194 lines
5.3 KiB
TypeScript
194 lines
5.3 KiB
TypeScript
import LayoutPage from "@/components/templates/LayoutPage";
|
|
import { useEffect, useRef, useState } from "react";
|
|
import { FaCircleCheck } from "react-icons/fa6";
|
|
import * as tf from "@tensorflow/tfjs";
|
|
import { FilesetResolver, HandLandmarker } from "@mediapipe/tasks-vision";
|
|
import calcLandmarkList from "@/utils/CalculateLandmark";
|
|
import preProcessLandmark from "@/utils/PreProcessLandmark";
|
|
import ConvertResult from "@/utils/ConvertResult";
|
|
import useNavbarStore from "@/stores/NavbarStore";
|
|
|
|
type PredictResult = {
|
|
abjad: String;
|
|
acc: String;
|
|
};
|
|
|
|
const Home = () => {
|
|
const videoRef = useRef<HTMLVideoElement>(null);
|
|
const [loadCamera, setLoadCamera] = useState(false);
|
|
const canvasRef = useRef<HTMLCanvasElement>(null);
|
|
|
|
const [resultPredict, setResultPredict] = useState<PredictResult>({
|
|
abjad: "",
|
|
acc: "",
|
|
});
|
|
|
|
let model: tf.LayersModel;
|
|
let handLandmarker: HandLandmarker;
|
|
|
|
const [handPresence, setHandPresence] = useState(false);
|
|
|
|
const startWebcam = async () => {
|
|
try {
|
|
const stream = await navigator.mediaDevices.getUserMedia({
|
|
video: true,
|
|
});
|
|
|
|
if (videoRef.current) {
|
|
videoRef.current.srcObject = stream;
|
|
}
|
|
setLoadCamera(true);
|
|
|
|
// setLoadCamera(true);
|
|
await initializeHandDetection();
|
|
} catch (error) {
|
|
console.error("Error accessing webcam:", error);
|
|
}
|
|
};
|
|
|
|
const loadModel = async () => {
|
|
setLoadCamera(false);
|
|
try {
|
|
const lm = await tf.loadLayersModel("/model/model.json");
|
|
model = lm;
|
|
|
|
const emptyInput = tf.tensor2d([[0, 0]]);
|
|
|
|
model.predict(emptyInput) as tf.Tensor;
|
|
|
|
setLoadCamera(true);
|
|
} catch (error) {
|
|
// console.error("Error loading model:", error);
|
|
}
|
|
};
|
|
|
|
const initializeHandDetection = async () => {
|
|
try {
|
|
const vision = await FilesetResolver.forVisionTasks(
|
|
"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm"
|
|
);
|
|
handLandmarker = await HandLandmarker.createFromOptions(vision, {
|
|
baseOptions: {
|
|
modelAssetPath: `https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task`,
|
|
},
|
|
numHands: 2,
|
|
runningMode: "VIDEO",
|
|
});
|
|
|
|
detectHands();
|
|
} catch (error) {
|
|
console.error("Error initializing hand detection:", error);
|
|
}
|
|
};
|
|
|
|
const makePrediction = async (finalResult: any) => {
|
|
const input = tf.tensor2d([finalResult]);
|
|
|
|
// Melakukan prediksi
|
|
const prediction = model.predict(input) as tf.Tensor;
|
|
|
|
const result = prediction.dataSync();
|
|
|
|
const maxEntry = Object.entries(result).reduce((max, entry) => {
|
|
const [, value] = entry;
|
|
return value > max[1] ? entry : max;
|
|
});
|
|
|
|
// maxEntry sekarang berisi [key, value] dengan nilai terbesar
|
|
const [maxKey, maxValue] = maxEntry;
|
|
|
|
const percentageValue = (maxValue * 100).toFixed(2) + "%";
|
|
|
|
setResultPredict({
|
|
abjad: ConvertResult(parseInt(maxKey)),
|
|
acc: percentageValue,
|
|
});
|
|
|
|
// Hapus tensor
|
|
input.dispose();
|
|
prediction.dispose();
|
|
};
|
|
|
|
const detectHands = async () => {
|
|
if (videoRef.current && videoRef.current.readyState >= 2) {
|
|
const detections = handLandmarker.detectForVideo(
|
|
videoRef.current,
|
|
performance.now()
|
|
);
|
|
|
|
setHandPresence(detections.handedness.length > 0);
|
|
// Assuming detections.landmarks is an array of landmark objects
|
|
if (detections.landmarks) {
|
|
if (detections.handednesses.length > 0) {
|
|
console.log(detections);
|
|
|
|
if (detections.handednesses[0][0].displayName === "Right") {
|
|
const landm = detections.landmarks[0].map((landmark) => landmark);
|
|
|
|
const calt = calcLandmarkList(videoRef.current, landm);
|
|
const finalResult = preProcessLandmark(calt);
|
|
|
|
makePrediction(finalResult);
|
|
} else {
|
|
setHandPresence(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
requestAnimationFrame(detectHands);
|
|
};
|
|
|
|
const store = useNavbarStore();
|
|
|
|
useEffect(() => {
|
|
store.setNavSelected("home");
|
|
|
|
loadModel();
|
|
startWebcam();
|
|
|
|
|
|
|
|
return () => {
|
|
if (handLandmarker) {
|
|
handLandmarker.close();
|
|
}
|
|
};
|
|
}, []);
|
|
|
|
return (
|
|
<LayoutPage>
|
|
<div className="flex flex-col flex-1 py-4">
|
|
{loadCamera ? (
|
|
<div className="rounded-md overflow-hidden relative">
|
|
{handPresence && (
|
|
<div className="top-6 left-6 absolute flex gap-2 items-center bg-white text-black rounded-md drop-shadow px-3 py-2">
|
|
<FaCircleCheck className="text-green-500" />
|
|
<h1 className="text-2xl font-semibold text-center">
|
|
{resultPredict.abjad} ({resultPredict.acc})
|
|
</h1>
|
|
</div>
|
|
)}
|
|
<canvas
|
|
ref={canvasRef}
|
|
className="absolute top-0 left-0 w-full h-full z-20"
|
|
/>
|
|
<video
|
|
ref={videoRef}
|
|
className="w-full max-h-[80svh] object-cover"
|
|
autoPlay
|
|
playsInline
|
|
></video>
|
|
</div>
|
|
) : (
|
|
<div className="flex flex-col items-center justify-center flex-1">
|
|
<div className="loader"></div>
|
|
<p className="mt-4 text-lg text-gray-700">Loading...</p>
|
|
</div>
|
|
)}
|
|
</div>
|
|
</LayoutPage>
|
|
);
|
|
};
|
|
|
|
export default Home;
|