128 lines
3.9 KiB
Python
128 lines
3.9 KiB
Python
from django.shortcuts import render
|
|
import cv2
|
|
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
from django.http import HttpResponse
|
|
from scipy import stats
|
|
|
|
def get_pixel(img, center, x, y):
|
|
new_value = 0
|
|
try:
|
|
if img[x][y] >= center:
|
|
new_value = 1
|
|
except:
|
|
pass
|
|
return new_value
|
|
|
|
def lbp_calculated_pixel(img, x, y):
|
|
center = img[x][y]
|
|
val_ar = []
|
|
val_ar.append(get_pixel(img, center, x-1, y-1))
|
|
val_ar.append(get_pixel(img, center, x-1, y))
|
|
val_ar.append(get_pixel(img, center, x-1, y + 1))
|
|
val_ar.append(get_pixel(img, center, x, y + 1))
|
|
val_ar.append(get_pixel(img, center, x + 1, y + 1))
|
|
val_ar.append(get_pixel(img, center, x + 1, y))
|
|
val_ar.append(get_pixel(img, center, x + 1, y-1))
|
|
val_ar.append(get_pixel(img, center, x, y-1))
|
|
power_val = [1, 2, 4, 8, 16, 32, 64, 128]
|
|
val = 0
|
|
for i in range(len(val_ar)):
|
|
val += val_ar[i] * power_val[i]
|
|
return val
|
|
|
|
def calculate_normalized_lbp_histogram(img_gray):
|
|
height, width = img_gray.shape
|
|
lbp_histogram = np.zeros(256, dtype=int)
|
|
|
|
for i in range(1, height - 1):
|
|
for j in range(1, width - 1):
|
|
lbp_val = lbp_calculated_pixel(img_gray, i, j)
|
|
lbp_histogram[lbp_val] += 1
|
|
|
|
# Normalize the histogram
|
|
lbp_histogram = lbp_histogram / sum(lbp_histogram)
|
|
|
|
return lbp_histogram
|
|
|
|
def find_mode_pixel_value(img):
|
|
img_flat = img.ravel()
|
|
mode_value = int(np.median(img_flat))
|
|
return mode_value
|
|
|
|
def lbp(request):
|
|
path = 'media/kebonangung 50cm.jpeg'
|
|
img_bgr = cv2.imread(path, 1)
|
|
img_gray = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)
|
|
mode_pixel = find_mode_pixel_value(img_gray)
|
|
print(f"Nilai pixel yang paling sering muncul: {mode_pixel}")
|
|
normalized_mode_pixel = mode_pixel / 255.0
|
|
print(f"Nilai yang sering muncul yang telah dinormalisasi: {normalized_mode_pixel}")
|
|
|
|
hasil_operasi_Natrium = (normalized_mode_pixel * 0.1928 + 0.021)
|
|
print(f"hasil Nilai N (Natrium): {hasil_operasi_Natrium}")
|
|
N = hasil_operasi_Natrium
|
|
if N < 1:
|
|
print("Sangat rendah")
|
|
elif N >= 1 and N < 2:
|
|
print("Rendah")
|
|
elif N >= 2.001 and N < 3:
|
|
print("Sedang")
|
|
elif N >= 3.001 and N < 5:
|
|
print("Tinggi")
|
|
elif N >= 5.001:
|
|
print("Sangat Tinggi")
|
|
else:
|
|
print("Ketegori Tidak Ditemukan")
|
|
|
|
hasil_operasi_fosfor = (normalized_mode_pixel * -10.725) + 16.533
|
|
print(f"hasil Nilai P (Fosfor): {hasil_operasi_fosfor}")
|
|
P = hasil_operasi_fosfor
|
|
if P < 10:
|
|
print("Sangat rendah")
|
|
elif P >= 10 and P <= 25:
|
|
print("Rendah")
|
|
elif P >= 26 and P <= 45:
|
|
print("Sedang")
|
|
elif P >= 46 and P <= 60:
|
|
print("Tinggi")
|
|
elif P > 60:
|
|
print("Sangat Tinggi")
|
|
else:
|
|
print("Lebih dari atau sama dengan 2")
|
|
|
|
hasil_operasi_Kalium = (normalized_mode_pixel * -0.1864 + 0.2471)
|
|
print(f"hasil Nilai K (Kalium): {hasil_operasi_Kalium}")
|
|
K = hasil_operasi_Kalium
|
|
if K < 0.1:
|
|
print("Sangat rendah")
|
|
elif K >= 0.1 and K <= 0.3:
|
|
print("Rendah")
|
|
elif K >= 0.4 and K <= 0.5:
|
|
print("Sedang")
|
|
elif K >= 0.6 and K <= 1.0:
|
|
print("Tinggi")
|
|
elif K > 1.0:
|
|
print("Sangat Tinggi")
|
|
else:
|
|
print("Lebih dari atau sama dengan 2")
|
|
|
|
# Hitung histogram LBP yang telah dinormalisasi
|
|
lbp_histogram = calculate_normalized_lbp_histogram(img_gray)
|
|
|
|
# Cetak nilai-nilai LBP yang telah dinormalisasi
|
|
# print("Nilai-nilai LBP yang telah dinormalisasi:")
|
|
# for i, nilai in enumerate(lbp_histogram):
|
|
# print(f'LBP Nilai {i}: {nilai}')
|
|
|
|
# Plot histogram LBP yang telah dinormalisasi
|
|
# plt.bar(range(len(lbp_histogram)), lbp_histogram)
|
|
# plt.xlabel('Nilai LBP')
|
|
# plt.ylabel('Frekuensi yang Dinormalisasi')
|
|
# plt.title('Histogram LBP yang Dinormalisasi')
|
|
# plt.show()
|
|
|
|
print("Program LBP selesai")
|
|
|
|
lbp(None)
|