refactor code detection + classification
This commit is contained in:
parent
8bbd0906d7
commit
a3a2bd255b
21
src/App.tsx
21
src/App.tsx
|
@ -1,29 +1,22 @@
|
|||
import { lazy, Suspense } from "react";
|
||||
import { Suspense } from "react";
|
||||
import { Route, Routes } from "react-router-dom";
|
||||
import Kamus from "./pages/Kamus";
|
||||
|
||||
const Home = lazy(() => import("@/pages/Home"));
|
||||
import myRoute from "./routes/routes";
|
||||
|
||||
const App = () => {
|
||||
return (
|
||||
<Routes>
|
||||
<Route path="/">
|
||||
{myRoute.map((route, index) => (
|
||||
<Route
|
||||
index
|
||||
key={index}
|
||||
path={route.path}
|
||||
element={
|
||||
<Suspense fallback={<div>Loading...</div>}>
|
||||
<Home />
|
||||
</Suspense>
|
||||
}
|
||||
/>
|
||||
<Route
|
||||
path="/kamus"
|
||||
element={
|
||||
<Suspense fallback={<div>Loading...</div>}>
|
||||
<Kamus />
|
||||
<route.component />
|
||||
</Suspense>
|
||||
}
|
||||
/>
|
||||
))}
|
||||
</Route>
|
||||
</Routes>
|
||||
);
|
||||
|
|
|
@ -17,7 +17,7 @@ const HeaderPage = () => {
|
|||
/>
|
||||
<div className="form-control">
|
||||
<h1 className="font-semibold">K-SULI</h1>
|
||||
<p className="text-gray-600">Kedai Susu Tuli</p>
|
||||
<p className="text-primary">Kedai Susu Tuli</p>
|
||||
</div>
|
||||
</div>
|
||||
<ul
|
||||
|
@ -44,7 +44,7 @@ const HeaderPage = () => {
|
|||
isActive={navStore.navSelected === "kamus"}
|
||||
/>
|
||||
<NavLink
|
||||
href="/"
|
||||
href="/kuis"
|
||||
name="Kuis"
|
||||
isActive={navStore.navSelected === "kuis"}
|
||||
/>
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
import ConvertResult from "@/utils/ConvertResult";
|
||||
import * as tf from "@tensorflow/tfjs";
|
||||
|
||||
class DetectionHelper {
|
||||
model: tf.LayersModel | undefined;
|
||||
|
||||
constructor() {
|
||||
this.loadModel();
|
||||
}
|
||||
|
||||
loadModel = async () => {
|
||||
try {
|
||||
const lm = await tf.loadLayersModel("/model/model.json");
|
||||
this.model = lm;
|
||||
// const emptyInput = tf.tensor2d([[0, 0]]);
|
||||
// this. model.predict(emptyInput) as tf.Tensor;
|
||||
} catch (error) {
|
||||
// console.error("Error loading model:", error);
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
makePrediction = async (finalResult: any) => {
|
||||
const input = tf.tensor2d([finalResult]);
|
||||
|
||||
if(!this.model) {
|
||||
console.error("Model is not initialized.");
|
||||
return;
|
||||
}
|
||||
|
||||
// Melakukan prediksi
|
||||
const prediction = this.model.predict(input) as tf.Tensor;
|
||||
|
||||
const result = prediction.dataSync();
|
||||
|
||||
const maxEntry = Object.entries(result).reduce((max, entry) => {
|
||||
const [, value] = entry;
|
||||
return value > max[1] ? entry : max;
|
||||
});
|
||||
|
||||
// maxEntry sekarang berisi [key, value] dengan nilai terbesar
|
||||
const [maxKey, maxValue] = maxEntry;
|
||||
|
||||
const percentageValue = (maxValue * 100).toFixed(2) + "%";
|
||||
|
||||
// Hapus tensor
|
||||
input.dispose();
|
||||
prediction.dispose();
|
||||
|
||||
return {
|
||||
abjad: ConvertResult(parseInt(maxKey)),
|
||||
acc: percentageValue
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
export default DetectionHelper;
|
