsA8HtzJLZqse10UbF06VIyMjIIDAzkyJEjxMbGsnfvXrp06YKPj49Z54pOnTqxdOlSzp49y6lTp3j77bfNZjQGDx5MuXLl6NmzJ0ePHiUqKoqQkBAmTpzIzZs3iYqKYtq0aRw/fpwbN26wb98+IiMjTT/+3t7eREVFERYWxv3793PtADV48GBsbGwYNmwY//77L4cOHeLdd99lyJAhpnz0wkKVFb2TkZbK6NGjWbBgAYIg5DorFRoaysKFC7ly5QrLli1jy5YtphpMAQEBtG7dml69erFv3z6io6M5duwY06dP59SpU8/U0L9/fxQKBW+99RYvv/wyVapkOnFdXFxwc3Pjxx9/5OrVqxw8eJBJkybl6/zWrl2Lm5sbAwYMoEGDBqalcePGvPrqq6aC57Nnz2bx4sUsWbKEyMhIzpw5Y6pB5efnR4cOHejbty/79+8nKiqKPXv2sHfvXgD8/f25d+8eCxcu5Nq1ayxbtow9e/Y8V1vVqlVRKpV8++23XL9+nV27djF37lyzfSZMmEBSUhKDBg3i1KlTREZGsnbtWrMw8MDAQBwdHZk3bx4jRox47nEFQTB1ZFOJXffKBHXbd6RjVlfXU79tJ+XhA0tLEhERKWGoO3cGqZSMixFoY2MtLceEX+XMtPfz989zP/2+peWIFCKi/Z43SqP9ns29e/fMJpXDwsK4e/cukydPJjg4mLlz53LlyhXWrFnD0qVLmTJlCgC7d+9myZIlhIWFcePGDX7++WeMRiO1a9fmn3/+4f/+7/84deoUMTExbN++nXv37j21fplFEMoYiYmJAiAkJiZaVsfvvwsXa9cRoga9LgiCIOj1BmHFpMPC0reChdiIBxbVVlDWXVwnNFjdQHg3+N1ct+9Y+KmwaEA3YeOs/wlGo7HY9RWE9PR04eLFi0J6erqlpeSbqKgoYdiwYUKFChUEiUQiAEKfPn2E1NRUs/1u3bolvPzyy4K9vb1Qq1Yt4Y8//hCcnJyEoKAg0z5xcXHC0KFDhXLlygkqlUqoXr26MGbMGCExMVG4c+eO0KtXL8HT01NQKpWCl5eXMHPmTMFgMAiCIAgajUbo27ev4OzsLACmcQFhx44dpmOcO3dO6Nixo2BjYyO4uroKY8aMEZKTk03bhw0bJvTs2dNM+3vvvSf4+fnl6VoAwtmzZwWDXi/cuRYpxF29Ijx68ECws7MTxo0bl+M1Xl5ewpw5c4T+/fsLdnZ2goeHh/DNN9+Y7ZOUlCS8++67QsWKFQWFQiFUqVJFGDx4sBATE/NcTWPHjhUAYfPmzWbr9+/fL9StW1dQqVRCo0aNhJCQELNr9fi55EbDhg1zPR9BEIRNmzYJSqVSuHfvniAIgvD9998LtWvXFhQKheDp6Sm8++5/390HDx4II0aMENzc3AQbGxuhQYMGwu7du03bly9fLlSpUkWwt7cXhg4dKsyfP1/w8vIybc/t/RIEQVi/fr3g7e0tqFQqoXXr1sKuXbtynE94eLjw8ssvC3Z2doJarRbat28vXLt2zWycGTNmCDKZTLh9+/Zzr7VWoxHirl4R7lyLNH0un0VJ/t6LmHNi1zYh7uqVIhvfWmyKwqQ0npOISEGJHjpMuFi7jnD/p5WWlmLGoN8GCQ1WNxC2Xt5qaSlWR0m/h4v2u/m1yM3mTU5OLnX2uyAIgp+fnwDkWObOnSsIgiBs3bpVqFevnqBQKISqVasKX3zxhem1R48eFfz8/AQXFxfB1tZWaNSokbBp0yZBEATh4sWLQmBgoODu7i6oVCrBx8dH+Pbbb597rnnlWd+5vNoUEsGaegEWA0lJSTg5OZGYmIijo+Uide4tW8b9b5fi1KcPFf9vPjEXHvDbt+HYqhUMX9C2REZKzf97Phsvb2RUg1G83/x9s21XT/7Nr4vmIZXJGLrwW9wqV7WYzvyg0WhMHctsSngdmlmzZvHll18WSa54SeNh3C20aWk8TE2jYdNmnDx5kmbNmpnt4+3tzfvvv8/777//1HFELMeoUaO4d+8eu3bteu6+KY8ekPLwISp7e1w8Kj53/9L0vRcpWqzFpihMSuM5iYgUlIfr1nF37jxsGzfGe5P1pAL/EP4DS8OW4l/Zn287f2tpOVZFabuHi/Z7TqKjo6lRo4Zov1sJz/rO5dWmKHmej1KC9np2573MelLZXfdqNC1fIh1SPKPznlaTzsGgHwDw7dGnxDikShtz5sxhyZIl/P333wUuLlhakCmUxN+7x6zZc2jVqlWOG5qI9ZKYmMhff/3F+vXreffdvLXpfryelIiIiIiISF5RB2TWlUoP///27ju+qetuA/hzr6ZlSx54YIzBYPbekJABYYXs1aRpmpDRppltStMGsjdZbdNmp292QvZejBAgCWHvPb0ATzwka0v3vn9o2AYbDNg6kvx8W310fYf0uxaQ48dnbIS3rEx0OWGheaVWlK6A0+c85vkUu9h+b+D1elFWVoZ7772X7fc4w9X3BPEUBAIcQ48e8PsU7NsQu6vuhbQUSi3/5H3YDlXCkpGFcZdcIag6AtCq+Xc6gjUbNmLylCnI79EDn3z6qehy6DhceOGFWLVqFW666aZWLXPv93nhDc6DwFCKiIiOhy4rEwnDh8O5fj1sC39A2tW/F10SAKBPah9kJ2aj1F6KlaUrwyEVxSe23wOWLVuGiRMnok+fPvjkEzGrKVL7YCglgKqq8BQWAgD0PXpg/44auB0+JFj0yO4de6vuAUC9px4VzkBvr7zkvPD+yqICrP32CwDApBtugs4Q+91oKfZNmjwZVSVF8LrdsGQ0HwQXBv+OUnRpbgnfown1ktIZjdBo+Z88IiI6PuapUwOh1IIFURNKSZKECbkT8P6O97GkZAlDKeoQJkyYgGPNPMT2e2yKzXFiMc5XUQHF4QA0Guhzc8Or7vUangFZjs2lygutgX8A0hPSYdEHxouqioKF//cCVEVB77Gnoufw0YKrJGoQ6jUTWpWN4pMr+PkaueoeERGdAMvUQK9cx9q18B2KnpU8Q0HU0v1Loagde1gXEcU2hlIChIbu6bt2hSJrsW9DYDnXXqPia+je5sULULprB3TGBEyccaPA6oiOZEhMAgB4HI4OP0Y/Xil+P7zOwFwbBlOS6HKIiCgG6XJyYBw0CFAU2H5YJLqcsNFZo5GoS0SVswpbq7aKLoeI6IQxlBIgHEr16IGS7dXwOH0wJevROT82h+6hcShlCYRSjrpa/PzemwCA8Zf/HuZO6ULrO1kdbJHKDkGr10Oj0wWG0zodosuhduB2OqCqKrR6PbR6fauvY0hJRESNmadOBQDY5s8XXUqYTqPD+C7jAQCLSxaLLifq8L/lRJHRFn/XOMGGAO5GodTm0Kp7IzJjdugemukptfTd1+Gy1yMjryeGn32e4OpOnE6ngyRJqKysREZGBiQpdj8jOpKk08PrcsFWWwto+M9hvLHV1sLr90On1cPlch3zfFVV4fF4UFlZCVmWoT+OIIuIiOKXZeoUVP7rX7CvWgV/bS00KdHxi+QJuROwoGgBlu5fij+P+LPocqKCXq+HLMs4ePAgMjIyoNfr2X4nagdt2W7mT2ECeAoC8y9puuehYEXsr7qHw0Kp4i2bsO2nHwFJwpQ/3ApZoxFd3gnTaDTo2rUr9u/fz4nz4pDP44GjrhaSXImkOisbLXFEVVXUH6qCqqowuTzQ1ta2+lqTyYRu3bpBltmZmIiIAH1eHgx9+sC9axdsPy5GyiUXiy4JAHB6zumQJRm7anbhQP0B5CTliC5JOFmW0aNHD5SWluLgwYOiyyGKe23RbmYoJYBn3z4AQJUuFx6XE4nJemT3TBZd1gnzKT4U2YoAAN1MXbHwmTkAgKGTpyO7d1/B1Z28pKQk9O7dG16vV3Qp1Mb8Ph/ev//v8DqdmH7739C5R2/RJVEbObBzO5bOfR1GsxlXPPgEZLl14bhGo4FWq2VASURETZinTg2EUgsWRE0olWJMwfDM4VhbvhZLSpbgqv5XiS4pKuj1enTr1g0+nw9+v190OURxq63azQylIkxxueANpvbFFQYATuSPzIQUw0P3DtQfgE/xwagxYv/i5ag5uB+m5BScduU1oktrMxqNBpoY7vFFLevSIx/bf1mConWrkTdgsOhyqI0Url0JR3UVeg4dAZOJK+8REdHJMU+dgqrnn4d92TL46+uhSYqOBTQmdJ2AteVrsbRkKUOpRiRJgk6ng06nE10KER0DxyZEmKeoGFBVqJZUFO60AQB6jcwSXdZJCQ3d6yt3w6rPPgIATLjmDzAmRsd/rImOJn/UOADA3jUrOKF9nFBVFXvXrAQA9Bo9VnQ5REQUBwy9e0OflwfV60X9kqWiywmbkDsBALC6fDVsHpvocoiIjhtDqQgLrbxn7XMavC4/klIN6NzDIrqsk1JQVwCowID1Wvi8HnQbNBT9xp8puiyiVukxbAQ0Wi1qSg+i+sB+0eVQG6go3AfboUpo9QZ0GzxMdDlERBQHJElqWIVvwQLR5YTlJechz5IHn+LDsoPLRJdDRHTcGEpFmKcwEEqVpw4FgqvuxfLQPQRDqe5lJhiK7dBotZh0wy2cj4Vihj7BhNyBQwAAe9asEF0OtYG9wc+x+5Dh0OkNosshIqI4EQql6n/+GYrTKbqcsFBvqaUl0dODi4iotRhKRZinoAB+WYcyf2DIXqyvugcARZX7MHZbKgBg9IW/QVoXrvxBsaXxED6KfXtCQ/dGcegeERG1HePAAdDl5EB1OlH/88+iywkLhVI/7f8JPsUnuhwiouPCUCrC3AWFqE4bAJ8iIynNgKwYH7qnqipMK8tgcmthyuiEsRf9RnRJRMctf9QYAEDpnl2w19aILodOgrWyApWF+yBJMnqOHCO6HCIiiiNNh/AtFF1O2NCMoUgxpMDqsWJ9xXrR5RARHReGUhGkqio8BQUozxgBAOg1IjPmh7nt3rkePfcFhsecdf3N0Or1oksiOm7mtHRk9ewNqCr2rl0puhw6CaFeUl369oPJkiy6HCIiijPmqVMAAPWLF0PxeESXAwDQylqcnnM6AGBJyRLR5RARHReGUhHkr6qC1+7CofTAsvOxvuqeovix5LVXIENCWa6CviPGiS6J6ISFhnqFVm2j2BQaghkakklERNSWEoYOhTYzE4rdDvuy6JlY/KxuZwEAvtn3DVw+l+hyiIhajaFUBLkLCnAobSD8GgPMaUZk5plFl3RSNi2cB1vxAXi0CpxndBVdDtFJyR8dCDGKNm+AxxU9k5dS67ns9di/fQvA+aSIiKidSLIM85RAb6loGsJ3Zu6ZyE7MRrWrGl/s+UJ0OURErcZQKoI8BYWoyAwO3RsZ20P37LU1+Pn9twAA6/rUoFt2L9ElEZ2U9NzuSM7Mgt/rRdFGzscQiwrWr4Hi9yMtJxep2VxwgYiI2kd4Xqkff4Tq9YouBwCgk3WYMXAGAODNrW9ywnMiihkMpSLIsbcIVZ0GAQB6jYrtVfeWvP1/8DgdcKXrsLN7PXok9xBdEtFJkSQpPORrD1fhi0lcdY+IiCLBNGokNGlpUOrqYF+1SnQ5YRf3uhgphhQcqD+AhUXR04uLiOhoGEpF0P4iNxSNAYlGPzK6xe7QvcJN67Fj2VJIkowNw5xQJaCHhaEUxb5QmLFv3Woofr/ocug4+LxeFG5YA3A+KSIiameSRgPzpElAlA3hM+lM+F2/3wEAXt/yOlRVFV0SEdExMZSKoBJHJwBAj17GmB265/N4sOi1FwEAg6eejZ36gwDAnlIUF3L6DYQxyQxXvQ0Hdm4TXQ4dh/1bN8HjdCIxJRXZvfqILoeIiOJceAjfDz9AjaJfZF3Z70okaBOwo3oHfj34q+hyiIiOiaFUhHhsTlQaA8FNn/HdRJdzwlZ9+TFqy0qRmJqG7GnjoUKFRW9BmjFNdGlEJ03WaNBz+Cig0SpuFBtCQ/d6jhwDSeZ/2oiIqH0ljh0D2WKB/9AhONetE11OWIoxBZf2vhQI9pYiIop2bLlHyJ6lu6Fo9EhwVSFraK7ock5I9cEDWPXFxwCAiTNuxH5vKRDsJRWrPb+IDhdahW/PmpXs9h4jVFXF3rWh+aQ4dI+IiNqfpNfDPHEiAMAaRUP4AOCaAddAK2mxqmwVNlduFl0OEdFRMZSKkD3rKgEAXZQiyDH4W3xVVbHotRfh9/mQN2wk+owbj4K6AoBD9yjO5A0dAY1Oh7ryMhwqKRJdDrVC+b49qK8+BJ3BiG6Dhoouh4iIOgjztOAQvoULoSqK6HLCspOycU7PcwD2liKiGKAVXUC82b5sKQo3rG2yT/Gr2Le7DCok1GjK8f0L/xJW34lyOxwo3rIRWp0ek667CZIkMZSiuKQ3JqDboKEoWL8Ge9asRHq3PNEl0TGEhlrmDR0BrV4vuhwiIuogEsePh2wywVdWBtfmzUgYGj2/GLlu4HX4au9XWFS8CAV1BWyvE1HUYijVxsr37cG2n35s8fhBAAePcjzajb34cqR0zgYAFNYVAuDKexR/eo0ah4L1a7B3zQqMu+QK0eXQMYTmk8oPrp5IREQUCbLBgKQJE2D97jtYFyyIqlCqV2ovnNn1TCzdvxRvbX0LD576oOiSiIiaxVCqjeWPGI3ElNQm+3b8WorqUjtSq3eg5+m9YOjXT1h9J8OYlISBZwaWv1VUBYXWYCjF37xQnOk5cgzwP6Bs727UVx9CUlon0SVRC+oqylBVXAhJltFzxGjR5RARUQdjnjoV1u++g23+AmTeeWdUzbN6w+AbsHT/Uny19yvcMuwWZJoyRZdERHQEhlJtLHfgEOQOHBL+2uP0Yc38n6E1quh/YD4Gn/8PGGM0lGqs3F4Op88JraxFjjlHdDlEbSopNQ3ZvfqidM9O7F27EkOnnCO6JGrBntWBXlI5/QYgwWwRXQ4REXUwSWecDslohHf/fri3b4dxwADRJYUNzxyO4ZnDsb5iPd7d9i5mjpopuiQioiPE3ozbMaZgUxUUnwqTvQyJ9oPQd+8uuqQ2EZpPqpu5G3SyTnQ5RG0uNBQsNDSMolNoPimuukdERCLIJhOSTj8NAGBdsEB0OUe4ftD1AICPdn0Eq8cquhwioiMwlGpne9ZWAAAyK9dB1yUbckKC6JLaRIGVk5xTfOs1OhBylGzZCI/TIbocaoaz3ob9O7YCAPIZShERkSDmqcFV+BYsFF3KEc7oegbyk/Nh99rx0c6PRJdDRHQEhlLtyO3wonjbIQBAZsU6GPLiJ8DhynsU79JycpHSORt+nw+FG9eJLoeaUbB+DVRFQXpud6RkdRZdDhERdVBJEyYAOh08+/bBvWeP6HKakCUZ1w8O9JZ6d9u7cPvdoksiImqCoVQ7Cg3ds+icSHKUQt8jfgIchlIU7yRJCve+4RC+6LR3dWDoHntJERGRSBqzGYmnngJE6RC+6T2mo3NiZxxyHcKXe74UXQ4RURMMpdpRaOheti8Q4MRlKGWJn3siOlyv4LxSBetWw+/ziS6HGvF5vSgI9mALfU5ERESiWKJ4CJ9O1uGaAdcAAN7c+ib8il90SUREYQyl2onL7kXJtmoAQMaBQC8LQ8/4CHBsHhsqnZUAgLzkPNHlELWbLn37I8FsgctejwM7tokuhxop2bIRXpcTSalpyOrZS3Q5RETUwSWddRag0cC9Ywc8xcWiyznCpb0vRbIhGSW2Eiwsjr7gjIg6LoZS7aRgYxUUv4q0bBP0+zYAcdRTqrCuEACQmZAJs94suhyidiPLGvQcMQZotMobRYc9a0JD98ZCkvmfMiIiEkubmgrTmNEAAFsUDuEz6Uy4st+VAIDXN78OVVVFl0REBDCUaj+hoXs98vWAzwcpIQHarCzRZbUJrrxHHUn+6MDQsD1rVrIBFyVURcHetasAzidFRERRxDJtGgDAGoVD+ADgd/1+B6PGiO3V27GilL9sI6LowFCqHbjsXuzfHhi61zWpFgCgz8uLm9/m76vdB3DoHnUQeYOHQ6vTw1pZjqriQtHlEICyfbthr6mGPiEBuQOHiC6HiIgIAGCeNAmQJLg2bYL34EHR5Rwh1ZiKS3pfAgB4bctrosshIgIYSrWPfRsqoSgqOuUkIeFQ4IdYQ4/4CXC48h51JDqjEd2GDAMaDRkjsfYGV0PMGzoSWp1OdDlEREQAAG1GBhJGjgAA2BZGZ2+pawZeA42kwcrSldh6aKvocoiIGEq1h73BoXu9RmbCUxhceS8vfgIcDt+jjqZXcIhYKAwhsfasDoSDXHWPiIiiTWgVvmgdwpeTlIOze5wNBOeWIiISjaFUG3PVe1GyowYIhlLufcFQKk4mOfcqXpRYSwAAPZN7ii6HKCJ6jhgNSBLK9+2B7VCV6HI6tNqyUhzaXwxJltFj+GjR5RARETVhnjIFAOBctw6+ykrR5TTr+kHXAwAWFi1EkbVIdDlE1MExlGpj+zZUQlVUpOcmISXLBE9BfIVS+2374VN9SNAmINOUKbocoohITElFl979APaWEi40hDJ3wCAYk5JEl0NERNSELjsbxiFDAFWF7YcfRJfTrD6pfXB6zulQoeLNrW+KLoeIOjiGUm2sJDjBea+RmfDX1cFfHfg6XuaUCs0nlWfJgyzxjw91HPmjQqvwcV4pkUKhIFfdIyKiaGWZGugtZV2wQHQpLQr1lvpqz1eocrIXOBGJw1ShjU25YSAu/ttw9BuXHe4lpc3KgpyYKLq0NsFJzqmj6jU6EIKUbN0Mt8MuupwOyWGtw4Ed24BG83wRERFFG3NwXinHqtXw1dSILqdZI7NGYkjGEHgUD97d9q7ocoioA2Mo1cZkWUKX3qlITDHAXRBYeS9ehu6BoRR1YGlduiK1S1cofh8KNqwVXU6HVLB+DVRVQUb3HrBkcPgwERFFJ323bjD06wf4/aj/8UfR5TRLkiTcMOgGAMCHOz+EzWMTXRIRdVAMpdpRw3xS8TF0D1x5jzq40GpvnFdKjNCqexy6R0RE0c4cA0P4JuROQM/knqj31uPjXR+LLoeIOiiGUu0oFEoZ4qSnlKqq7ClFHVooDClYvwZ+n090OR2K1+NG4aZ1QKNwkIiIKFpZgkP47L8uh98Wnb2QZEnGtQOvBQC8s+0duP1u0SURUQfEUKodeQrja+W9Q65DsHlskCChu6W76HKIIi67dx8kWJLhdtixf9sW0eV0KMWbN8LndiOpUzoye+SLLoeIiOioDL16QZ+fD3i9qF+yRHQ5LTqv53nINGWiylmFr/d+LbocIuqAGEq1E9Xvh6ewCIijUCrUSyonKQcGjUF0OUQRJ8sa5I8cA3AVvojbG/x+548cC0mSRJdDRER0TKEhfLYoHsKn0+hwzYBrAABvbn0TfsUvuiQi6mAYSrUT74EDUL1eSHo9dNnZostpExy6R9QwhG/vmpVQVVV0OR2CqijYu3YVwKF7REQUQ0JD+Op/+hmKPXpX7r2sz2Uw680oshbhx5LonJidiOIXQ6l2Ep7kPC8PkkYjupw2wVCKCOg+eCi0egNshypRUbhPdDkdQumenXDU1UKfYELuwMGiyyEiImoVQ79+0OXmQnW7Uf/zz6LLaVGiLhFX9rsSAPDa5tf4SzciiiiGUu3EXRBf80mBK+8RAQB0BiO6DxkONBpSRu1rT3C1wx7DRkKj1Ykuh4iIqFUkSYqJIXwA8Lt+v4NBY8DWQ1uxqmyV6HKIqANhKNVOPAWFAAB9jzzRpbSZwrrAPTGUoo4uNIQsFJZQ+9q7Ojif1OhxokshIiI6LuEhfEuWQnFH7+p2nRI64aJeFwEAXt/yuuhyiKgDYSjVTkLD9wxx0lPK6XPiYP1BAEDP5J6iyyESqufIMZAkGZWF+2CtrBBdTlyrPngA1Qf3Q9Zo0GPYSNHlEBERHRfj4MHQdu4MxeGAfdky0eUc1YyBMyBLMn49+Cu2H9ouuhwi6iAYSrUTT5wN3yu2FkOFihRDClKNqaLLIRLKZElGl779APaWanehIZJdBwyGMTFJdDlERETHRZJlmKcEh/DNj+4hfLnmXEzLmwawtxQRRRBDqXbgr6+Hr7ISiKNQal9dYEJnDt0jCmhYhY/zSrWnUOjHVfeIiChWWULzSi1eDNXjEV3OUV0/6HoAwIKiBSixloguh4g6AIZS7SDUS0qTng6N2Sy6nDbBlfeImgqFJPu3b4HLXi+6nLjkqKvFwV2B4QP5DKWIiChGJYwYAU2nTlCsVthXRvck4v3S+mF8l/FQVAVvbXtLdDlE1AEwlGoH4fmk8uJnkvM9tXsAAD0sDKWIACA1OwdpOblQ/H4UrF8jupy4tHfdKkBVkZmXD0t6puhyiIiIToik0cA8eTIQA6vwAcANg28AAHy++3NUOatEl0NEcY6hVDtwh+aT6hkfE4LvqtmFH4t/BAAMyxwmuhyiqMFV+NrX3uD3lb2kiIgo1lmmBVbhsy1aBNXvF13OUY3KGoXB6YPhUTyYu32u6HKIKM4xlGoHnoJCIE7mk1JVFY+teAx+1Y/J3SYzlCJqJDSvVOGGNfB5vaLLiStetwtFmzYAAHqNHie6HKKYMWfOHIwePRpmsxmZmZm46KKLsHPnTtFlEXV4ptGjoUlOhr+6Go41a0WXc1SSJIXnlvpg5weo93CaAiJqPwyl2kHDynuxP3zv24Jvsa5iHYwaI/4x+h+iyyGKKtm9+iAxJRUepxP7t24SXU5cKdq0AT6PG5aMTGR0j/2AnyhSli5diltvvRUrVqzAwoUL4fV6MXXqVNjtdtGlEXVokk6HpEmTAAC2+fNFl3NMZ3U7C3mWPNg8Nnyy6xPR5RBRHGMo1cZURYGnqAgAYIjxnlL1nnr8c80/AQA3DrkR2UnZoksiiiqSLKPnyDEAh/C1uT3BVQ3zR46FJEmiyyGKGfPmzcO1116LgQMHYujQoXjzzTdRXFyMtWuju2cGUUdgDq3Ct3AhVEURXc5RyZKM6wZdBwB4Z9s78Pije9VAIopdDKXamK+0FKrLBeh00OXkiC7npLy48UVUOavQ3dIdMwbOEF0OUVTqFRzCt3ftSqiqKrqcuKAofuxbtxrgfFJEJ62urg4AkJaWJroUog4v8dRTISclwVdZCeeGjaLLOabzep6HzIRMVDgr8O2+b0WXQ0RxiqFUG3OH5pPq1g2SViu6nBO2u2Z3eGLDWWNmQa/Riy6JKCp1GzQUOoMR9dWHUFGwV3Q5caF01044rXUwJCaia/9BosshilmKouCOO+7A+PHjMWhQ83+X3G43rFZrkwcRtQ9Zr0fShAlAjKzCp9focfWAqwEAr295HYoa3b27iCg2MZRqY559+4AYn09KVVU8tjIwufmkbpNwWs5poksiilpavR55Q0cAjYac0ckJfR97DBsFTQyH+0Si3XrrrdiyZQs++OCDFs+ZM2cOkpOTw4/c3NyI1kjU0YSH8C1YEBM9rC/rcxnMOjMKrYVYXLxYdDlEFIcYSrUxT2FgkvNYnk/qu4LvsLZ8LSc3J2ql0BCzvasZSrWFvcH5ubjqHtGJu+222/DNN99g8eLF6Nq1a4vnzZ49G3V1deFHSUlJROsk6miSTj8dUkICvAcPwrV1m+hyjilJn4Qr+l0BBHtLxUKQRkSxhaFUG0u++BJk3X03ks46S3QpJ6TeU49n1jwDAPjjkD+iS1IX0SURRb2eI0ZDkmVUFheirqJMdDkx7dCBEtSUHoCs0SJv6EjR5RDFHFVVcdttt+Hzzz/Hjz/+iB7H+CWZwWCAxWJp8iCi9iMnJCDp9NOBGBnCBwBX9b8KelmPTVWbsKZ8jehyiCjOMJRqYwmDByHtmqthGj5cdCkn5KWNL6HKWYVu5m64duC1osshigkJZgty+g0AGvXyoRMT+v51GzQEBpNJdDlEMefWW2/Fu+++i7lz58JsNqOsrAxlZWVwOp2iSyOiIPPUqUAMDeFLT0jHRb0uAgC8tuU10eUQUZxhKEVhu2t2473t7wEAZo+dzcnNiY5DaBW+PQylTkpoPqn8URy6R3QiXnrpJdTV1WHChAnIzs4OPz788EPRpRFRUNKEMyHp9fAUFsK9e7foclrl2oHXQpZkLDuwDDurd7bb+6iqivrqQ9i/bQu2LF6IXz54Gz++8QqqSora7T2JSCzOIEtA8D8Aj698nJObE52g/FHjsOTt/8P+7VvgrLchIcksuqSYY6+tQenuQEM3f9QY0eUQxaRY6HVB1NFpkpKQOH486hcvhm3BQhj79BFd0jHlWnIxpfsUzC+cj9e3vI4nz3jyhF9L8fthO1SJmrJS1JWXhp9ry0pRW1EGn9t9xDVbly7ChXfei