MIF_E31221407_BE_PYTHON/routes/prediction.py

94 lines
3.4 KiB
Python

from fastapi import APIRouter, HTTPException
from schema.prediction import (
AutoPredictionRequest,
AutoPredictionResponse,
ManualPredictionRequest,
ManualPredictionResponse,
)
from utils.statistic.auto_arima import auto_arima_forecast
from utils.statistic.manual_arima import manual_arima_forecast
from utils.data_preparation import read_csv_string_to_df, df_group_by_interval
router = APIRouter()
@router.post("/predict/auto", response_model=AutoPredictionResponse)
def predict_auto(request: AutoPredictionRequest):
try:
df = read_csv_string_to_df(request.csv_string)
if request.date_column not in df.columns or request.value_column not in df.columns:
raise HTTPException(status_code=400, detail="Kolom tanggal atau nilai tidak ditemukan di data.")
freq = "W" if request.prediction_period == "weekly" else "M"
# Gunakan parameter date_column & value_column dari request
ts_df = df_group_by_interval(
df,
date_col=request.date_column,
value_col=request.value_column,
freq=freq if request.date_regroup else None # hanya grup jika date_regroup True
)
series = ts_df[request.value_column]
result = auto_arima_forecast(series, forecast_periods=3)
return AutoPredictionResponse(
rmse=result["rmse"],
mape=result["mape"],
arima_order=tuple(result["arima_order"]),
prediction=result["prediction"],
lower=result["lower"],
upper=result["upper"],
success=True
)
except ValueError as ve:
raise HTTPException(status_code=422, detail=str(ve))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Terjadi kesalahan saat memproses data: {e}")
@router.post("/predict/manual", response_model=ManualPredictionResponse)
def predict_manual(request: ManualPredictionRequest):
try:
df = read_csv_string_to_df(request.csv_string)
if any(val is None for val in [p, d, q]):
raise HTTPException(status_code=400, detail="Semua elemen arimaModel harus memiliki nilai.")
if request.date_column not in df.columns or request.value_column not in df.columns:
raise HTTPException(status_code=400, detail="Kolom tanggal atau nilai tidak ditemukan di data.")
freq = "W" if request.prediction_period == "weekly" else "M"
# Gunakan freq hanya kalau date_regroup True
ts_df = df_group_by_interval(
df,
date_col=request.date_column,
value_col=request.value_column,
freq=freq if request.date_regroup else None
)
series = ts_df[request.value_column]
# Validasi arimaModel
if len(request.arima_model) != 3:
raise HTTPException(status_code=400, detail="Parameter arimaModel harus terdiri dari 3 elemen (p, d, q).")
p, d, q = request.arima_model
result = manual_arima_forecast(series, p=p, d=d, q=q, forecast_periods=3)
return ManualPredictionResponse(
arima_order=tuple(result["arima_order"]),
prediction=result["prediction"],
lower=result["lower"],
upper=result["upper"],
success=True
)
except ValueError as ve:
raise HTTPException(status_code=422, detail=str(ve))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Terjadi kesalahan saat memproses data: {e}")