|
@ -0,0 +1,93 @@
|
|||
import calcLandmarkList from "@/utils/CalculateLandmark";
|
||||
import preProcessLandmark from "@/utils/PreProcessLandmark";
|
||||
import { FilesetResolver, HandLandmarker } from "@mediapipe/tasks-vision";
|
||||
import { RefObject } from "react";
|
||||
|
||||
class MediapipeHelper {
|
||||
handLandmarker: HandLandmarker | undefined;
|
||||
videoRef: React.RefObject<HTMLVideoElement>;
|
||||
|
||||
private result = {
|
||||
handPresence: false,
|
||||
finalResult: [],
|
||||
};
|
||||
|
||||
getResult = () => {
|
||||
return this.result;
|
||||
};
|
||||
|
||||
constructor(video: RefObject<HTMLVideoElement>) {
|
||||
this.videoRef = video;
|
||||
this.initializeHandDetection();
|
||||
}
|
||||
|
||||
initializeHandDetection = async () => {
|
||||
try {
|
||||
const vision = await FilesetResolver.forVisionTasks(
|
||||
"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm"
|
||||
);
|
||||
this.handLandmarker = await HandLandmarker.createFromOptions(vision, {
|
||||
baseOptions: {
|
||||
modelAssetPath: `https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task`,
|
||||
},
|
||||
numHands: 2,
|
||||
runningMode: "VIDEO",
|
||||
});
|
||||
|
||||
this.detectHands();
|
||||
} catch (error) {
|
||||
console.error("Error initializing hand detection:", error);
|
||||
}
|
||||
};
|
||||
|
||||
detectHands = async () => {
|
||||
if (this.videoRef.current === null) {
|
||||
console.error("Video is not initialized.");
|
||||
return;
|
||||
}
|
||||
|
||||
if (this.videoRef && this.videoRef.current.readyState >= 2) {
|
||||
if (!this.handLandmarker) {
|
||||
console.error("HandLandmarker is not initialized.");
|
||||
return;
|
||||
}
|
||||
const detections = this.handLandmarker.detectForVideo(
|
||||
this.videoRef.current,
|
||||
performance.now()
|
||||
);
|
||||
|
||||
this.result = {
|
||||
handPresence: false,
|
||||
finalResult: [],
|
||||
};
|
||||
|
||||
// Assuming detections.landmarks is an array of landmark objects
|
||||
if (detections.landmarks) {
|
||||
if (detections.handednesses.length > 0) {
|
||||
// console.log(detections);
|
||||
|
||||
if (detections.handednesses[0][0].displayName === "Right") {
|
||||
const landm = detections.landmarks[0].map((landmark) => landmark);
|
||||
|
||||
const calt = calcLandmarkList(this.videoRef.current, landm);
|
||||
const finalResult = preProcessLandmark(calt);
|
||||
|
||||
this.result = {
|
||||
handPresence: true,
|
||||
finalResult: finalResult,
|
||||
};
|
||||
} else {
|
||||
this.result = {
|
||||
handPresence: false,
|
||||
finalResult: [],
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
requestAnimationFrame(this.detectHands);
|
||||
};
|
||||
}
|
||||
|
||||
export default MediapipeHelper;
|
|
@ -1,12 +1,9 @@
|
|||
import LayoutPage from "@/components/templates/LayoutPage";
|
||||
import { useEffect, useRef, useState } from "react";
|
||||
import { FaCircleCheck } from "react-icons/fa6";
|
||||
import * as tf from "@tensorflow/tfjs";
|
||||
import { FilesetResolver, HandLandmarker } from "@mediapipe/tasks-vision";
|
||||
import calcLandmarkList from "@/utils/CalculateLandmark";
|
||||
import preProcessLandmark from "@/utils/PreProcessLandmark";
|
||||