26DhpzknRBRtGEoRUBwcvM15Ws4uTnRCUrJ6oz03O6oKilCwfo1GHD6RNElxZy9a1cBqoqsnr1hTksXXQ4REVG7MU+dGgylFiDjtltFl9Mq1w+6HvML52Ne4TzcPvx2dDW3vIiCz+tFXUUZ6srLUFt2sCF4Ki9FXUUFFL+vxWslSYYlIwMpnbsgJaszKooKULprBz6bcz+m3/Y39D3l9Ha6QyISgaEUod5Tj3+u+SfAyc2JTkr+qHGoKinC3tUrGEqdgL3BoXu9gqsZEhERxSvzWRNRqtXCvWsX3AUFMbFy94BOA3BK9ilYXrocb219C38fNhO1ZaWoKy9DTdnBQOAU7PlkO1QFHKXnpkarRXJmZ6R0zkZKVnaTZ0tGJjRaXfhcn8eD7557BrtX/Ypv/vMU7LW1GDH9/AjdNRG1N4ZShJc2voRKZyUnNyc6Sb1GjcXKzz9EwcZ18Hm90Op0rbiKAMDrcqF480YAQP5ozidFRETxTZOcjMSxY2Fftgy2BQth+NONoktqlrPehtqyg6gN9ng6vSAdKXuyoC76Bc+5lx/1Wp0xASlZzQdPSWmdIMuaVtWg1etx3l/vwo9vvIqNC77F4jdfgb3mEE67cgYkSWqjOyUiURhKdXCc3Jyo7WT17IWk1DTU11SjZMtG9Bg+SnRJMaNw0zr4vB4kZ2YhPbe76HKIiIjanXnq1GAotQDpgkIpVVVhr61pFDwFhtgFng/CbbcfcU0WjOFto9kSCJ4ah07BbVNySpuFRrKswaTrb0JSahqWffgOVn35CeprqjH1T3+GRssfaYliWVT8DX7hhRfw9NNPo6ysDEOHDsVzzz2HMWOan+T2f//7H95++21s2bIFADBy5Eg8/vjjLZ5PLWs8uflZuWdxcnOikyTJMvJHjcXGhd9jz5oVDKWOw97gqoX5o8bxt55ERNQhmCdPQtlDD8G1dSs8+w9A3zWnXd5HUfywVVU1BE7h0CnwaG5i8caSUtOQ3Ch0KtZU4sXCN4CUBHz3u49g0pnape7DSZKEcZdcgcTUVCx89Xls++lHOKx1OP+vs6A3JkSkBiJqe8JDqQ8//BAzZ87Eyy+/jLFjx+LZZ5/FtGnTsHPnTmRmZh5x/pIlS3DllVfi1FNPhdFoxJNPPompU6di69atyMlpn3/I49X3Bd83TG4+hpObE7WF/FHjsHHh99i7dhUm36BAkmXRJUU9xe/H3nWrAc4nRUREHYi2UyeYRo6EY/Vq2BYuRKfrTm4aDWtVJapKCgOBU6MeT3UV5a2aWDw5KxupnbPDAVRqVjaSszpDZzA2OX+04sfbX85DkbUIn+z6BNcMvOak6j5egydORWJyKr7+9xMo3LAWHz98Ny6e9SBMluSI1kFEbUNSBa8dPHbsWIwePRrPP/88AEBRFOTm5uL222/HrFmzjnm93+9Hamoqnn/+eVxzzbH/QbRarUhOTkZdXR0sFkub3EMsqvfU44IvLkClsxK3DbsNfxr6J9ElEcUFn9eLl/74O3icTvzusX8iu1df0SVFvf3btuDDh2bBmGTGza++C1nTujkmiESLxzZFPN4TUTSrfuddlD/2GBKGD0fe+3NP6DVUVcXqrz7Fz++/1eLk4odPLN44gErObDqxeGt8susTPLT8IWSZsvD9Jd9Dp4n8PJqlu3fisycfgstmRUrnbFx69yNIyeoc8TqIqHmtbVMI7Snl8Xiwdu1azJ49O7xPlmVMnjwZy5cffeK8EIfDAa/Xi7S0tHasNP68vPFlVDorkWvOxbWDOLk5UVvR6nTIGzoSu1b8gr1rVjKUaoU9wVX3eg4fxUCKiIg6FPPUKSh/7DE416+Ht7wCuqwjR4ocjaL4wxOAA0B6bnekZuc0nVz8OCcWb43z88/HCxteQLmjHN8WfIuLel3UZq/dWtm9++LKh5/Cp48/gNqyUrx/3524ZNaDyOrZK+K1ENGJEzqupKqqCn6/H1lZWU32Z2VloaysrFWvcdddd6FLly6YPHlys8fdbjesVmuTR0e3p2YP3t3+LgBg9pjZMGgMoksiiiuhIWh7Vq8QXUrUU1W1YT4prrpHREQdjC4rCwlDhwIAbD8sPK5rvW4Xvvrn44FASpIw4Zo/YsYzL+CCv92NM666DkMmn41ug4bCkp7ZpoEUABg0Bvy+/+8BAG9seQOKqrTp67dWWpeuuPKRp5HRvQccdbX48KHZKNy0XkgtRHRiYnqykyeeeAIffPABPv/8cxiNxmbPmTNnDpKTk8OP3NzciNcZTVRVxeOrApObT8ydiNO7ni66JKK402P4aEiyjEP7i1FbViq6nKh2aH8xastLodHpkDd0hOhyiIiIIs48bRoAwLag9aGUo64WHz18N/auWQmtTo/z/zoLI8+9sB2rPNLlfS9Hki4J++r2YWnJ0oi+d2NJqWm44sEn0G3QEHhdTnz+xIPY/vNiYfUQ0fERGkqlp6dDo9GgvLy8yf7y8nJ07nz08cDPPPMMnnjiCSxYsABDhgxp8bzZs2ejrq4u/CgpKWmz+mPRvMJ5WF22GgaNAXeNuUt0OURxyZiUhNwBg4BGQ9OoeaFeUt0GDeXKOURE1CGZp04BADhWr4avuvqY59eUHsDc++5E2Z5dMCaZcdl9j6HP2PERqLQps96My/teDgB4bctrEDlVscGUiItnPYS+p5wOxe/Hd8//E2u+/kxYPUTUekJDKb1ej5EjR2LRokXhfYqiYNGiRTjllFNavO6pp57CI488gnnz5mHUqKMvuW4wGGCxWJo8Oiq7145nVj8DAPjD4D8gJ4mrFRK1l/yRgSF8odCFmhcK7ULfLyIioo5G37UrjAMGAIoCW6Ofi5pzcNd2zL3v76grL0NyZhaufORp5PTtH7FaD/f7/r+HTtZhY+VGrKtYJ6wOBOf1PPfPf8eI6RcAAJa++zqWvP1/UBUxQwuJqHWED9+bOXMm/ve//+Gtt97C9u3bcfPNN8Nut+O6664DAFxzzTVNJkJ/8skncd999+H1119HXl4eysrKUFZWhvr6eoF3ERte3vgyKpwVyDXn4rpB14kuhyiu5Y8KzI90YMc2OKx1osuJSvXVh1C2ZxcAIH/kGNHlEBERCWOeOhUAYJu/oMVzdq/6FR8/fA9cNiuyevbGlY88g7QuXSNY5ZEyTBm4ID8QAr2+5XWhtQCAJMuYMOOPOOOqwM86a7/9At89/0/4fV7RpRFRC4SHUldccQWeeeYZ3H///Rg2bBg2bNiAefPmhSc/Ly4uRmlpw5wsL730EjweDy677DJkZ2eHH88884zAu4h+e2v34t1tgcnNZ42ZxcnNidpZcmYWMrrlQVUVFKxfI7qcqLR37SoAQOdefZCU1kl0OURERMKEQin7ihXw1x35y6x133+Nr/41Bz6vBz1HjMYVD8xBYkqqgEqPdN2g6yBBwk/7f8Kuml2iy4EkSRh9waWYfutMyBoNdixbis+eeAhuh0N0aUTUDOGhFADcdtttKCoqgtvtxsqVKzF2bMMwjiVLluDNN98Mf11YWAhVVY94PPjgg4Kqj36qquLxlY/Dp/owMXcizuh6huiSiDqE0GpyXIWveXuDQ/d6jeKqe0RE1LEZevaAoXcvwOeDbXHDJN2qomDJO69h8ZuvAKqKoVOm48I774WuhUWeROhu6Y7J3QMrob+x5Q3R5YQNOOMsXHzXA9AZjCjevAEfPTQb9toa0WUR0WGiIpSi9jWvcB5Wla3i5OZEERYKWwo3rYPX4xZdTlTxOB0o3rIRAJA/ivNJERERmacEh/AFV+HzeTz45j9PYe03nwMATrtyBibdcAtkjUZonc25YdANAIDvC77HwfqDossJyxs6Apc/MAcJlmRUFO7F+/fdiZrSA6LLIqJGGErFOU5uTiROZo98JHVKh8/tRvHmjaLLiSqFG9fB7/MhJSsbnbp2E10OERGRcOZpwSF8v/wCe1k5PnnsXuxa8QtkjRbn3H4nxl70G0iSJLrMZg1MH4ix2WPhV/14e9vbostponN+b1z5yNNIycpGXUU53r/v7+E5LYlIPIZScY6TmxOJI0lSo1X4OISvsT3BVQnzR42N2gY2ERFRJBn69IGuezfYVQUf3P83HNixDQZTIi69+2H0P22C6PKO6fpB1wMAPt31KWpc0TVMLrVzF/z24aeQ1bMXnDYrPnx4Nuf8JIoSDKXiGCc3JxKvV3Bo2t61q7gkcZDf50PButUA55MiIiIKkyQJ3vGn4NfeOaitq4W5UwZ++9CT6DZoiOjSWuWU7FPQP60/XH4X3t/xvuhyjpCYkorL738c3YcMh8/txudPPYytSxeJLouow2MoFacaT24+IXcCJzcnEiR34GDoE0xw1NWidM9O0eVEhQM7tsFlr4fRbEGXvv1Fl0NERBQV9q1fjQW7NsGj08Ls9uK39z6K9G55ostqNUmSwr2l5u6YC4c3+la70yeYcPFd96P/aROgKgrmvfhvrPziY6iqKro0og6LoVScml84v2Fy89Gc3JxIFI1Whx7DRgKNhqx1dKGhjPkjRkflZK1ERESRtmnRPHzx1CPweT3I8PgxblcJpG3bRZd13CZ3n4xccy7q3HX4bPdnostplkarw/RbZ2LU+ZcAAH55/y0sfvNVKIpfdGlEHRJDqThk99rx9OqnAQA3DL4BXc1dRZdE1KHljw4MUdu7mvNKqaraZD4pIiKijkxVVfzywTtY+OrzUBUFA8+chCmjT4dOUWFdsEB0ecdNK2tx7cBrAQBvb3sbXsUruqRmSbKMM39/PSZc8wcAwPp5X+Pb/zwNn8cjujSiDoehVBx6ZeMrqHBWoGtS13AXWiISp8ewkZA1GlQf3I/qgx17GeKq4kJYK8uh1emRN2SE6HKIiIiE8fu8mPfCv7Dy8w8BAOMuvRLTbr4DyWefDQCoX7wESgyGJBfkX4A0YxpK7aWYVzBPdDlHNfLci3Dun/8OWaPFrhW/4LM5D8DtsIsui6hDYSgVZ/bW7sU7294BAMweO5uTmxNFAWNiEroOGAxwFT7sCd5/t8FDoTMaRZdDREQkhNthx2dzHsS2nxdDkmVM/dOfMf7yqyBJEhKGDYM2IwOKzQbH8uWiSz1uRq0RVw+4GgDw+pbXoajRvdBLv/Fn4pLZD0KfkICSbZvx4QN3ob76kOiyiDoMhlJxRFVVzFk5h5ObE0Wh0Cp8HX1eqb3hoXtcdY+IiDom26EqfPDAXSjeshE6YwIuvusBDD5ravi4JMswT5kMADE5hA8ALu97ORJ1idhTuwc/7/9ZdDnH1H3wMFzx4JNITElFZXEh5t53Jw4dKBFdFlGHwFAqjswvnI+VZSs5uTlRFArNn3Rw13Y4rHWiyxHCdqgK5fv2AJKE/JFjRJdDREQUcZXFhZh7799QVVyIxJRUXPHgE+EFURozTw2EVPWLfoTq8wmo9ORY9Bb8ps9vgGBvqViQmdcTVz7yNFKzu8BWVYkP7v8HDu6KvcnmiWINQ6k4wcnNiaKbJT0TmXn5gKpi39pVossRYm/wvrN790ViSqrocoiIiCKqaPMGfHD/P1BffQhpObn43aP/RFaP/GbPNY0aBU1KCvy1tXCsXh3xWtvC1QOuhk7WYV3FOqyvWC+6nFZJzuyM3z78NDr36gNXvQ0fP3JvuP1CRO2DoVSc4OTmRNEvv4MP4QvNp9WLQ/eIiKiD2fbTj/hszoPwOB3o2n8Qrnz4aVgyMls8X9JqkTR5EhDDQ/gyTZk4P/98AMDrm2OjtxQAmCzJuPy+x9Fj+Cj4PG58+fSj2LRovuiyiOIWQ6k4sK92Hyc3J4oBvUYHwpiiTevhdbtElxNRbocDxVs2AY3COSIioninqipWfPYhvn/hX1D8PvQ95XRces8jMCYlHfNaS3AIn+2HH6Aq0T1ZeEuuHXgtJEhYsn8J9tTsEV1Oq+mMRlx4570YeOZkqKqCha8+h+Wfvg9VVUWXRhR3GErFOFVV8fiqxwOTm3fl5OZE0Syjew9YMjLh87hRtHmj6HIiqnDjWih+H1Kzc9ApJ1d0OURERO1O8fux8H/PY9mHgV8ej77gUpz7579Dq9O16vrEceMgm83wV1bBuT42hr8drkdyD0zqFujx9cbWN0SXc1w0Wi2m3fwXjL34CgDArx+9h0WvvQhF8YsujSiuMJSKcfOL5mNlaXBy8zGc3JwomkmShPyRgV5CoaFsHcWe1YH7ZS8pIiLqCDwuJ754+hFsXjQfkiTjrOtvwhlXXQdJbv2PX5Jej6SJEwAAthgdwgcgPLXId/u+Q2l9qehyjoskSTjtt1fjrOtvAiQJGxd+j6//NQdej1t0aURxg6FUDHN4HQ2Tmw/i5OZEsSAUyuxdu6rD/KbN7/OhYMMagPNJERFRB2CvrcFHD81Gwfo10OoNuOBvd2P4tPNO6LUs06YBAKwLF8bs0LHBGYMxuvNo+FQf3t72tuhyTsjwaefh/DvugkarxZ7VK/DJo/fBWW8TXRZRXGAoFcNe3vQyKhyByc2vG3Sd6HKIqBW69h8EQ2IinNY6lO7aKbqciNi/fQvcdjsSLMnI7tNXdDlERETt5tCBEsy9906U79uDBLMFl9//eHhOyROROH48JJMJvoOlcG3Z0qa1RlKot9Snuz9FratWdDknpM+403DpPY/AYErEwZ3b8OEDd8FaVSm6LKKYx1AqRu2r3Yd3tgbGp88aMwtGrVF0SUTUChqtFj2GjQIA7OkgQ/j2BlcbzB85BrKsEV0OERFRu9i/Yys+uO/vsFaWI6VzNq589Blk9z65X8bIRiOSzgzMGRvLQ/jGdxmPvql94fQ58f7O90WXc8JyBwzGFQ89iaTUNBzaX4z377sTVSVFossiimkMpWLQ4ZObn5l7puiSiOg4hH5jGgpr4pmqquHwLZ9D94iIKE7tXP4LPnn0Xrjs9cju3RdXPvIMUjt3aZPXDq3CZ52/IGaH8EmSFO4t9f729+H0OUWXdMIyuuXhykefQVpOLuqrD+GDB/6B/dtjtxcbkWgMpWLQgqIFWFm6EnpZj3+M+YfocojoOOUNHQlZo0VN6QEcOlAiupx2VVlUAFtVJbR6A7oPHiq6HCIiojalqirWfPM5vnn2Cfi9XuSPGoff3PcYTJbkNnuPpDPOgGQwwFtcDPfO2B36PzVvKnKSclDjrsHnuz8XXc5JsaRn4rcPP4UuffrDbbfjk8fuw+5Vv4ouiygmMZSKMQ6vA0+tfgoA8IfBf0CumUurE8Uag8mEboOGAB2gt1Ro1b3uQ4ZDZ+AwYyIiih+K4sfit17F0ndeAwAMm3YeLvjb7Db/752cmIjE004DYnwIn1bW4tqB1wIA3tr6FryKV3RJJyUhyYzL7nsU+aPGwu/14ut/PYENC74TXRZRzGEoFWNe2fQKKhwVyEnK4eTmRDEsNJQt3ueVCoVuvYKrDhIREcUDr8eNr//1BNZ//zUA4MzfX4+zrvtTu82daJk6BQBgjeFQCgAu6nUR0oxpOGg/iPmF80WXc9J0egMumHk3hkw6G6qqYNFrL2LZh+/E7DBLIhEYSsWQfXX78PbWwDKqs8fM5uTmRDEsf9QYAEDp7p2w19aILqddWKsqUFG4F5Iko+fIMaLLISIiahMOax0+fuQe7Fm9HBqtFuf+5R8Ydf4lkCSp3d4zaeJEQKeDZ89euPfta7f3aW9GrRG/6/c7AMAbW96Ii/BG1mgw+Y+34pTLAve14rMPseCV/0Lx+0WXRhQTGErFCFVVMWflHPhUH87seiYnNyeKcea0dGT17A2oKvauXSW6nHYR6iXVpW+/Np1bg4iISJTaslJ8cP/fUbprBwyJibjsnkfR79Qz2v19NRYLEscFelnH8hA+APhtv9/CpDVhV80u/HLgF9HltAlJknDqb36HKX+8DZIkY8vihfjymUfhdbtEl0YU9RhKxYgFRQuwonQF9LIed425S3Q5RNQGQkPa9sbpEL49wVCKq+4REVE8KN2zE3PvuxM1pQdhycjElQ8/g64DBkXs/c1xMoQv2ZCMy/pcBgB4bctrostpU0Mmn40L/nY3tDo99q1bjY8fuQcOa53osoiiGkOpGODwOvD06qcBADcMvoGTmxPFifzRgbCmePNGeF3x9Zs0l70e+7dtBjifFBERxYE9a1bio4fuhtNah8we+bjykWfQqWtk2+TmSZMAWYZ723Z4SmJ79d6rB1wNrazF2vK12Fi5UXQ5barX6HG47N5HYUxMQununfjggbtQV1EuuiyiqKUVXQAd2yubXkG5oxw5STm4ftD1osshojaSntsdyZlZqKsox7KP3kFal/gJnKtKiqD4/UjLyUVqdo7ocoiIiE7Yhvnf4sc3XoGqKugxbCTO++ss6I0JEa9Dm5YG05gxcKxYAduCheh0Q+z+XNA5sTPO63kevtjzBV7f/Dr+c9Z/RJfUpnL6DcBvH34Knz7+AGoO7sf79/8dl8x6EJl5PUWXRhR1GEpFuX11+/D2tsDk5rPGzOLk5kRxRJIk5I8ah3XffYm1334pupx2wV5SREQUq1RFwc8fvI3VX34CABh81lRM/sOtkDXts8Jea5inTgmGUgtiOpQCgOsGXocv9nyBH0t+xL7afeiZEl+BTaeu3XDlo0/js8cfQFVJET58cBYuvPNedBs0RHRpRFGFoVQUC09urvhwRtczMCF3guiSiKiNjTr/YrjqbfA4HaJLaXMGUyJGnHOh6DKIiIiOm8/rxfyXnsWOZUsBAOMv/z3GXnJFu66w1xrmyZNR/sijcG7cCG9ZGXSdOwut52T0TOmJibkTsbhkMd7Y+gYeGf+I6JLanDktHVc89CS+fPpR7N++BZ/NuR/Tb/sb+p5yuujSiKIGQ6kotrBoYXhy81mjZ4kuh4jagTktHdNvnSm6DCIiIgpy2evx1TOPoWTbZsgaDab+6c8YeOYk0WUBAHSZmUgYPhzOdetgW7AQaddcLbqkk3L9oOuxuGQxvtn3DW4ddis6J8ZuyNYSY2ISLr37YXz3/DPYvfJXfPOfp2CvrcGI6ReILo06OEXxw1VfL3yVbE50HqUcXgeeWv0UAOD6wdcj1xI/c80QEREREUUja1UFPrj/HyjZthn6hARcPOvBqAmkQkKr8NlifBU+ABiWOQwjs0bCp/jwzrZ3RJfTbrR6Pc674y4Mm3YuoKpY/Oar+Om9N+D3eUWXRh2M3+dD4ab1WPjq83jlphlY8MpzoktiT6lo9eqmV8OTm98w6AbR5RARERERxbWKwn347IkHYa+pRlJqGi6O0ompLVOmoOKJJ+FYuxa+qipo09NFl3RSrh90PdaWr8Unuz7BjUNuRLJBbK+N9iLLGpx13U1ISu2EXz54G6u/+hRbly7CoIlTMGTSNCRnxl8vMYoOPq8XxVs2YNeKZdi7ZiVc9bbwsfK9u+D3+aDRiouGGEpFoYK6Ary17S0AwF2j7+Lk5kRERERE7ahww1p89e8n4HU5kZ7bHRfPehCW9AzRZTVLl5MD46BBcG3ZAtsPi5D62ytEl3RSTs85Hb1Te2N3zW58uPND3DjkRtEltRtJkjD24sthTs/AT++9AXtNNVZ98TFWffkJegwdgSFTzkHP4aOETqZP8cHrcaNw4zrsXvkr9q5Z2WT+2gRLMnqPPgW9x41H7oDBQgMpMJSKPpzcnIiIiIgocrYsXogFrz4HVVHQbdAQnD/zbhgTk0SXdVTmqVMDodSCBTEfSkmShOsHXY/ZP8/Ge9vfwzUDron7X8oPOH0i+p5yOvatXYWNP3yPok3rUbBhLQo2rEVSp3QMOWsaBp01Bea02O4FR5Hldbmwb/0a7Fq5DAXrVsPrdoWPJaamofeYU9Fn7KnI6T8Qshw9waekqqoquohIslqtSE5ORl1dHSwWi+hyjrCwaCFmLpkJvazHFxd+wbmkiIiIolS0tylORDzeE1FLVFXF8k/mYvkn7wMA+p8+EdNu+jM0Wp3o0o7JU1iIvWdPB7Ra9PnlZ2hSUkSXdFJ8ig/nfnYuDtoP4u4x92B62gWoKLaiosiG2nIH9EYtTBZ9+JHQeDtJB1kT21Ml15QdxKYf5mHLkh/gslkBAJIsI3/kWAydMh3dBw+DJMf2PVL7cDsc2LduFXatWIbCjevg87jDx8ydMtBn3KnoPfY0dOndN+J/hlrbpmBPqSjCyc2JiIiIiNqf3+fDwv89j61LfgAAjL34coy/4mpIkiS6tFbR5+XB0KcP3Lt2wfbjYqRccrHokk6Iqqioq3SistiG31Tfin17SlG+Ohnv+Va0/kUkICFJFwiozHqYkvUwmfUwWQwwWXQwWQzhEMuYpIMsR99nnNq5C878/fUYf/nvsXvVr9i48Hsc2LEVe1Yvx57Vy5GSlY0hk8/GwAmTha+URuK56uuxd+1K7FrxC4o2rYff5wsfS87qjD5jx6PP2PHIyu8dE/+mMZSKIv/b/D+U2cs4uTkRERERUTvxOB34+t9PoHDjOkiSjMl/uAVDJp8tuqzjZp46NRBKLVgQE6GUqqqwVjlRUWRDZZENFcVWVBbXw+MM/UCdhBz0BgBIWhWZucnI7GZGWk4SvG4/nFYPHFYPHDYPHHWBZ5fNA1UFnDYvnDYvAPtRa5AkwGjWN+l1ZQoGWU0CrWQ9jCYdpAgHWFq9Hv1Pm4D+p01AVUkRNv0wD1uXLkJteSl+eu8NLPvwHfQeOx5Dp0xHTr+BMRE4UNtwWOuwZ/Vy7F75K4q3bITi94ePpXbpGgiixo1HRvceMffngsP3okRBXQEu+eoS+BQf/jvxv5jYbaLokoiIiOgoorVNcTLi8Z6oY1JVFS57PawV5bBWVcBaGXjUVVagomAvbIcqoTUYcP4ds9BzxGjR5Z4Q9+7d2Hf+BZB0OvRe/is0SdEzD1YggHKhstiGiiIrKottqCy2we3wHXGuRiujU9ckZHY3Y6u0Bh9Wv43MLsn46MIPj/nDtaKocNV7A2GV1Q2n1QO71dMQYAUfTpsHznovcBw/+cqyhASzLtjLqqHXVXNDCA0mbbsFAV6XCzuW/4SNC75H+b7d4f2dunbDkMnTMeCMiVE/BxqdmPqaauxZtRy7Vy1DydYtUFUlfCy9Wx76jB2P3mNPRaeu3aIyiGptm4KhVBRQVRU3/XATfj34K07POR0vTHohKv9QERERUYNobFOcrHi8J4pPqqrCabPCWlGOusqKYPBU3iR88rqcLV5vSk7BxXc9gM75vSNad1tSVRX7zjkXnoICdHnmGSSfd66wOmyHXIEeUI1CqOYCKFkrIT0nCRndLcjsbkZGNzPSuiRCE5wTqtZVi6mfToXT58TLk1/G+JzxbVan4lfgrPeGe1k56gJhVfhrqxsOqxcOqxtu+5G1H42skY4Mqxr1wEoM9cSy6KFPOPEAq2zvbmz64XtsX7YUPndg7iCt3oB+48/A0MnT0blXnxN6XYoe1qpK7Fn1K3atXIYDO7cDjeKazB75wSBqPNK65AitszU4p1QM+aH4B/x68FfoZT1mj5nNQIqIiIiIOjRVUWCvqw2GTOWwVlXCWhkMoIIhVOiH8qMxJafAkpEJS3omLBmZSM7IgiUjE1369o/53iWSJME8dSoOvfIKbAsWRCSUUlUVtupQD6hACFVZZIPL7j3iXFkjoVNOUjh8yuxuCQRQ2pYnW04xpuDS3pfi3e3v4vUtr7dpKCVrZCQmG5CYbDjmuX6fEgisDuttdUSgZfXA7fBB8auor3GjvubYfyY1WhkJFh3MqUZ06Z2C3P5p6NwzGRrdsSeh7pzfG53ze+PMq2/Atp8XY9PC71FVUoQtixdiy+KFyOrZC0MmT0e/8WdAb0xo9feGxKqrKMOulb9i94plKN2zs8mx7F590XvcePQZeyqSMzsLq7E9saeUYA6vAxd+eSHK7GX405A/4bbht4kuiYiIiFoh2toUbSEe74mik6L4Ya+paRI61TXq6WStqoDfe2TQcbik1DSYQ2FTegYswdApEERlQGcwRuR+RHFu3YrCSy+DZDSiz6/LIJtMbfbaqhoIWsLzPxXZUFFsg6u+5QAqED4FQqhOXZJaFbQcrsxehumfTodP9WHuOXMxOGNwG91R+/B5/XDavA3hlbVpr6vG+z0uf7OvodXL4YAqt38a0roktqqjgqqqOLhzOzb+8D12rfgl/HdGn2DCgDMmYsjk6cjoltfm90wnr/rgAexeuQy7Vi5DRcHehgOShJy+A9Bn7KnoNeZUWNIzRJZ5Ujh8rwXR1tj6z7r/4P82/x9yknLw+YWfI0HLRJuIiCgWRFuboi3E4z2RGIrfj/rqQ8GhdOXhoCkwxK4S1qpKKP6jD5GSJBlJaZ1gyQiETckZmTCnh3o7ZcDcKQNavT5i9xSNVFXF3slT4D1wADn/+Q8s06ae8OvYa92NhuDZUFlsDU4e3pQsS0jLSURmN3N4GN6JBlAtueeXe/DV3q8wudtk/Hviv9vsdUXzefzhkKqmzIH9O6pRsqMGTqunyXkmix5d+6cit18gpEpMOXbvLoe1DtuWLsLGH75HbVlpeH+XvgMwdMp09Bk7vsP/fRFJVVUc2l+MXSuWYfeqX1FVXBg+JkkycgcOQu8x49FrzClISk0TWmtbYSjVgmhqbBXWFeLiry6GT/HhPxP/g7O6nSW0HiIiImq9aGpTtJV4vCdqH36fD7ZDVeF5nOoqK2CragigbIeqoCrKUV9DkmWYO2UgOdSzKTzMLgvJmZlISkuHRsvZRo6l/MmnUP3GG7Ccey5y/vlMq64JBFBWVBTbwj2gDg9GAECSJaR1CQRQgR5QFnTqmgitTtMOd9JgT80eXPzVxZAg4cuLvkSP5B7t+n4iqaqKQwfsgYBqezUO7qqFz9v0705qdiJygyFVlz4p0Btb/nuhKgqKt27CpoXfY8+aFeFV2oxJZgycMBlDJ5+N1Ozon48oHqiqisqiAuxaEegRVXNwf/iYrNGg26Ch6D12PHqNHgeTJVlore2BoVQLoqWxxcnNiYiIYlu0tCnaUjzeEwWoqgpVVaD4Fah+PxTFD8UffCh+qH4lvB3aryoKnPW2hiF1lYGV7OoqK2Cvrm6yElRzZI02OKQuMzisLiM4zC4TlsxMJKV2gqxp33CjI3CsX4+iK38HOTERvZf/Cvmw3jD2uuAQvOAE5BVFNjhaCqCyTYHeT93MyOhuRnpOErR6MZ/R7Ytux5L9S3Bp70vx4KkPCqlBBL9XQem+OpRsr8b+7dWoKLY1WTVQliVk9bSEh/pldjdD1jTfS62+phpbFi/EpkXzYKuqDO/vNmgohk6ZjvxR4xj8tjFVVVG2dxd2rwxMVl5XXhY+ptFq0X3oCPQZOx75I8fCGEUrZrYHhlItiJbG1g9FP+CvS/4KnazDFxd+gW6WbsJqISIiouMXLW2KttTe92SvrYHb4QCgQlVVQEUg2FDVwM9canB/sGGPw7bV8HE1cEhVoSJ4norwdvi8RvuavAdC7602vHazr4NGtTY+98haVVUJBDuKEgx0moY+il9pft8RAVHovOM4v8V9TY+1NY1OFwib0jPCE4g3DqCSUtIgyW03pIuapyoK9kyYCF9FBTr9+wU4ug5pGIJXZIW9rpkASgr0vmkyBK9rEnSCAqjmrK9Yj2u+vwY6WYd5l85DpilTdElCuOxe7N9Rg5IdgZDKWuVqclyfoEVOn4b5qJIzE47o7KAofhSsX4tNP3yPfevXhP9tTUxJxaCJUzFk8jRY0jvm97ctqIqCg7t2YPeqZdi18tcmAaBWb0CPYSPRe+yp6DliDAxtOO9btGMo1YJoaEBycnMiIqLYFw1tirbW3vc0997HULp7eZu/Lp0cWaOFLMuQNBrIGhmyrIGs0UDSaGBIMDVZva7xCnYmSzJDJwH8XgV1lU7UVjhQVxF4rly1HXU2FR5DyhHnSxKQ0jmxySp46V2ToDNETwDVkmu+vwbrK9YjOzEbNw65ERf2uhA6WSe6LKHqKp3hXlT7d9bA7Wg6N5s5zRiYj6p/Grr2S0VCUtOec9bKCmxaNB+bf5wPR10tEJzTqMfwkRg65RzkDRsBWY7+PxvtxVnvQU2pAzVl9obnMgcURYXJokdish6mZAMSkrTwOIpwqGQjSnevg9NWG34NncGIniNGo8+48egxbBR0xvhecKElDKVaEA0NyP+u+y/+t/l/6JLYBV9c9AUnNyciIopB0dCmaGvtfU9v/WMOqopWB35KBgAcx7MUeJaa7A9tH3a+JAV6CkiAJEmQJPmwryVIshTehiRBkmXIwf2QJMhyo/PC23Jgv3z4tgRZlqHRaaHRBAKd0EOSg0GPRgNZ1gSDH00w+JEb9slyo/OPDIfk5l6n0b5APYe/byteh6FSVPL7FdiqXE2Cp7oKB2rLnbDVuJoM52pCVZDorkJmr07IOaVfYAhe16SjzkEUzbYe2orbF92OSmeg50lOUg7+NORPOC//vA4fTgGAoqioLLaFQ6rSvXVQ/I3+cEhARq4ZXfsFQqrsXsnh+cD8Ph/2rlmBjQu/R/GWjeFLzOkZGDLpbAyaOCVuJtw+nKqosNW4UFPmQG2ZA9VldtSUBsKn5laXDF+n+qH49kPx7ILfuxdQHY2O6iHr82FM6gdLRh8kpiY1hFgWA0zJepiS9UgMbhtM2rifvoehVAtENyA5uTkREVF8EN2maA/tfU+VxTbUVTrh9/rh8yrw+5TAc/Dh8wW3fc3s8yotX+PxI1patJIEaA0aaPUa6PQytPqjbBs00Opl6IL7G7ZlaA2ahm29psl+TQvzx1BsURQV9dWB4Km23BkInSoCz9ZDLqhKy3+odUYNUjJNSM5MQEqmCSmZCUhwVcH130fh37YJAGA5Zzqy7rsP2tTUCN5V23P5XPhk1yf4v83/h0OuQwCArkldcdPQm3Buz3OhlWMzcGsPXrcfB3fXhof6HTpgb3Jco5PRpVcyuvZPQ26/NKR3TYIkS6g+eACbFs3D1iU/wFVvA4ITcfcaNQ5DpkxHt4FDYjLA9vsV1FU4j+j1VFNmh8/T8px4SakGJGdIMFl8MCZ6odE5UVmwHSVb18DjbPiearQJMCb3g0bXG15fNlR/63uYabQyTJZAUBV4NgQDrKbbCRZ9zP6bz1CqBSIbkI0nNz8t5zS8OOnFuE9HiYiI4hVDqeii+BtCq3CA1VyI1ew5/ubDsSgNxWRZCgdURwu8dLoTD79amjiZjo+qqKivdTcJnELPdVVOKL6W/+Bo9TKSMwKBU3KmCSlZwedMExLMumZ/jlA9HlS9/AqqXnkF8PuhSU9H9sMPwXxW7P8i3Olz4qOdH+H1La+j2lUNAOhu6Y4/DfkTzulxDjQdeMhZS+x17sB8VMGeVIfPL5Zg1qFr39RASNU/DQlJMnatXIaNC7/HwZ3bwuelZnfBkElnY+CEyUgwR99/GzwuH2rLHagptaM62PuppsyOugonFKXx3IRuqKoDqmKHBAeMiV7ojB5oNE5AdcDnqYfbYYXTWtviPHwJlmT0HnMKeo8dj9wBg8MTxauqCrfDB0edBw6rG/Y6DxxWDxx1TbcdVs8RQy6PxZikaxJYBXpgGcKBVmJwn86oiap8gaFUC0Q2tji5ORERUfyIxgDnp59+wtNPP421a9eitLQUn3/+OS666KJWXx+N9xQr/H4FPo8Cn8cPr9vfsO3xN7s/cKzRtluBz9to+/Bz3BEOvrQSdHoNdAYNDIk6GBN1MCZqA9smHQyJ2uC+4H5TYNuQqA0PD+ooVFWFw+ppPniqcMLnbblHhkYrw5KR0BA8BXs+JWeakJiiP+EfMJ2bt+Dg7Fnw7NkLAEi+6CJk3T0bmjj4e+3wOvDhzg/xxpY3UOOuAQDkWfJw89CbMS1vGsOpFqiqippSB0q2V6NkRzUO7KqFz900eEnJMiG3XyCkMpjqsOOXhdj204/wOJ1AcHGDPuNOw9DJ09Glb/+IByBOmwc1ZXZUB3s9VZfaUX2wBvXVNYBiDwdOquoIfw04IMEBxWeHqh7fgg/GJDMSU1JhSk5Bem539B57KnL6DTjpObd8Xn8wpGo5uLLXeeC0esKhWmto9XKTkMrUTHBlStYjwayHLLf/Z8dQqgWiGlsOrwMXfXkRSu2luHHIjbh9+O0Re28iIiJqe9EY4Hz//fdYtmwZRo4ciUsuuYShVBxRVRWKT20ach0eeHkDXwfCr+B2o3N87sOCsGa2W5yr6Dho9XIgoDI1CrKaCa9CoVboPG0Urfx2OFVV4bJ7w/M71ZY3nuvJCa+75R92ZVmCJSMhMNQuo2HIXXJmApLSjO32w6HidqPquedw6LXXAVWFtnNnZD/6KJJOG98u7xdpDq8Dc3fMxZtb30Sduw4A0DO5J24edjOmdp8KWWJvv6Px+xSUF1gDIdX2alQUWpsE35IsISvPjOxeifC7d6BwwxJUFO4NH0/vloehk6ej/+kT23RFOVVRUV1ai7K9pagsKUf1gUpYqw6hvroGPnc9VNUOVXEAoWccX68jgykRppRUJCanhJ9DwVPT52RotGLnLVOVwL879mDvq1CIZQ8GV42/9rpaH7hJEpBgDgRUnbokYfJ1A9qlfoZSLRDV2OLk5kRERPEl2gMcSZIYStFxUVU1MDzRHQqz/PA4/XA5vHDbvXDZfXA7vHDZAw+33Rd4dgSf7d6T6s2l0cnNh1cmHYxJOhhM2uC+wDmhba1ObrMeG26H94jeTrXlDtRVOo865EaSAHMnY7iXU+PgydLJKHQ4pGPdehycPQveomIAQMoVVyDz73+HJilRWE1tqd5THw6nbJ7AfEi9UnrhlmG3YFK3SQynWsnt8OLArtpwSFVX4WxyXGfUIC3bDq9jA8r3roHfGxgKqDMY0e+0MzF08nRk9ezV4ut7PW44amthr62Bo64Wtupq1BysRG15FWyHquGw1sLtsMLvrQfUlicbb47OYERiamoL4VIqElNSkJgc2KfV61vxirHH6/Y3DBtsFGLZrZ4mQwqdNk+TXz6k5ybhinvGtEtNDKVaIKKxVWQtwsVfXgyv4sWzE5/FpG6TIvK+RERE1H6iPcBhKEWRpioqPC5fk/AqFFyFt8MBV+OQy3fUSb2PRaOVwz2vQsFV4/AqFHCFem0ZTFq4Hb5wb6dwAFXpgNN29B+Gk1INDcPsskzhbUunBGh00Rt+KE4nKv71b9S88w4AQJeTg+zHH0fi2Pb5YVQEm8eGd7e/i3e2vgObNxBO9Untg1uG3YKzcs+Kqrl2YoH1kBP7t9cEJ02vgcve8HdDVVzQaHZD8WyCq748vL9zfm/kDRsFV70NjrpAAGWvrYG9pgZet7OFd2qBpIXOYIYxKRmJKamwpHdCSnY6LJ3SmgZOySnQGY1teetxTfErcNZ7A4FVnRuyLKHbwE7t8l4MpVoQ6caWqqq4+YebsezgMk5uTkREFEeiPcBpTSjldrvhdrvDX1utVuTm5kbtPVF8UlUVXpe/hfAquF3vhcvhawi0HD64673HNd9Ka5mS9YetbBfYTs5IiOohhq1hX7ESpffcA++BAwCA1GuuRuZf/wo5IX5GcVg9Vryz7R28s+0d2L2BldL6p/XHLcNuwZldz+TPYidAVVRU7a8P96Iq3VMHv0+BqqpQfQfg82yC4t0NHHPOJg0gJ0KSTJDkRGi0iUiwpMDcKQ0pWZ2QlpOJzj2ykZmXCUNiIj+rGMdQqgWRbkAuKlqEO5bcwcnNiYiI4kw8hFIPPvggHnrooSP2R+s9ETWmqiq8bv9hQVbjnlmHBVn24LbDC71RGwycEo4Ybqc3akXfWrvy19tR8dRTqP3oIwCAvnt3ZD8xB6bhw0WX1qbq3HV4a+tbeG/7e3D4HACAgZ0G4pZht+D0nNMZeJwEn8eP0j114UnTq0rqoSoO+D3boPqrAdkUDp4kyQSjORmp2Rno1LUT0rITkdY5EanZJiSmGPg5xDGGUi2IZAPS6XPiwi8u5OTmREREcSgeQin2lCLquOp//hml994HX3k5IMvodMP1SL/9dshxNudOjasGb219C3N3zIXTFxhCNjh9MG4ZdgvGdxnPUKQNOG0e7N9Rg5Lt1XDaPEjJMiE1OxGpnROR2tkEY6LYCcNJDIZSLYhkA5KTmxMREcWveAilDhft90REbctvtaL8scdR9+WXAABD717InvMEEgYNFF1am6t2VePNLW/ig50fhMOpoRlDccuwW3BK9ikMp4jaWGvbFNE7G1+MK7IW4c2tbwIA/jHmHwykiIiIqN3V19djw4YN2LBhAwCgoKAAGzZsQHFxsejSiCgKaSwWdHnyCXR94XloOnWCe/ceFF5xBSqfex6q9/hWQIt2acY0zBw1E99d8h2uGXANDBoDNlZuxJ8W/gnXzrsWq0pXiS6RqENiT6l2oKoqbl50M5YdWIbxOePx0qSXmLwTERHFmWjsVbRkyRJMnDjxiP0zZszAm2++eczro/GeiCgyfDU1