import time import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score # ======================= RULES DEFINISI ========================== rules = [ ({"G001", "G002", "G003", "G004", "G011", "G012"}, "Maag Ringan"), ({"G001", "G002", "G003", "G004", "G006", "G007", "G010", "G011", "G012"}, "Maag Sedang"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G006"}, "Maag Sedang"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G007"}, "Maag Sedang"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G010"}, "Maag Sedang"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007"}, "Maag Sedang"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G010"}, "Maag Sedang"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G007", "G010"}, "Maag Sedang"), ({"G001", "G002", "G003", "G004", "G005", "G006", "G007", "G008", "G009", "G010", "G011d", "G012"}, "Maag Kronis"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G005"}, "Maag Kronis"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G008"}, "Maag Kronis"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G009"}, "Maag Kronis"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G005", "G008"}, "Maag Kronis"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G005", "G009"}, "Maag Kronis"), ({"G001", "G002", "G003", "G004", "G011", "G012", "G006", "G007", "G010", "G008", "G009"}, "Maag Kronis") ] # =================== FUNGSI FORWARD CHAINING ===================== def forward_chaining(rules, initial_facts): facts = set(initial_facts) diagnosis = None new_facts = True while new_facts: new_facts = False for conditions, result in rules: if conditions.issubset(facts) and result not in facts: facts.add(result) diagnosis = result new_facts = True return diagnosis # ======================= MENU ============================ mode = input("PILIH MENU:\n1. Diagnosa \n2. Evaluasi Performa \nPilihan (1/2): ").strip() if mode == "1": print("\n=== PREDIKSI ===") print("Masukkan kode gejala (pisahkan dengan koma), contoh: G001,G002,G003") input_gejala = input("Gejala: ") initial_facts = set(g.strip().upper() for g in input_gejala.split(",")) start_time = time.time() hasil_diagnosa = forward_chaining(rules, initial_facts) end_time = time.time() print("\n=== Hasil Diagnosa ===") print(f"Gejala yang dimasukkan: {initial_facts}") print(f"Diagnosa: {hasil_diagnosa if hasil_diagnosa else 'Bukan Maag'}") print(f"Waktu Eksekusi: {end_time - start_time:.6f} detik") else: print("\n=== PERFORMA ===") # ================== DATA EVALUASI ========================== y_true = np.array([1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 0, 0, 0, 0, 0, 0]) y_pred = np.array([1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 0, 0, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 0, 0, 0, 0, 0, 2]) # ================== CONFUSION MATRIX ======================= cm = confusion_matrix(y_true, y_pred) plt.figure(figsize=(6, 5)) sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=["Bukan Maag", "Maag Ringan", "Maag Sedang"], yticklabels=["Bukan Maag", "Maag Ringan", "Maag Sedang"]) plt.xlabel("Predicted Label") plt.ylabel("True Label") plt.title("Confusion Matrix - Diagnosa Maag") plt.show() # ================== KONVERSI BINER ========================== y_true_binary = np.array([1 if x in [1, 2] else 0 for x in y_true]) y_pred_binary = np.array([1 if x in [1, 2] else 0 for x in y_pred]) cm_binary = confusion_matrix(y_true_binary, y_pred_binary) TN, FP, FN, TP = cm_binary.ravel() print("\nConfusion Matrix (Biner):\n", cm_binary) print(f"True Positive (TP): {TP}") print(f"False Positive (FP): {FP}") print(f"True Negative (TN): {TN}") print(f"False Negative (FN): {FN}") accuracy_binary = accuracy_score(y_true_binary, y_pred_binary) precision_binary = precision_score(y_true_binary, y_pred_binary) recall_binary = recall_score(y_true_binary, y_pred_binary) f1_binary = f1_score(y_true_binary, y_pred_binary) print("\n=== Metrik Evaluasi ===") print(f"Akurasi : {accuracy_binary:.2f}") print(f"Presisi : {precision_binary:.2f}") print(f"Recall : {recall_binary:.2f}") print(f"F1-Score : {f1_binary:.2f}")