13 KiB
Brief & Masterplan Dashboard K-means Clustering
1. EXECUTIVE SUMMARY
1.1 Tujuan Proyek
Mengembangkan dashboard interaktif yang memungkinkan pengguna untuk melakukan analisis K-means clustering dengan interface yang intuitif, visualisasi yang komprehensif, dan fitur-fitur advanced untuk keperluan bisnis dan riset.
1.2 Target Pengguna
- Data Scientists dan Data Analysts
- Business Intelligence Professionals
- Peneliti dan Akademisi
- Marketing Analysts untuk segmentasi pelanggan
- Product Managers yang membutuhkan insights berbasis clustering
1.3 Nilai Bisnis
- Efisiensi: Mengurangi waktu analisis clustering dari hari ke jam
- Aksesibilitas: Memungkinkan non-technical users melakukan clustering analysis
- Insight Generation: Menghasilkan actionable insights dari data clustering
- Standardisasi: Menyediakan framework standar untuk analisis clustering
2. SCOPE PROYEK
2.1 Fitur Utama (Must Have)
-
Data Import & Management
- Upload CSV, Excel, JSON files
- Database connection (MySQL, PostgreSQL, MongoDB)
- Data preview dan basic statistics
- Data cleaning dan preprocessing tools
-
K-means Configuration
- Jumlah cluster selection (manual/automatic)
- Initialization methods (K-means++, Random)
- Distance metrics (Euclidean, Manhattan, Cosine)
- Convergence criteria settings
-
Visualisasi Interaktif
- 2D/3D scatter plots
- Cluster distribution charts
- Elbow method visualization
- Silhouette analysis plots
-
Results Analysis
- Cluster centers display
- Cluster characteristics summary
- Data point assignments
- Export results (CSV, PDF, JSON)
2.2 Fitur Lanjutan (Should Have)
-
Advanced Analytics
- Silhouette score calculation
- Within-cluster sum of squares (WCSS)
- Calinski-Harabasz index
- Davies-Bouldin index
-
Automation Features
- Optimal K determination (Elbow method, Silhouette analysis)
- Automated data preprocessing
- Batch processing capabilities
-
Collaboration Tools
- Save/load analysis sessions
- Share analysis results
- Project management features
2.3 Fitur Tambahan (Nice to Have)
-
Machine Learning Integration
- Model comparison (K-means vs other clustering methods)
- Feature importance analysis
- Outlier detection integration
-
Advanced Visualization
- Interactive heatmaps
- Parallel coordinates plots
- Time-series clustering visualization
-
Enterprise Features
- User authentication dan role management
- API integration
- Scheduled analysis runs
3. TECHNICAL ARCHITECTURE
3.1 Frontend Stack
Framework: Next.js 15 dengan TypeScript
UI Library: shadcn/ui + Tailwind CSS
Charting: Recharts + D3.js untuk visualisasi advanced
State Management: Zustand atau React Context
Form Handling: React Hook Form + Zod validation
3.2 Backend Stack
Framework: Next.js 15 Server Actions
Database: Supabase PostgreSQL
ORM: Prisma
Authentication: Supabase Auth
File Storage: Supabase Storage
ML Processing: Python microservice atau JS libraries
3.3 Infrastructure
Hosting: Vercel (Next.js) + Supabase (Backend)
Database: Supabase PostgreSQL
File Storage: Supabase Storage Buckets
CI/CD: GitHub Actions + Vercel
Monitoring: Vercel Analytics + Supabase Monitoring
4. USER INTERFACE DESIGN
4.1 Layout Structure
Header: Logo, Navigation, User Profile
Sidebar: Project Navigator, Recent Analysis
Main Content: Dynamic workspace
Status Bar: Progress indicators, notifications
4.2 Key Pages/Components
4.2.1 Dashboard Overview
- Project summary cards
- Recent analyses
- Quick start wizard
- Performance metrics
4.2.2 Data Import Page
- Drag & drop file upload
- Connection string input for databases
- Data preview table
- Data quality indicators
4.2.3 Preprocessing Page
- Missing value handling
- Feature selection interface
- Data transformation tools
- Scaling/normalization options
4.2.4 Analysis Configuration
- K-means parameter settings
- Algorithm selection dropdown
- Validation method selection
- Advanced options panel
4.2.5 Results Visualization
- Multiple chart types in tabs
- Interactive plot controls
- Cluster insights panel
- Export options
4.2.6 Model Evaluation
- Performance metrics display
- Comparison charts
- Recommendation engine
- Historical performance tracking
5. DATA FLOW ARCHITECTURE
5.1 Data Pipeline
Raw Data → Validation → Preprocessing → Feature Engineering →
K-means Algorithm → Results Processing → Visualization → Export
5.2 Server Actions Structure
// app/actions/data.ts
export async function uploadDataset(formData: FormData)
export async function previewData(datasetId: string)
export async function preprocessData(config: PreprocessConfig)
// app/actions/clustering.ts
export async function runKMeansAnalysis(config: KMeansConfig)
export async function getAnalysisResults(analysisId: string)
export async function exportResults(analysisId: string, format: string)
// app/actions/projects.ts
export async function createProject(projectData: ProjectData)
export async function getProjects(userId: string)
export async function updateProject(projectId: string, updates: Partial<ProjectData>)
5.3 Prisma Database Schema
generator client {
provider = "prisma-client-js"
}
datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
}
model User {
id String @id @default(cuid())
email String @unique
name String?