KHv4Ydi+nwcAMAzojy5znoCxbx/RpbWLSkclXt/yOj7a+RE8igcAMCprFG4ZdgtGdx4tujyimMfhey2IRGNrUfEi3LE4MLn55xd+ju6W7u3yPkRERCROPAY48XhPRHR8rN99h7KHHoa/rg7Q6ZBx223odMP1kLTxOQF8ub0cr215DZ/s+gReJdA7bGznsbhl2C0YkTVCdHlEMYvD9wRx+px4ctWTAIBrB17LQIqIiIiIiGKG5Zxz0PObr5F01lmA14vKf/8bhVddBfe+AtGltYusxCzcPfZufHfJd7ii7xXQylqsLFuJGfNm4MYFN2JDxQbRJRLFNYZSbez/Nv8fSu2lyE7Mxh+H/FF0OURERERERMdFm5GBri88j+w5cyCbzXBt3ISCiy/GoTffhKooostrF50TO+Pecffi24u/xWV9LoNW0mJ56XJc/f3VuOmHm7C5crPoEoniEkOpNmbRW5CgTcBdo+/i5OZERERERBSTJElCysUXoefXXyFx/HiobjcqnngSxdfMgKekRHR57aZLUhc8cMoD+Prir3FJ70ugkTRYdmAZfvfd73Drolux9dBW0SUSxRXOKdUOqpxV6GTsxMnNiYiI4lg8zr8Uj/dERCdPVVXUfvgRyp96CqrDAclkQtY//o6UK66I+595SqwleGXTK/h639dQ1EAvsQm5E3DL0FvQv1N/0eURRS1OdN4CNraIiIioLcRjmyIe74mI2o5n/36Uzr4bjtWrAQCJp56K7McehS47W3Rp7a7IWoRXNr6Cbwu+DYdTk7pNws1Db0bftL6iyyOKOpzonIiIiIiIiNqMvmtXdHvrTWTdfTckoxH2X3/FvvMvQO2nnyHe+zp0t3TH46c/ji8u/ALn9DgHEiQsKl6Ey76+DDOXzMTumt2iSySKSewpRURERHQC4rFNEY/3RETtw11QgNJZs+HcuBEAkDRhAjo//BB0mZmiS4uIvbV78fLGlzG/cD5UqJAgYVreNNw89Gb0TOkpujwi4dhTioiIiIiIiNqFoUcPdJ/7HjLv/BsknQ71S5Zg3/kXoO6bb+O+1xQA5Kfk4+kzn8anF3yKKd2nQIWKeYXzcNGXF+Gun+5CQV2B6BKJYgJ7ShERERGdgHhsU8TjPRFR+3Pt2oXSWbPh2rYNAGCeNg2dH7gf2rQ00aVFzM7qnXhp40tYVLwIACBLMs7tcS7+NPRP6G7pLro8oohjTykiIiIiIiJqd8Y+fZD34QdIv/02QKuFbf587DvvfFgXLhRdWsT0TeuLZyc+i4/O+wgTcidAURV8ve9rXPjFhbj3l3tRYisRXSJRVGJPKSIiIqITEI9tini8JyKKLOfWrSidNRvu3YGJvy0XnI/O99wDTXKy6NIiamvVVry48UX8tP8nAIBG0uDCXhfixiE3IicpR3R5RO2utW0KhlJEREREJyAe2xTxeE9EFHmKx4Oq557HoddeAxQF2sxMZD/6CJLOOEN0aRG3uXIzXtj4ApYdWAYA0EpaXNT7Ilw/6Hp0NnWGVtZCkiTRZVIMU1QFHr8HHsUTePZ74Pa7m24fdsyreOH2u2HWm3Fez/PapS6GUi1gY4uIiIjaQjy2KeLxnohIHOeGDTg4azY8hYUAgJTfXIbMu+6CJilJdGkRt6FiA17c8CKWly4/4phO1kGv0UMv66GTddBpdE33aXTQy3poNVroZT30Gn34uE7WNdlufE3jY+HjjY4d6xqtrBXyvYoVqqrCozQNgA4Pfdx+N7x+71GDoSbnhF4n+LqHX9vcOT7Fd8L30Du1Nz674LM2/b6EtLZNwT9lRERERERE1OYShg1Dj88/Q+Wz/0H122+j9uNPUL9sGbo8/jgSx40TXV5EDcschlenvop15evw4oYXsbJsZfiYV/HCq3hhh11ojYeTJfmoQVZzgZhG0kBFoN+LqqpHbKtQEfh/cD/UI44dc3/jY4362BxxTWDnEfuPdU3oeOP9fsV/RDDkVbyR+BiOiwQpHEIaNIZwiBn6WifrAvuD+6JhKCl7ShERERGdgHhsU8TjPRFRdHCsXo2Ds++Gd/9+AEDq736HzDv/BtlkEl2aEC6fK9xbxusPhFKh3i+h7dAxj+JpeA4dC13T6JjH74FP8YWvbfx6R7xH8JrQ+aH9dOL0cjD40QSCn/C23BACtRQONRcghXqwNX7N8OvI+mavj6bhoOwpRURERERERFHBNHo0en75BcqfeQa173+AmrlzUf/LL+jyxByYRowQXV7EGbVGGLVG0WU0oaoqfKovHGCFQ6xQyKV4moRbzT37FB8kSUL4f40Ckub2S5CaHDvqdvA6CRKCu5q8Xuh/wQPNvleL28HXPPx9Q+dpJE3TcEhuGh7pZF3UhEGxhqEUdWiKokJRVWg1suhSiIiIiIjimpyYiOwHHoB58mSU3nMvvMXFKLrq90i79lpk3PEXyAaD6BI7NEmSoJMCQ/KIIoWhFEU1VVXh8Stwevxwev1wePxwegLPDo+vYdvrh9Pjg9OjwOFt2O8Mnuc47PrAtg8urwIA0MgS9BoZBp0Mg1aGQasJPOsabYf2H+scnabl4y2cq5UlJutERERE1CEkjR+Pnl9/hfI5T6Dus89Q/cYbqP/pJ3R5Yg4SBg8WXR4RRRBDKTppiqI2DYy8vobwp1Fg5PA0DZWcjc/z+hsd9zV6LT/8SvtPe+ZXVDiVQB0iyBJaF3gdRyhm0muRnKALPEyB50S9huEXEREREQmnMZvR5fHHYJ4yGaX33w/P3r0o/O2V6PTHPyDjllsg6fWiSySiCGAoRU3Uu30ot7pQbnWhwuoObrtRbnPhUL27SbB0eG+j9qbTSEjQaZCg18Ck1yJBp4FJH/o6uE+vabpf17C/4dym12plCR6fArdPgdvnh8vbsO32KXB7G237FLi9jbZ9/uDxo5/vaeZ8j7/h+6aogNPb/qGYVpZgCQZVoefAo1GAFX7oGWgRERERUbsyT5yIhK++Qvmjj8H67bc49PIrqF+yFF2emANjv36iyyOidsZQqoNwef2BkMnmCgdNFVZXk9CpvM4Fu6f5UESCAj18AAAZCqTgsw6AHiqk4CNBJyNRJyNBLyNRFwyRdDJMOglGnYwEbWhbA5NOQkJ4vwSjVgOjTkKCVoJBKyNBCxi1Ghh0EoxaCToJwTU9Qw8l+LUCqD4Armb2q02v8auAQ2l6niQDWmPDQ2cEjEZAawjuMwWeNW3710VRAkMTm4ZYxxeKeVo4z+X1w+72oc7pRZ3ThzqnB16/Cp+iotruQbX9+FfWOJ5AK3Q8xaRnoEVERERER6VNTUXOP5+BecoUlD30ENw7dqDgN5cj45ab0emPf4Sk5Y+tRPEqKv52v/DCC3j66adRVlaGoUOH4rnnnsOYMWNaPP/jjz/Gfffdh8LCQvTu3RtPPvkkzjnnnIjW3K4UBfC7AZ8b8HsOe3YDPk/g2e+Bz+OCtd4Oa70dNrsdDocDdocDTqcDbpcTHrcLHrcTqs8NPXzQS17o4UNX+NAT3ib79PBCr/fBKPlglH0wwAsdfNCpXsg4jh48SiAfgqs9v0kCSBpAl9AorAo9DA1hVvjrhBb2N1wnaw0w6hJgPPz1jIbg+xiDr2MEZM1Jla6qgSGWgZDKizqHt2Hb6YXV2fTrhocPVqcXHr8S8UAr9EgyRM+ypkRERETUfixnT4Np1EiUPvgg6n9YhMr//Be2HxYh8bTToDEnQTZboLGYGz2bobFYIJvNkDncjygmCQ+lPvzwQ8ycORMvv/wyxo4di2effRbTpk3Dzp07kZmZecT5v/76K6688krMmTMH5513HubOnYuLLroI69atw6BBg4TcQxPbvwYKfjp2oHT4s9/TsK34Wv12WgBpwccxTzwebTKNkxTohSRJTbclOfj14dtSK69p7XlHuabxMcXfEAJ6XYDPFdj2OQOfS/h74gc89YFHpMm6hmDrBIIxSWeESWuESWtAduPrUg1AZsJhvcKavr4qSXB5FdQ5vah1eiIeaGlkqUlgZdJpYNTJMOo0jR7Br7WNjwWeDdrDz5eRENpuNEcXgy+iOKWqwf8GEBFRLNCmp6Prc8/B+vXXKHv0Mbi2boVr69ZjXicZDJAtZmjMFmjMZsiW4LPZ3GyQFToW+loyGNgePEGqqkL1eqG63VC93kYjW1Soqhr82VJtsj9wLPwKzRxr/rqG/Uc5dvhomRO8rvE1kkaGpNNB0usbHo2/Dm3rdPxzdJwkVVXbfxbpoxg7dixGjx6N559/HgCgKApyc3Nx++23Y9asWUecf8UVV8But+Obb74J7xs3bhyGDRuGl19++ZjvZ7VakZycjLq6Olgslja+GwDz7wGWP9+mL+lWtfBABw+Cz4d97YUW0Ogh6wyQdUZo9Ubo9EbojQkwGhOQkJAAU0IiDEYjJK0B0OgDD60B0BgArf6wZ0Oj443P1TUKc1oTHMWBUK81rzMYVLkaPQ7fHwyyQl8fHnA1u/8or6d4Rd99gEZ/XD3AGgdnqsYAn2yAU9XBoWhR7w88bD4NbD4N6rxa1Hll1Hhk1LhlHHLLqHJLqHJKqHRJ8Pgj88+TJAEG7ZHBlkGngVErHxlm6QJhVuDcw4IwbaPjwddL0B92TCtDluPk7whFXmj4cbjh1Mx2eBhzaBuH7W/uGn8gpFd8TR/+w75uco63mWv8gN/b5GtV8QJ+P6B4oQb3q+HX9zd6rcNf/1jv74PU+JgaOCb5fYFh3YoPSlIXaP527B9mTkS7tykEiMd7IqLY5S0vR93nn8N3qBqK1Qq/zdbwbLOFn9uCpNM1DbIaB1vBsCvwfFiwFXyWEhKiIoxQFQWq2w3F5YLq8UB1uaC43FA97oZttwuK2w3V5YbidkF1ewL7XC6owXMVV/B8T+A81RW8xh28Jnw88B4QGytEFUmna12ApW8IsuTwsZbODZ6va+G6I85t5nUi/OeztW0KoT2lPB4P1q5di9mzZ4f3ybKMyZMnY/ny5c1es3z5csycObPJvmnTpuGLL75o93pb41DWqXAMUmHzyajzyqj1SKh1SzjkklDlAqqcKhx+zRHhkjsUMqkNYZNP0sKSmIisZCOyzMaGZ4sBWRYjMi0G5FqMSDPp+QNue5FlQE4IhCyR5vc16sHlbF2QFXocEXwdZzCmNhqu6fcEHu7jvwUJgC74OO4fbXSAajRA1RqgyAb4NQZ4JT0UyFBVQIEa/CWGCqXxM5ruU1VAUdVm9x/xn05f8NHGQ089wYe10T5JAmRJggRACj6jFX+Nj3mK1Picls9u9ojUinNauuRk/yPXTEPmZJs2x7z+ON6g8amBOfSU4L2rkIPhjtT4oQaeARUymm6Hn9XDrmn0CJ0nBef0k4LvK7dNN9aIk1rYjoRDNgeO7HdNRESxQJeVhfSbbjrqOarfD8Vuh99qg2KzBp7rbU2/Dj77bVYotvrAs7VRqKUoUL1e+A8dgv/QoRMrVquFJimphSDLAtmcFOjFFey1JZsSguFRKAQKBj3NBUahQMjlajYwCodEbjdUz/GPTGg3knTEQ2puf3Bfs8eOsj9wHSChmWNH2R+4rIVrwh0vDnv4fIHeYB4PFK8H8HihBL+Gr+lIJ9XrDfQYczgi+u0+Jp0OcuMeXXo99Pk90e3VV4WWJTSUqqqqgt/vR1ZWVpP9WVlZ2LFjR7PXlJWVNXt+WVlZs+e73W643Q0/TVut1mbPayv/LuyGd9cc+7xUky4YLBmRZQ6ETIHQKbhtMSI9SQ+tRm7XeimKabSBhz4x8u/t9x0jzDrOoOtoPceaBGvOhl4dACS/G5LfDTn4j5Whre5PEvCT8dGohz0TtSNFlcKRlxKMwULRlxca+KCBP/wsw6cGnr3QBr4O7YcGflUDb+OvoYEPcvjZpzZzDRpdozZzDbSBr9XG+0OPhq/9qhze33Bt09p80CDNkoj5or/pRETUbiSNJtBryWIBkHPc16uKAsXhCPS8alWQ1SjQCvbagt8P+Hzw19bCX1uLKBnvAGi1kA0GSEYjJIMessEIyWgM7DMYIBkNgX0GA2SjAZLBGHjWB65p2DZANgbPC79ew3bjfR1x+JoaDDVVj6fh0fjrUJjV5Osjj6teT2C/19Nwfvh1vEe+bkvv00JYBm8gSGsclslJSZH/hh1G+JxS7W3OnDl46KGHIvZ+eZ0SkZ+RGA6WMi2GYO8mIzonG5BpNiLDbIBRd3ITVxO1K40W0CQBBgH/SPm9Rw+zGoVWscYfXHHR41OOeA4FUmqTTkNqk69VNO3eFejtpYavQ5Nz0eg1A9c1zr4aj9xWG518eA8y9fB9h12nhitA0/cIbjfpIdPoC+mIjcN70zTq79VSuyZ44JjvcfhlzZ5/7Pdr2sAKzkMmtzTHXeC4CinQE06SoUIOjHKG3OQ66fDr5Ibf0EnBfSokSLIU+L7ImsB3qMlvEGVIcuC8wGsifG3gdSRIkia4HcxlG917o182NvTcC/XogwSNBOgb7UOj8xqulRr/AjL8G8rDX7thu9Hn3PSXl0fU0Ph1cNi1zV3XuEYiIqKjkWQZmqQkaJKSoMvOPu7rVVWF6nQ2Can81mMEWfX1UJ2OhvDHoIdkMDYbEkkGfTAQCoZEwUApvM+gbz4kMhi4amGESLIMyWAADG32K/Q2cURY1sy2pNOJLlNsKJWeng6NRoPy8vIm+8vLy9G5c+dmr+ncufNxnT979uwmw/2sVityc3PbpP7m/OH0nvjD6T3b7fWJ4p5GF3gYzKIraXMaAAnBBxERERHFPkmSIJlMkE0m4LARPUQiRWtYdjihY8P0ej1GjhyJRYsWhfcpioJFixbhlFNOafaaU045pcn5ALBw4cIWzzcYDLBYLE0eREREREREREQklvD+fDNnzsSMGTMwatQojBkzBs8++yzsdjuuu+46AMA111yDnJwczJkzBwDwl7/8BWeeeSb++c9/4txzz8UHH3yANWvW4FXBk3MREREREREREVHrCQ+lrrjiClRWVuL+++9HWVkZhg0bhnnz5oUnMy8uLoYsN3ToOvXUUzF37lzce++9uPvuu9G7d2988cUXGDRokMC7ICIiIiIiIiKi4yGpajPrcMcxq9WK5ORk1NXVcSgfERERnbB4bFPE4z0RERFR5LW2TSF0TikiIiIiIiIiIuqYGEoREREREREREVHEMZQiIiIiIiIiIqKIYyhFREREREREREQRx1CKiIiIiIiIiIgijqEUERERERERERFFHEMpIiIiIiIiIiKKOIZSREREREREREQUcQyliIiIiIiIiIgo4hhKERERERERERFRxDGUIiIiIiIiIiKiiGMoRUREREREREREEcdQioiIiIiIiIiIIo6hFBERERERERERRRxDKSIiIiIiIiIiijiGUkREREREREREFHFa0QVEmqqqAACr1Sq6FCIiIophobZEqG0RD9hOIiIiorbQ2nZShwulbDYbACA3N1d0KURERBQHbDYbkpOTRZfRJthOIiIiorZ0rHaSpMbTr/daQVEUHDx4EGazGZIktfnrW61W5ObmoqSkBBaLpc1fn9oWP6/Yws8rdvCzii38vE6Mqqqw2Wzo0qULZDk+ZkRgO4ka4+cVW/h5xQ5+VrGFn9eJaW07qcP1lJJlGV27dm3397FYLPwDG0P4ecUWfl6xg59VbOHndfzipYdUCNtJ1Bx+XrGFn1fs4GcVW/h5Hb/WtJPi49d6REREREREREQUUxhKERERERERERFRxDGUamMGgwEPPPAADAaD6FKoFfh5xRZ+XrGDn1Vs4edFkcI/a7GFn1ds4ecVO/hZxRZ+Xu2rw010TkRERERERERE4rGnFBERERERERERRRxDKSIiIiIiIiIiijiGUkREREREREREFHEMpdrYCy+8gLy8PBiNRowdOxarVq0SXRI1Y86cORg9ejTMZjMyMzNx0UUXYefOnaLLolZ44oknIEkS7rjjDtGlUAsOHDiA3//+9+jUqRMSEhIwePBgrFmzRnRZ1Ay/34/77rsPPXr0QEJCAvLz8/HII4+A001Se2E7KTawnRS72E6KfmwnxQ62kyKDoVQb+vDDDzFz5kw88MADWLduHYYOHYpp06ahoqJCdGl0mKVLl+LWW2/FihUrsHDhQni9XkydOhV2u110aXQUq1evxiuvvIIhQ4aILoVaUFNTg/Hjx0On0+H777/Htm3b8M9//hOpqamiS6NmPPnkk3jppZfw/PPPY/v27XjyySfx1FNP4bnnnhNdGsUhtpNiB9tJsYntpOjHdlJsYTspMrj6XhsaO3YsRo8ejeeffx4AoCgKcnNzcfvtt2PWrFmiy6OjqKysRGZmJpYuXYozzjhDdDnUjPr6eowYMQIvvvgiHn30UQwbNgzPPvus6LLoMLNmzcKyZcvw888/iy6FWuG8885DVlYWXnvttfC+Sy+9FAkJCXj33XeF1kbxh+2k2MV2UvRjOyk2sJ0UW9hOigz2lGojHo8Ha9euxeTJk8P7ZFnG5MmTsXz5cqG10bHV1dUBANLS0kSXQi249dZbce655zb5O0bR56uvvsKoUaPwm9/8BpmZmRg+fDj+97//iS6LWnDqqadi0aJF2LVrFwBg48aN+OWXXzB9+nTRpVGcYTsptrGdFP3YTooNbCfFFraTIkMruoB4UVVVBb/fj6ysrCb7s7KysGPHDmF10bEpioI77rgD48ePx6BBg0SXQ8344IMPsG7dOqxevVp0KXQM+/btw0svvYSZM2fi7rvvxurVq/HnP/8Zer0eM2bMEF0eHWbWrFmwWq3o168fNBoN/H4/HnvsMVx11VWiS6M4w3ZS7GI7KfqxnRQ72E6KLWwnRQZDKerwbr31VmzZsgW//PKL6FKoGSUlJfjLX/6ChQsXwmg0ii6HjkFRFIwaNQqPP/44AGD48OHYsmULXn75ZTa2otBHH32E9957D3PnzsXAgQOxYcMG3HHHHejSpQs/LyIC2E6KemwnxRa2k2IL20mRwVCqjaSnp0Oj0aC8vLzJ/vLycnTu3FlYXXR0t912G7755hv89NNP6Nq1q+hyqBlr165FRUUFRowYEd7n9/vx008/4fnnn4fb7YZGoxFaIzXIzs7GgAEDmuzr378/Pv30U2E1Ucv+/ve/Y9asWfjtb38LABg8eDCKioowZ84cNraoTbGdFJvYTop+bCfFFraTYgvbSZHBOaXaiF6vx8iRI7Fo0aLwPkVRsGjRIpxyyilCa6MjqaqK2267DZ9//jl+/PFH9OjRQ3RJ1IJJkyZh8+bN2LBhQ/gxatQoXHXVVdiwYQMbWlFm/PjxRywbvmvXLnTv3l1YTdQyh8MBWW7aFNBoNFAURVhNFJ/YTootbCfFDraTYgvbSbGF7aTIYE+pNjRz5kzMmDEDo0aNwpgxY/Dss8/CbrfjuuuuE10aHebWW2/F3Llz8eWXX8JsNqOsrAwAkJycjISEBNHlUSNms/mIOSwSExPRqVMnzm0Rhf7617/i1FNPxeOPP47LL78cq1atwquvvopXX31VdGnUjPPPPx+PPfYYunXrhoEDB2L9+vX417/+heuvv150aRSH2E6KHWwnxQ62k2IL20mxhe2kyJBUVVVFFxFPnn/+eTz99NMoKyvDsGHD8N///hdjx44VXRYdRpKkZve/8cYbuPbaayNeDx2fCRMmcKnjKPbNN99g9uzZ2L17N3r06IGZM2fij3/8o+iyqBk2mw333XcfPv/8c1RUVKBLly648sorcf/990Ov14suj+IQ20mxge2k2MZ2UnRjOyl2sJ0UGQyliIiIiIiIiIgo4jinFBERERERERERRRxDKSIiIiIiIiIiijiGUkREREREREREFHEMpYiIiIiIiIiIKOIYShERERERERERUcQxlCIiIiIiIiIioohjKEVERERERERERBHHUIqIiIiIiIiIiCKOoRQRURuSJAlffPGF6DKIiIiIog7bSUR0OIZSRBQ3rr32WkiSdMTj7LPPFl0aERERkVBsJxFRNNKKLoCIqC2dffbZeOONN5rsMxgMwuohIiIiihZsJxFRtGFPKSKKKwaDAZ07d27ySE1NBYJdxl966SVMnz4dCQkJ6NmzJz755JMm12/evBlnnXUWEhIS0KlTJ9x4442or69vcs7rr7+OgQMHwmAwIDs7G7fddluT41VVVbj44othMpnQu3dvfPXVVxG4cyIiIqKjYzuJiKINQyki6lDuu+8+XHrppdi4cSOuuuoq/Pa3v8X27dsBAHa7HdOmTUNqaipWr16Njz/+GD/88EOTxtRLL72EW2+9FTfeeCM2b96Mr776Cr169WryHg899BAuv/xybNq0Ceeccw6uuuoqVFdXR/xeiYiIiI4H20lEFHEqEVGcmDFjhqrRaNTExMQmj8cee0xVVVUFoN50001Nrhk7dqx68803q6qqqq+++qqampqq1tfXh49/++23qizLallZmaqqqtqlSxf1nnvuabEGAOq9994b/rq+vl4FoH7//fdtfr9ERERErcV2EhFFI84pRURxZeLEiXjppZea7EtLSwtvn3LKKU2OnXLKKdiwYQMAYPv27Rg6dCgSExPDx8ePHw9FUbBz505IkoSDBw9i0qRJR61hyJAh4e3ExERYLBZUVFSc9L0RERERnQy2k4go2jCUIqK4kpiYeEQ38baSkJDQqvN0Ol2TryVJgqIo7VITERERUWuxnURE0YZzShFRh7JixYojvu7fvz8AoH///ti4cSPsdnv4+LJlyyDLMvr27Quz2Yy8vDwsWrQo4nUTERERtTe2k4go0thTiojiitvtRllZWZN9Wq0W6enpAICPP/4Yo0aNwmmnnYb33nsPq1atwmuvvQYAuOqqq/DAAw9gxowZePDBB1FZWYnbb78dV199NbKysgAADz74IG666SZkZmZi+vTpsNlsWLZsGW6//XYBd0tERETUemwnEVG0YShFRHFl3rx5yM7ObrKvb9++2LFjBxBc8eWDDz7ALbfcguzsbLz//vsYMGAAAMBkMmH+/Pn4y1/+gtGjR8NkMuHSSy/Fv/71r/BrzZgxAy6XC//+979x5513Ij09HZdddlmE75KIiIjo+LGdRETRRlIDqyAQEcU9SZLw+eef46KLLhJdChEREVFUYTuJiETgnFJERERERERERBRxDKWIiIiIiIiIiCjiOHyPiIiIiIiIiIgijj2liIiIiIiIiIgo4hhKERERERERERFRxDGUIiIiIiIiIiKiiGMoRUREREREREREEcdQioiIiIiIiIiIIo6hFBERERERERERRRxDKSIiIiIiIiIiijiGUkREREREREREFHEMpYiIiIiIiIiIKOL+H5V9RYujxzg1AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"# data epoch\n",
"\n",
"plt.figure(figsize=(12, 6))\n",
"\n",
"plt.subplot(1, 2, 1)\n",
"plt.plot(data_model.history['question_output_accuracy'], label='Question Train Accuracy')\n",
"plt.plot(data_model.history['val_question_output_accuracy'], label='Question Val Accuracy')\n",
"plt.plot(data_model.history['answer_output_accuracy'], label='Answer Train Accuracy')\n",
"plt.plot(data_model.history['val_answer_output_accuracy'], label='Answer Val Accuracy')\n",
"plt.plot(data_model.history['question_type_output_accuracy'], label='Question Type Train Accuracy')\n",
"plt.plot(data_model.history['val_question_type_output_accuracy'], label='Question Type Val Accuracy')\n",
"plt.title('Model Accuracy')\n",
"plt.xlabel('Epoch')\n",
"plt.ylabel('Accuracy')\n",
"plt.legend()\n",
"\n",
"plt.subplot(1, 2, 2)\n",
"plt.plot(data_model.history['question_output_loss'], label='Question Train Loss')\n",