import ConvertResult from "@/utils/ConvertResult";
|
||||
import useNavbarStore from "@/stores/NavbarStore";
|
||||
import MediapipeHelper from "@/helper/MediapipeHelper";
|
||||
import DetectionHelper from "@/helper/DetectionHelper";
|
||||
|
||||
type PredictResult = {
|
||||
abjad: String;
|
||||
|
@ -23,11 +20,31 @@ const Home = () => {
|
|||
acc: "",
|
||||
});
|
||||
|
||||
let model: tf.LayersModel;
|
||||
let handLandmarker: HandLandmarker;
|
||||
|
||||
const [handPresence, setHandPresence] = useState(false);
|
||||
|
||||
const onHandDetected = async () => {
|
||||
const result = mediapipeHelper.getResult();
|
||||
if (result.handPresence) {
|
||||
// console.log("Hand Detected");
|
||||
setHandPresence(true);
|
||||
|
||||
const predict = await detectionHelper.makePrediction(result.finalResult);
|
||||
console.log(predict);
|
||||
|
||||
if (predict) {
|
||||
setResultPredict((prevState) => ({
|
||||
...prevState,
|
||||
...predict,
|
||||
}));
|
||||
}
|
||||
|
||||
} else {
|
||||
setHandPresence(false);
|
||||
}
|
||||
|
||||
requestAnimationFrame(onHandDetected);
|
||||
};
|
||||
|
||||
const startWebcam = async () => {
|
||||
try {
|
||||
const stream = await navigator.mediaDevices.getUserMedia({
|
||||
|
@ -38,120 +55,36 @@ const Home = () => {
|
|||
videoRef.current.srcObject = stream;
|
||||
}
|
||||
|
||||
// setLoadCamera(true);
|
||||
await initializeHandDetection();
|
||||
mediapipeHelper = new MediapipeHelper(videoRef);
|
||||
detectionHelper = new DetectionHelper();
|
||||
|
||||
onHandDetected();
|
||||
|
||||
|
||||
|
||||
} catch (error) {
|
||||
console.error("Error accessing webcam:", error);
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
const loadModel = async () => {
|
||||
setLoadCamera(false);
|
||||
try {
|
||||
const lm = await tf.loadLayersModel("/model/model.json");
|
||||
model = lm;
|
||||
|
||||
const emptyInput = tf.tensor2d([[0, 0]]);
|
||||
|
||||
model.predict(emptyInput) as tf.Tensor;
|
||||
|
||||
setLoadCamera(true);
|
||||
} catch (error) {
|
||||
// console.error("Error loading model:", error);
|
||||
}
|
||||
};
|
||||
|
||||
const initializeHandDetection = async () => {
|
||||
try {
|
||||
const vision = await FilesetResolver.forVisionTasks(
|
||||
"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm"
|
||||
);
|
||||
handLandmarker = await HandLandmarker.createFromOptions(vision, {
|
||||
baseOptions: {
|
||||
modelAssetPath: `https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task`,
|
||||
},
|
||||
numHands: 2,
|
||||
runningMode: "VIDEO",
|
||||
});
|
||||
|
||||
detectHands();
|
||||
} catch (error) {
|
||||
console.error("Error initializing hand detection:", error);
|
||||
}
|
||||
};
|
||||
|
||||
const makePrediction = async (finalResult: any) => {
|
||||
const input = tf.tensor2d([finalResult]);
|
||||
|
||||
// Melakukan prediksi
|
||||
const prediction = model.predict(input) as tf.Tensor;
|
||||
|
||||
const result = prediction.dataSync();
|
||||
|
||||
const maxEntry = Object.entries(result).reduce((max, entry) => {
|
||||
const [, value] = entry;
|
||||
return value > max[1] ? entry : max;
|
||||
});
|
||||
|
||||
// maxEntry sekarang berisi [key, value] dengan nilai terbesar
|
||||
const [maxKey, maxValue] = maxEntry;
