MIF_E31222492/dashboard/apps/test.py

32 lines
1.1 KiB
Python

import streamlit as st
# from backend import load_model_and_vectorizer, predict_sentiment
def app():
# Dropdown untuk memilih model
model_choice = st.selectbox('Pilih Model', ['SVM', 'Naive Bayes', 'KNN'])
# Input teks dari user
user_input = st.text_area('Masukkan teks untuk analisis sentimen')
# Tombol untuk melakukan prediksi
if st.button('Prediksi Sentimen'):
# if model_choice == 'SVM':
# model_path = 'models/svm_model.pkl'
# vectorizer_path = 'models/datasets-tfidf.pkl'
# elif model_choice == 'Naive Bayes':
# model_path = 'models/nb_model.pkl'
# vectorizer_path = 'models/datasets-tfidf.pkl'
# elif model_choice == 'KNN':
# model_path = 'models/knn_model.pkl'
# vectorizer_path = 'models/datasets-tfidf.pkl'
# Load model dan vectorizer
# model, vectorizer = load_model_and_vectorizer(model_path, vectorizer_path)
# Prediksi sentimen
# prediction = predict_sentiment(model, vectorizer, user_input)
st.write(f'#### Prediksi Sentimen:')
if __name__ == '__main__':
app()