"plt.plot(data_model.history['val_question_output_loss'], label='Question Val Loss')\n",
"plt.plot(data_model.history['answer_output_loss'], label='Answer Train Loss')\n",
"plt.plot(data_model.history['val_answer_output_loss'], label='Answer Val Loss')\n",
"plt.plot(data_model.history['question_type_output_loss'], label='Question Type Train Loss')\n",
"plt.plot(data_model.history['val_question_type_output_loss'], label='Question Type Val Loss')\n",
"plt.title('Model Loss')\n",
"plt.xlabel('Epoch')\n",
"plt.ylabel('Loss')\n",
"plt.legend()\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"=== Evaluation on Test Data ===\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 389ms/step\n",
"Classification Report for Question Type (Test Set):\n",
" precision recall f1-score support\n",
"\n",
" 0 0.00 0.00 0.00 4\n",
" 1 0.40 0.67 0.50 3\n",
" 2 0.20 0.33 0.25 3\n",
"\n",
" accuracy 0.30 10\n",
" macro avg 0.20 0.33 0.25 10\n",
"weighted avg 0.18 0.30 0.23 10\n",
"\n",
"Test Accuracy: 0.3\n",
"Test Precision: 0.18000000000000002\n",
"Test Recall: 0.3\n",
"BLEU Score for first test sample (question generation): 0.02664466031983166\n",
"BLEU Score for first test sample (answer generation): 0\n",
"\n",
"=== Evaluation on Validation Data ===\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step\n",
"Classification Report for Question Type (Validation Set):\n",
" precision recall f1-score support\n",
"\n",
" 0 0.00 0.00 0.00 4\n",
" 1 0.50 1.00 0.67 3\n",
" 2 0.25 0.33 0.29 3\n",
"\n",
" accuracy 0.40 10\n",
" macro avg 0.25 0.44 0.32 10\n",
"weighted avg 0.23 0.40 0.29 10\n",
"\n",
"Validation Accuracy: 0.4\n",
"Validation Precision: 0.225\n",
"Validation Recall: 0.4\n",
"BLEU Score for first validation sample (question generation): 0.008991061769415444\n",
"BLEU Score for first validation sample (answer generation): 0\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/mnt/disc1/code/thesis_quiz_project/lstm-quiz/myenv/lib64/python3.10/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
"/mnt/disc1/code/thesis_quiz_project/lstm-quiz/myenv/lib64/python3.10/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
"/mnt/disc1/code/thesis_quiz_project/lstm-quiz/myenv/lib64/python3.10/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
"/mnt/disc1/code/thesis_quiz_project/lstm-quiz/myenv/lib64/python3.10/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
"/mnt/disc1/code/thesis_quiz_project/lstm-quiz/myenv/lib64/python3.10/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
"/mnt/disc1/code/thesis_quiz_project/lstm-quiz/myenv/lib64/python3.10/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
"/mnt/disc1/code/thesis_quiz_project/lstm-quiz/myenv/lib64/python3.10/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
"/mnt/disc1/code/thesis_quiz_project/lstm-quiz/myenv/lib64/python3.10/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
]
}
],
"source": [
"\n",
"\n",
"\n",
"def sequence_to_text(sequence, tokenizer):\n",
" \"\"\" Converts a tokenized sequence back into readable text. \"\"\"\n",
" return \" \".join([tokenizer.index_word.get(idx, \"<OOV>\") for idx in sequence if idx != 0])\n",
"\n",
"print(\"\\n=== Evaluation on Test Data ===\")\n",
"pred_question_test, pred_answer_test, pred_qtype_test = model.predict([context_test, question_test])\n",
"pred_qtype_labels_test = np.argmax(pred_qtype_test, axis=1)\n",
"\n",
"print(\"Classification Report for Question Type (Test Set):\")\n",
"print(classification_report(qtype_test, pred_qtype_labels_test))\n",
"print(\"Test Accuracy:\", accuracy_score(qtype_test, pred_qtype_labels_test))\n",
"print(\"Test Precision:\", precision_score(qtype_test, pred_qtype_labels_test, average='weighted'))\n",
"print(\"Test Recall:\", recall_score(qtype_test, pred_qtype_labels_test, average='weighted'))\n",
"\n",
"reference_question_test = [sequence_to_text(question_test[0], tokenizer)]\n",
"candidate_question_test = sequence_to_text(np.argmax(pred_question_test[0], axis=-1), tokenizer)\n",
"bleu_score_question_test = nltk.translate.bleu_score.sentence_bleu(reference_question_test, candidate_question_test)\n",
"print(\"BLEU Score for first test sample (question generation):\", bleu_score_question_test)\n",
"\n",
"reference_answer_test = [sequence_to_text(answer_test[0], tokenizer)]\n",
"candidate_answer_test = sequence_to_text(np.argmax(pred_answer_test[0], axis=-1), tokenizer)\n",
"bleu_score_answer_test = nltk.translate.bleu_score.sentence_bleu(reference_answer_test, candidate_answer_test)\n",
"print(\"BLEU Score for first test sample (answer generation):\", bleu_score_answer_test)\n",
"\n",
"print(\"\\n=== Evaluation on Validation Data ===\")\n",
"pred_question_val, pred_answer_val, pred_qtype_val = model.predict([context_val, question_val])\n",
"pred_qtype_labels_val = np.argmax(pred_qtype_val, axis=1)\n",
"\n",
"print(\"Classification Report for Question Type (Validation Set):\")\n",
"print(classification_report(qtype_val, pred_qtype_labels_val))\n",
"print(\"Validation Accuracy:\", accuracy_score(qtype_val, pred_qtype_labels_val))\n",
"print(\"Validation Precision:\", precision_score(qtype_val, pred_qtype_labels_val, average='weighted'))\n",
"print(\"Validation Recall:\", recall_score(qtype_val, pred_qtype_labels_val, average='weighted'))\n",
"\n",
"reference_question_val = [sequence_to_text(question_val[0], tokenizer)]\n",
"candidate_question_val = sequence_to_text(np.argmax(pred_question_val[0], axis=-1), tokenizer)\n",
"bleu_score_question_val = nltk.translate.bleu_score.sentence_bleu(reference_question_val, candidate_question_val)\n",
"print(\"BLEU Score for first validation sample (question generation):\", bleu_score_question_val)\n",
"\n",
"reference_answer_val = [sequence_to_text(answer_val[0], tokenizer)]\n",
"candidate_answer_val = sequence_to_text(np.argmax(pred_answer_val[0], axis=-1), tokenizer)\n",
"bleu_score_answer_val = nltk.translate.bleu_score.sentence_bleu(reference_answer_val, candidate_answer_val)\n",
"print(\"BLEU Score for first validation sample (answer generation):\", bleu_score_answer_val)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 2
}