Create thesis anggun.py
This commit is contained in:
parent
1a247b9cab
commit
532ab8abb7
|
@ -0,0 +1,97 @@
|
|||
import time
|
||||
import numpy as np
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score
|
||||
|
||||
# ======================= RULES DEFINISI ==========================
|
||||
rules = [
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012"}, "Maag Ringan"),
|
||||
({"G001", "G002", "G003", "G004", "G006", "G007", "G010", "G011", "G012"}, "Maag Sedang"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G006"}, "Maag Sedang"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G007"}, "Maag Sedang"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G010"}, "Maag Sedang"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007"}, "Maag Sedang"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G010"}, "Maag Sedang"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G007", "G010"}, "Maag Sedang"),
|
||||
({"G001", "G002", "G003", "G004", "G005", "G006", "G007", "G008", "G009", "G010", "G011d", "G012"}, "Maag Kronis"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G005"}, "Maag Kronis"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G008"}, "Maag Kronis"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G009"}, "Maag Kronis"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G005", "G008"}, "Maag Kronis"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G005", "G009"}, "Maag Kronis"),
|
||||
({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G008", "G009"}, "Maag Kronis")
|
||||
]
|
||||
|
||||
# =================== FUNGSI FORWARD CHAINING =====================
|
||||
def forward_chaining(rules, initial_facts):
|
||||
facts = set(initial_facts)
|
||||
diagnosis = None
|
||||
new_facts = True
|
||||
while new_facts:
|
||||
new_facts = False
|
||||
for conditions, result in rules:
|
||||
if conditions.issubset(facts) and result not in facts:
|
||||
facts.add(result)
|
||||
diagnosis = result
|
||||
new_facts = True
|
||||
return diagnosis
|
||||
|
||||
# ======================= MENU ============================
|
||||
mode = input("PILIH MENU:\n1. Diagnosa \n2. Evaluasi Performa \nPilihan (1/2): ").strip()
|
||||
|
||||
if mode == "1":
|
||||
print("\n=== PREDIKSI ===")
|
||||
print("Masukkan kode gejala (pisahkan dengan koma), contoh: G001,G002,G003")
|
||||
input_gejala = input("Gejala: ")
|
||||
initial_facts = set(g.strip().upper() for g in input_gejala.split(","))
|
||||
|
||||
start_time = time.time()
|
||||
hasil_diagnosa = forward_chaining(rules, initial_facts)
|
||||
end_time = time.time()
|
||||
|
||||
print("\n=== Hasil Diagnosa ===")
|
||||
print(f"Gejala yang dimasukkan: {initial_facts}")
|
||||
print(f"Diagnosa: {hasil_diagnosa if hasil_diagnosa else 'Bukan Maag'}")
|
||||
print(f"Waktu Eksekusi: {end_time - start_time:.6f} detik")
|
||||
|
||||
else:
|
||||
print("\n=== PERFORMA ===")
|
||||
|
||||
# ================== DATA EVALUASI ==========================
|
||||
y_true = np.array([1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 0, 0, 0, 0, 0, 0])
|
||||
y_pred = np.array([1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 0, 0, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 0, 0, 0, 0, 0, 2])
|
||||
|
||||
# ================== CONFUSION MATRIX =======================
|
||||
cm = confusion_matrix(y_true, y_pred)
|
||||
plt.figure(figsize=(6, 5))
|
||||
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
|
||||
xticklabels=["Bukan Maag", "Maag Ringan", "Maag Sedang"],
|
||||
yticklabels=["Bukan Maag", "Maag Ringan", "Maag Sedang"])
|
||||
plt.xlabel("Predicted Label")
|
||||
plt.ylabel("True Label")
|
||||
plt.title("Confusion Matrix - Diagnosa Maag")
|
||||
plt.show()
|
||||
|
||||
# ================== KONVERSI BINER ==========================
|
||||
y_true_binary = np.array([1 if x in [1, 2] else 0 for x in y_true])
|
||||
y_pred_binary = np.array([1 if x in [1, 2] else 0 for x in y_pred])
|
||||
cm_binary = confusion_matrix(y_true_binary, y_pred_binary)
|
||||
TN, FP, FN, TP = cm_binary.ravel()
|
||||
|
||||
print("\nConfusion Matrix (Biner):\n", cm_binary)
|
||||
print(f"True Positive (TP): {TP}")
|
||||
print(f"False Positive (FP): {FP}")
|
||||
print(f"True Negative (TN): {TN}")
|
||||
print(f"False Negative (FN): {FN}")
|
||||
|
||||
accuracy_binary = accuracy_score(y_true_binary, y_pred_binary)
|
||||
precision_binary = precision_score(y_true_binary, y_pred_binary)
|
||||
recall_binary = recall_score(y_true_binary, y_pred_binary)
|
||||
f1_binary = f1_score(y_true_binary, y_pred_binary)
|
||||
|
||||
print("\n=== Metrik Evaluasi ===")
|
||||
print(f"Akurasi : {accuracy_binary:.2f}")
|
||||
print(f"Presisi : {precision_binary:.2f}")
|
||||
print(f"Recall : {recall_binary:.2f}")
|
||||
print(f"F1-Score : {f1_binary:.2f}")
|
Loading…
Reference in New Issue