TIF_E41210618/src/pages/Home.tsx

194 lines
5.3 KiB
TypeScript

import LayoutPage from "@/components/templates/LayoutPage";
import { useEffect, useRef, useState } from "react";
import { FaCircleCheck } from "react-icons/fa6";
import * as tf from "@tensorflow/tfjs";
import { FilesetResolver, HandLandmarker } from "@mediapipe/tasks-vision";
import calcLandmarkList from "@/utils/CalculateLandmark";
import preProcessLandmark from "@/utils/PreProcessLandmark";
import ConvertResult from "@/utils/ConvertResult";
import useNavbarStore from "@/stores/NavbarStore";
type PredictResult = {
abjad: String;
acc: String;
};
const Home = () => {
const videoRef = useRef<HTMLVideoElement>(null);
const [loadCamera, setLoadCamera] = useState(false);
const canvasRef = useRef<HTMLCanvasElement>(null);
const [resultPredict, setResultPredict] = useState<PredictResult>({
abjad: "",
acc: "",
});
let model: tf.LayersModel;
let handLandmarker: HandLandmarker;
const [handPresence, setHandPresence] = useState(false);
const startWebcam = async () => {
try {
const stream = await navigator.mediaDevices.getUserMedia({
video: true,
});
if (videoRef.current) {
videoRef.current.srcObject = stream;
}
setLoadCamera(true);
// setLoadCamera(true);
await initializeHandDetection();
} catch (error) {
console.error("Error accessing webcam:", error);
}
};
const loadModel = async () => {
setLoadCamera(false);
try {
const lm = await tf.loadLayersModel("/model/model.json");
model = lm;
const emptyInput = tf.tensor2d([[0, 0]]);
model.predict(emptyInput) as tf.Tensor;
setLoadCamera(true);
} catch (error) {
// console.error("Error loading model:", error);
}
};
const initializeHandDetection = async () => {
try {
const vision = await FilesetResolver.forVisionTasks(
"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm"
);
handLandmarker = await HandLandmarker.createFromOptions(vision, {
baseOptions: {
modelAssetPath: `https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task`,
},
numHands: 2,
runningMode: "VIDEO",
});
detectHands();
} catch (error) {
console.error("Error initializing hand detection:", error);
}
};
const makePrediction = async (finalResult: any) => {
const input = tf.tensor2d([finalResult]);
// Melakukan prediksi
const prediction = model.predict(input) as tf.Tensor;
const result = prediction.dataSync();
const maxEntry = Object.entries(result).reduce((max, entry) => {
const [, value] = entry;
return value > max[1] ? entry : max;
});
// maxEntry sekarang berisi [key, value] dengan nilai terbesar
const [maxKey, maxValue] = maxEntry;
const percentageValue = (maxValue * 100).toFixed(2) + "%";
setResultPredict({
abjad: ConvertResult(parseInt(maxKey)),
acc: percentageValue,
});
// Hapus tensor
input.dispose();
prediction.dispose();
};
const detectHands = async () => {
if (videoRef.current && videoRef.current.readyState >= 2) {
const detections = handLandmarker.detectForVideo(
videoRef.current,
performance.now()
);
setHandPresence(detections.handedness.length > 0);
// Assuming detections.landmarks is an array of landmark objects
if (detections.landmarks) {
if (detections.handednesses.length > 0) {
console.log(detections);
if (detections.handednesses[0][0].displayName === "Right") {
const landm = detections.landmarks[0].map((landmark) => landmark);
const calt = calcLandmarkList(videoRef.current, landm);
const finalResult = preProcessLandmark(calt);
makePrediction(finalResult);
} else {
setHandPresence(false);
}
}
}
}
requestAnimationFrame(detectHands);
};
const store = useNavbarStore();
useEffect(() => {
store.setNavSelected("home");
loadModel();
startWebcam();
return () => {
if (handLandmarker) {
handLandmarker.close();
}
};
}, []);
return (
<LayoutPage>
<div className="flex flex-col flex-1 py-4">
{loadCamera ? (
<div className="rounded-md overflow-hidden relative">
{handPresence && (
<div className="top-6 left-6 absolute flex gap-2 items-center bg-white text-black rounded-md drop-shadow px-3 py-2">
<FaCircleCheck className="text-green-500" />
<h1 className="text-2xl font-semibold text-center">
{resultPredict.abjad} ({resultPredict.acc})
</h1>
</div>
)}
<canvas
ref={canvasRef}
className="absolute top-0 left-0 w-full h-full z-20"
/>
<video
ref={videoRef}
className="w-full max-h-[80svh] object-cover"
autoPlay
playsInline
></video>
</div>
) : (
<div className="flex flex-col items-center justify-center flex-1">
<div className="loader"></div>
<p className="mt-4 text-lg text-gray-700">Loading...</p>
</div>
)}
</div>
</LayoutPage>
);
};
export default Home;