|
||||
|
||||
const percentageValue = (maxValue * 100).toFixed(2) + "%";
|
||||
|
||||
setResultPredict({
|
||||
abjad: ConvertResult(parseInt(maxKey)),
|
||||
acc: percentageValue,
|
||||
});
|
||||
|
||||
// Hapus tensor
|
||||
input.dispose();
|
||||
prediction.dispose();
|
||||
};
|
||||
|
||||
|
||||
const detectHands = async () => {
|
||||
if (videoRef.current && videoRef.current.readyState >= 2) {
|
||||
const detections = handLandmarker.detectForVideo(
|
||||
videoRef.current,
|
||||
performance.now()
|
||||
);
|
||||
|
||||
setHandPresence(detections.handedness.length > 0);
|
||||
// Assuming detections.landmarks is an array of landmark objects
|
||||
if (detections.landmarks) {
|
||||
if (detections.handednesses.length > 0) {
|
||||
console.log(detections);
|
||||
|
||||
if (detections.handednesses[0][0].displayName === "Right") {
|
||||
const landm = detections.landmarks[0].map((landmark) => landmark);
|
||||
|
||||
const calt = calcLandmarkList(videoRef.current, landm);
|
||||
const finalResult = preProcessLandmark(calt);
|
||||
|
||||
makePrediction(finalResult);
|
||||
} else {
|
||||
setHandPresence(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
requestAnimationFrame(detectHands);
|
||||
};
|
||||
|
||||
const store = useNavbarStore();
|
||||
let mediapipeHelper: MediapipeHelper;
|
||||
let detectionHelper: DetectionHelper;
|
||||
|
||||
useEffect(() => {
|
||||
store.setNavSelected("home");
|
||||
|
||||
loadModel();
|
||||
startWebcam();
|
||||
|
||||
setLoadCamera(true);
|
||||
|
||||
|
||||
|
||||
return () => {
|
||||
if (handLandmarker) {
|
||||
handLandmarker.close();
|
||||
}
|
||||
|
||||
};
|
||||
}, []);
|
||||
|
||||
|
|
|
@ -0,0 +1,24 @@
|
|||
import LayoutPage from "@/components/templates/LayoutPage";
|
||||
import useNavbarStore from "@/stores/NavbarStore";
|
||||
import { useEffect } from "react";
|
||||
|
||||
const Kuis = () => {
|
||||
const store = useNavbarStore();
|
||||
|
||||
useEffect(() => {
|
||||
store.setNavSelected("kuis");
|
||||
}, []);
|
||||
return (
|
||||
<LayoutPage>
|
||||
<div className="flex flex-col flex-1 py-4">
|
||||
<h1 className="font-semibold">Kuis SIBI</h1>
|
||||
<div className="grid grid-cols-2 md:grid-cols-4 gap-6 mt-6">
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</LayoutPage>
|
||||
);
|
||||
};
|
||||
|
||||
|
||||
export default Kuis;
|
|
@ -0,0 +1,26 @@
|
|||
import { lazy } from "react";
|
||||
|
||||
const Home = lazy(() => import("@/pages/Home"));
|
||||
const Kamus = lazy(() => import("@/pages/Kamus"));
|
||||
const Kuis = lazy(() => import("@/pages/Kuis"));
|
||||
|
||||
const myRoute = [
|
||||
{
|
||||
"title": "Home",
|
||||
"path": "/",
|
||||
"component": Home,
|
||||
},
|
||||
{
|
||||
"title": "Kamus",
|
||||
"path": "/kamus",
|
||||
"component": Kamus
|
||||
},
|
||||
{
|
||||
"title": "Kuis",
|
||||
"path": "/kuis",
|
||||
"component": Kuis
|
||||
},
|
||||
|
||||
]
|
||||
|
||||
export default myRoute;
|
|
@ -16,7 +16,7 @@ export default {
|
|||
themes: [
|
||||
{
|
||||
mytheme: {
|
||||
primary: "#fbbf24",
|
||||
primary: "#FF6884",
|
||||
secondary: "#00b44a",
|
||||
accent: "#0099db",
|
||||
neutral: "#080f0e",
|
||||
|
|
Loading…
Reference in New Issue