32 lines
1.1 KiB
Python
32 lines
1.1 KiB
Python
import streamlit as st
|
|
# from backend import load_model_and_vectorizer, predict_sentiment
|
|
|
|
def app():
|
|
# Dropdown untuk memilih model
|
|
model_choice = st.selectbox('Pilih Model', ['SVM', 'Naive Bayes', 'KNN'])
|
|
|
|
# Input teks dari user
|
|
user_input = st.text_area('Masukkan teks untuk analisis sentimen')
|
|
|
|
# Tombol untuk melakukan prediksi
|
|
if st.button('Prediksi Sentimen'):
|
|
# if model_choice == 'SVM':
|
|
# model_path = 'models/svm_model.pkl'
|
|
# vectorizer_path = 'models/datasets-tfidf.pkl'
|
|
# elif model_choice == 'Naive Bayes':
|
|
# model_path = 'models/nb_model.pkl'
|
|
# vectorizer_path = 'models/datasets-tfidf.pkl'
|
|
# elif model_choice == 'KNN':
|
|
# model_path = 'models/knn_model.pkl'
|
|
# vectorizer_path = 'models/datasets-tfidf.pkl'
|
|
|
|
# Load model dan vectorizer
|
|
# model, vectorizer = load_model_and_vectorizer(model_path, vectorizer_path)
|
|
|
|
# Prediksi sentimen
|
|
# prediction = predict_sentiment(model, vectorizer, user_input)
|
|
st.write(f'#### Prediksi Sentimen:')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app() |