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
projects Project[]
}
model Project {
id String @id @default(cuid())
name String
description String?
userId String
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
user User @relation(fields: [userId], references: [id])
datasets Dataset[]
analyses Analysis[]
}
model Dataset {
id String @id @default(cuid())
projectId String
filename String
originalName String
fileSize Int
columns Json
rowCount Int
metadata Json?
createdAt DateTime @default(now())
project Project @relation(fields: [projectId], references: [id])
analyses Analysis[]
}
model Analysis {
id String @id @default(cuid())
projectId String
datasetId String
name String
config Json
results Json?
status String @default("pending")
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
project Project @relation(fields: [projectId], references: [id])
dataset Dataset @relation(fields: [datasetId], references: [id])
clusters Cluster[]
}
model Cluster {
id String @id @default(cuid())
analysisId String
clusterId Int
centerData Json
pointCount Int
characteristics Json?
analysis Analysis @relation(fields: [analysisId], references: [id])
}
6. FITUR DETAIL SPECIFICATIONS
6.1 K-means Algorithm Implementation
Class KMeansAnalyzer:
- fit(data, n_clusters, init_method, max_iter, tol)
- predict(new_data)
- get_cluster_centers()
- calculate_metrics()
- optimize_k(k_range, method)
6.2 Preprocessing Tools
- Missing Value Handling: Mean/Median/Mode imputation, forward/backward fill
- Outlier Detection: Z-score, IQR method, Isolation Forest
- Feature Scaling: StandardScaler, MinMaxScaler, RobustScaler
- Feature Selection: Variance threshold, correlation analysis
6.3 Evaluation Metrics
- Internal Metrics: Silhouette Score, Calinski-Harabasz Index, Davies-Bouldin Index
- External Metrics: Adjusted Rand Index (jika label tersedia)
- Stability Metrics: Clustering stability across different runs
6.4 Visualization Components
- Scatter Plot: 2D/3D cluster visualization dengan color coding
- Elbow Plot: WCSS vs K dengan optimal K highlighting
- Silhouette Plot: Silhouette analysis untuk setiap cluster
- Cluster Summary: Bar charts untuk cluster characteristics
7. DEVELOPMENT ROADMAP
7.1 Phase 1: Foundation (Weeks 1-4)
-
Week 1-2:
- Next.js 15 project setup dengan TypeScript
- Supabase project configuration
- Prisma schema design dan migration
- shadcn/ui components installation
- Authentication setup dengan Supabase Auth
-
Week 3-4:
- File upload dengan Supabase Storage
- Basic data preview server actions
- Project management CRUD operations
- Basic dashboard layout dengan shadcn components
7.2 Phase 2: Core Features (Weeks 5-8)
-
Week 5-6:
- Data preprocessing server actions
- K-means algorithm implementation (JS/Python microservice)
- Prisma queries optimization
- Form handling dengan React Hook Form + Zod
-
Week 7-8:
- Recharts integration untuk visualisasi
- Results storage dan retrieval
- Real-time updates dengan Supabase Realtime
- Export functionality
7.3 Phase 3: Advanced Features (Weeks 9-12)
-
Week 9-10:
- Advanced analytics server actions
- Optimal K determination algorithms
- Performance optimization dengan caching
- Advanced visualizations dengan D3.js
-
Week 11-12:
- Batch processing dengan background jobs
- Historical analysis tracking
- Collaboration features dengan real-time updates
- Mobile responsiveness optimization
7.4 Phase 4: Polish & Deploy (Weeks 13-16)
-
