from flask import Flask, render_template, request, jsonify from sklearn.metrics import accuracy_score import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image import numpy as np import base64 import io import uuid import tempfile import os app = Flask(__name__) dic = {0: 'GIANT', 1: 'LEUKOSIT', 2: 'NORMAL'} # with custom_object_scope({'error_rate': error_rate}): # model = load_model('static/assets/models/Klasifikasi-Et Exception-96.92.h5') def error_rate(y_true, y_pred): incorrect = tf.not_equal(tf.argmax(y_true, axis=-1), tf.argmax(y_pred, axis=-1)) return tf.reduce_mean(tf.cast(incorrect, tf.float32)) def load_custom_model(model_path): with tf.keras.utils.custom_object_scope({'error_rate': error_rate}): model = load_model(model_path) return model model_path = 'static/assets/models/Klasifikasi-Et Exception-97.69.h5' loaded_model = load_custom_model(model_path) def predict_label(img_path): i = image.load_img(img_path, target_size=(224, 224)) i = image.img_to_array(i) / 255.0 i = i.reshape(1, 224, 224, 3) p = loaded_model.predict(i) predicted_class = np.argmax(p, axis=-1) highest_probability = max(p[0]) * 100 probabilities = (p[0] * 100).tolist() print(probabilities) other_probabilities = {} for index, prob in enumerate(probabilities): if index != predicted_class[0]: other_probabilities[dic[index]] = prob return { 'label': dic[predicted_class[0]], 'highest_probability': highest_probability, 'other_probabilities': other_probabilities } @app.route("/", methods=['GET']) def main(): return render_template("index.html") @app.route("/giant", methods=['GET']) def giant(): return render_template("giant.html") @app.route("/leukosit", methods=['GET']) def leukosit(): return render_template("leukosit.html") @app.route("/normal", methods=['GET']) def normal(): return render_template("normal.html") @app.route("/classification", methods=['GET', 'POST']) def classification(): temp_dir = "static/assets/temp/" try: for filename in os.listdir(temp_dir): file_path = os.path.join(temp_dir, filename) if os.path.isfile(file_path): os.remove(file_path) # Setelah menghapus gambar, tampilkan halaman classification.html return render_template("classification.html") except Exception as e: # Tangani kesalahan jika terjadi return f'Terjadi kesalahan: {str(e)}' @app.route("/submit", methods=['POST']) def get_output(): if request.method == 'POST': base64data = request.form['image'] img_data = base64.b64decode(base64data) img_filename = str(uuid.uuid4()) + ".jpg" img_path = "static/assets/temp/" + img_filename with open(img_path, "wb") as f: f.write(img_data) result = predict_label(img_path) return jsonify( label=result['label'], highest_probability=result['highest_probability'], other_probabilities=result['other_probabilities'], img_path=img_path ) @app.route("/delete_image", methods=['POST']) def delete_image(): temp_dir = "static/assets/temp/" try: for filename in os.listdir(temp_dir): file_path = os.path.join(temp_dir, filename) if os.path.isfile(file_path): os.remove(file_path) return jsonify(success=True, message='Semua gambar berhasil dihapus.') except Exception as e: return jsonify(success=False, message=f'Terjadi kesalahan: {str(e)}') if __name__ == '__main__': app.run(debug=True)