Week 13-14:
- UI/UX refinements
- Error handling dan loading states
- Performance testing dan optimization
- Security audit
-
Week 15-16:
- Vercel deployment setup
- Documentation creation
- User acceptance testing
- Go-live preparation
8. RESOURCE REQUIREMENTS
8.1 Tim Pengembangan
- 1 Product Manager: Requirement gathering, stakeholder management
- 1 UI/UX Designer: Interface design dengan shadcn/ui system
- 2 Full-stack Developers: Next.js 15, Server Actions, Prisma
- 1 ML Engineer: K-means algorithm optimization, data processing
- 1 DevOps Engineer: Vercel deployment, Supabase configuration
- 1 QA Engineer: Testing, quality assurance
8.2 Hardware & Software
- Development Environment: Modern laptops dengan Node.js 18+
- Services: Supabase Pro plan, Vercel Pro plan
- Tools: VS Code, Prisma Studio, shadcn/ui CLI
- Testing: Jest, Playwright untuk E2E testing
8.3 Budget Estimasi (Revised)
- Development: $120,000 - $150,000 (reduced due to serverless architecture)
- Infrastructure: $200 - $500/month (Supabase + Vercel)
- Third-party Services: $100 - $300/month
- Maintenance: $30,000 - $50,000/year
9. RISK MANAGEMENT
9.1 Technical Risks
- Performance Issues: Large dataset handling optimization
- Algorithm Complexity: Advanced ML features implementation
- Integration Challenges: Multiple data source connections
9.2 Mitigasi Strategi
- Performance: Implement data sampling, lazy loading, pagination
- Complexity: Use proven ML libraries, modular architecture
- Integration: Thorough API testing, fallback mechanisms
9.3 Business Risks
- User Adoption: Comprehensive user training, intuitive design
- Competition: Unique features, superior user experience
- Scalability: Cloud-native architecture, auto-scaling
10. SUCCESS METRICS
10.1 Technical KPIs
- Performance: Page load time < 3 seconds
- Reliability: 99.9% uptime
- Scalability: Support 1000+ concurrent users
- Accuracy: ML algorithm accuracy > 85%
10.2 Business KPIs
- User Adoption: 500+ active users in 6 months
- Usage Frequency: Average 3+ analyses per user per month
- User Satisfaction: NPS score > 70
- Revenue Impact: ROI > 300% within 2 years
10.3 User Experience KPIs
- Time to First Insight: < 15 minutes for new users
- Feature Adoption: 80% of users use advanced features
- Support Tickets: < 5% of users require support
- User Retention: 85% monthly active user retention
11. MAINTENANCE & SUPPORT
11.1 Ongoing Support
- 24/7 Technical Support: Critical issue resolution
- Regular Updates: Monthly feature releases
- Performance Monitoring: Real-time system health tracking
- User Training: Regular webinars, documentation updates
11.2 Evolution Planning
- Quarterly Reviews: Feature roadmap updates
- User Feedback Integration: Continuous improvement cycle
- Technology Updates: Framework and library upgrades
- Scalability Planning: Infrastructure expansion planning
12. CONCLUSION
Dashboard K-means clustering ini dirancang untuk menjadi solusi komprehensif yang menggabungkan kemudahan penggunaan dengan kekuatan analisis advanced. Dengan pendekatan modular dan scalable, platform ini dapat berkembang sesuai kebutuhan pengguna dan perkembangan teknologi.
Next Steps:
- Stakeholder approval pada brief ini
- Detailed technical specification
- UI/UX mockup creation
- Development team assembly
- Project kick-off meeting
Timeline Target: 16 minggu untuk MVP, dengan iterasi berkelanjutan berdasarkan user feedback dan business requirements.